Evolution of Late Paleozoic sedimentary provenance of Lhasa block: Detrital zircons from Yongzhu Formation in Cuoqin area, Tibet
-
摘要:
晚古生代是拉萨地块地质演化的重要转折期,一些关键地质问题存在争论,如拉萨地块来源问题。选择西藏措勤地区上石炭统永珠组为研究对象,石英砂岩中碎屑锆石U-Pb测年数据显示523Ma、920Ma两个年龄峰值。通过与拉萨地块及其周缘晚石炭世冰期之前地层碎屑锆石对比,认为拉萨地块永珠组920Ma年龄峰值更具有冈瓦纳大陆靠印度一侧的物源特征,其与南羌塘、拉萨、喜马拉雅微陆块在裂离之前具有显著的亲缘关系。而含有冰筏碎屑的拉嘎组和来姑组中包含的西澳大利亚物源信息(约1180Ma年龄峰值),暗示来自西澳大利亚的冰筏可能通过洋流作用漂移至拉萨地块而后沉积冰筏碎屑。
Abstract:The Late Paleozoic is an important transition period for the geological evolution of the Lhasa block, so there are some disputes on key geological issues, such as the origin of the Lhasa block. In this paper, the Upper Carboniferous Yongzhu Formation in the Cuoqin region of Tibet was selected as the study object. The U-Pb dating data of detrital zircons in quartz sandstone show the peak ages of 523Ma and 920Ma. Based on a comparison with the Lhasa block and the detrital zircons formed before the Lhasa blockin the Late Carboniferous glacial period, the authors hold that the 920Ma agepeak of the Yongzhu Formation in the Lhasa block is more characteristic of the provenance on the Indian side of the Gondwana opening, and that the Nanqiangtang, Lhasa and Himalayan microlandmasses were significantly related before splitting. The source information of western Australia (about 1180Ma age peak) in the Laga and Laigu groups containing ice raft debris suggests that ice rafts from western Australia might have drifted to the Lhasa block through ocean currents and then deposited ice raft debris.
-
Keywords:
- Gondwana continent /
- Lhasa block /
- Yongzhu Formation /
- Laga Formation /
- detrital zircon
-
鄂尔多斯盆地位于中国中西部地区,为中国第二大沉积盆地,跨陕、甘、宁、蒙、晋五省区,盆地面积达到25×104km2。鄂尔多斯盆地的中上三叠统—下白垩统发育,发现有多门类的动植物化石[1],盆地沉积了巨厚的白垩系。含恐龙等脊椎动物足迹的地层属于下白垩统志丹群,自下而上包含宜君组、洛河组、华池组、环河组、罗汉洞组、泾川组,以及仅分布于东北部的喇嘛湾组[2]。在鄂尔多斯盆地西北部,恐龙足迹主要产于罗汉洞组和泾川组[3]。在鄂尔多斯盆地南部边缘旬邑县洛河组也发现过恐龙足迹[1]。
2017年9—11月,陕西省地质调查中心承担的“陕北丹霞地貌地质遗迹调查项目”及神木市公格沟丹霞地质公园申报项目,在鄂尔多斯盆地东北缘神木市中鸡一带的下白垩统洛河组(K1l)上部紫红色砂岩中发现恐龙与其他四足类足迹多处,该组合的发现在中国尚属首次。
1. 地质背景
洛河组由“洛河砂岩”演变而来,区域上平行不整合在中侏罗统安定组之上[4]。研究区,即鄂尔多斯东北部一带,洛河组厚度63.79m,以紫红色-暗紫红色厚-块状粉砂质泥岩、泥质粉砂岩与薄层中-粗粒长石石英砂岩、石英砂岩为主,构成典型的丹霞地貌景观。
鄂尔多斯盆地在中侏罗统安定组沉积末期,受晚侏罗世燕山运动末期的隆升影响,盆地抬升掀斜遭受剥蚀[5]。到早白垩世初期,鄂尔多斯盆地伸展,洛河组开始沉积。前人研究与1:5万区域地质调查资料①指出,洛河组的沉积环境属河流、湖泊相[6],而近年来不少学者则认为其属于沙漠相[7-8],在洛河期,鄂尔多斯盆地进入白垩纪第一个沙漠沉积发育的鼎盛期[8]。综合区调等资料,洛河组早期沉积时盆地具准平原性质,河流宽阔,河漫滩较发育,沉积了紫红色、棕红色、砖红色厚层砂岩,并夹有灰白色高岭石质细砂岩,砂岩体中发育以大-巨型槽状交错层、交错层理为特征的中粒长石砂岩夹少量粉砂岩沉积组合,属河流及冲积扇沉积;中期沉积形成紫红色、棕红色、砖红色厚层中粗粒砂岩,砂岩体中发育以大-巨型风成板状交错层、风成斜层理为特征的中粗粒长石砂岩,明显具有沙漠相沙丘、丘间亚相;晚期沉积则形成一套紫红色块状泥岩、粉砂质泥岩夹薄层泥质粉砂岩组合,发育水平层理、低角度斜层理、泥裂、雨痕等,指示了浅水沙漠湖泊相沉积沙丘砂岩发育的低角度斜层理方向,可能反映了以西北风为主,局部有东南暖风作用。
现将研究区含恐龙等脊椎动物足迹地层岩性描述如下。
上覆地层:第四纪全新世风成沙、黄土层
~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~
早白垩世洛河组(K1l) >18.74m
6.紫红色薄层状细粒长石石英砂岩 0.51m
5.紫红色薄层中-粗粒长石石英砂岩,发育板状斜层理,有三趾型恐龙足迹 4.74m
4.紫红色薄层细粒石英砂岩,发育平行层理 5.20m
3.紫红色中厚层中粒长石石英砂岩,具平行层理 5.80m
2.紫红色薄层细粒长石石英砂岩,发育水平层理 1.53m
1.紫红色薄层中粒石英砂岩,有二趾型恐龙足迹与小型四足类足迹,未见底 0.96m
~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~
下伏地层:中侏罗统安定组(J2a)深灰色微-薄层粉砂质泥岩
2. 足迹点与足迹形态
2.1 足迹点概貌
神木市中鸡镇脊椎动物足迹化石分布在宝刀石梨村公格沟水库东岸边,在30km2红色丹霞景观范围内,目前已发现3处恐龙足迹点及2处小型四足类足迹点(图 1)。
1号足迹点目前发现两枚足迹,产于洛河组上部紫红色块状泥岩、粉砂质泥岩与微–薄层泥质粉砂岩中的湖泊相近底部薄层泥质粉砂岩层面上,层面发育泥裂。2~5号足迹点分布在洛河组上部滨岸相紫红色薄层中细粒石英砂岩中岩层面上。其中2号足迹点发现21枚三趾型足迹,层面发育雹痕、雨痕。3、5号足迹点为小型四足类所留。4号足迹点,目前发现16枚二趾型脚印,层面发育浅水流水波痕、雹痕、雨痕、虫迹。
2.2 小型四足类足迹
小型四足类足迹约200个,至少组成5道行迹。其中保存最好的行迹长约1.5m(图版Ⅰ-A),由前足迹与后足迹组成,都呈扁椭圆形。前足迹平均长1.0cm,宽1.3cm;后足迹平均长1.1cm,宽1.6cm,前足迹位于后足迹的前内侧。因保存或后期风化的原因,绝大部分足迹的趾痕不清,保存最好的后足迹能观察到至少4个趾痕。这些小型四足类足迹的形态与尺寸都与巴西足迹(Brasilichnium) [9]非常相似。巴西足迹最初发现于巴西上侏罗统—下白垩统博图卡图组,传统上被归于哺乳形类(Mammaliamorpha)或衍生的兽孔类(Therapsida)。此类足迹为中国首次发现。
2.3 三趾型兽脚类足迹
三趾型兽脚类分布于1号和2号足迹点。1号足迹点仅1个足迹保存较好(图版Ⅰ-B),长14.5cm,宽15.8cm,长宽比为0.9,三趾较纤细,第Ⅱ趾至第Ⅳ趾之间的趾间角约为110°。2号足迹点的21枚三趾型足迹形成一道拐弯的行迹(图版Ⅰ-C)。拐弯的行迹相对罕见。其中保存最好的足迹长12.5cm,宽10.0cm,长宽比为1.3,第Ⅱ趾至第Ⅳ趾之间的趾间角为69°,其趾垫不清,跖趾垫较发育。从整体形态看,2号足迹点的三趾型足迹与实雷龙足迹类(Eubrontidae) [10]较相似。实雷龙足迹类最初发现于北美的下侏罗统,但衍生的足迹形态广泛出现在中国的侏罗系—白垩系[11-12],鄂尔多斯盆地的白垩系也有类似发现[13]。1号足迹点的孤立足迹的形态特征与实雷龙足迹类完全不同,但其较尖锐的爪痕与宽的趾间角表明其属于兽脚类足迹。
2.4 两趾型兽脚类足迹
2号足迹点的一道行迹揭示了有趣的受沉积物影响的保存现象。大多数足迹只留下明显的一个趾痕(图版Ⅰ-D),但在一处沉积物条件适宜区,该造迹者留下了一个保存良好的两趾型足迹(图版Ⅰ-E)。该足迹长14.5cm,宽5.0cm,长宽比为2.9,第Ⅲ趾至第Ⅳ趾之间的趾间角为20°。这是二趾型足迹在陕西省的首次记录,与该区相邻的内蒙古鄂托克旗查布地区也曾有报道[3]。
由于与鸟类系统发育学上的紧密联系,近年来,恐爪龙类(deinonychosaurian)演化支得到学者们的充分研究。恐爪龙类包括驰龙类(dromaeosaurids)和伤齿龙类(troodontids),该类群最具代表性的特征是其第Ⅱ趾上有一个高度发育的大爪,这个大爪可以伸出并高度延展[14]。恐爪龙类运动时,该特化的第Ⅱ趾处于扬起状态,因此留下足迹为两趾,仅由第Ⅲ趾和第Ⅳ趾的印迹组成[11]。因此,两趾型足迹对应恐爪龙类造迹者,是迄今为止特征最鲜明的兽脚类足迹之一。自1994年在中国首次发现以来[15],现在至少发现了十余个足迹点[11],均来自白垩系,分布于四川盆地与攀西地区的多个点,以及山东莒南与岌山、河北赤城、北京延庆、甘肃盐锅峡等。中鸡恐爪龙类足迹的尺寸与甘肃盐锅峡标本类似,该记录增加了该类造迹者的古地理分布范围。
3. 结论
在鄂尔多斯盆地东北缘神木市中鸡白垩系丹霞地貌中发现的恐龙与其他四足类的足迹化石,展示了一个非常独特的组合类型:哺乳形类/兽孔类足迹-实雷龙足迹类-恐爪龙类足迹。这种多样性的兽脚类行迹与小型四足类足迹的组合,在中国属首次发现。虽然其详细分类还有待进一步研究,但这无疑对中国白垩纪沙漠相恐龙动物群的类型与分布,乃至该地区的古气候、古地理和地层对比都具有重要的意义。
致谢: 感谢审稿专家对论文提出的宝贵意见,同时感谢贵州地质调查院高级工程师曾愚人、白培荣、李月森、黄建国,驾驶员徐方生等对野外工作的大力支持。 -
表 1 西藏措勤地区永珠组石英砂岩碎屑锆石U-Th-Pb年龄分析结果
Table 1 U-Th-Pb data of detrital zircons from quartz sandstone in Yongzhu Formation, Cuoqin region, Tibet
样品编号 同位素比值 Th/U 同位素年龄/Ma 采用年龄 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PM02-N1-01 0.058 0.003 0.773 0.048 0.097 0.002 0.014 0.001 0.376 534 134 582 27 598 10 598 PM02-N1-02 0.060 0.004 0.720 0.045 0.088 0.002 0.013 0.001 1.471 586 134 551 27 543 9 543 PM02-N1-03 0.077 0.004 2.105 0.099 0.197 0.004 0.026 0.002 0.303 1128 89 1151 33 1159 19 1128 PM02-N1-04 0.139 0.005 7.866 0.303 0.406 0.006 0.054 0.003 0.735 2212 63 2216 35 2198 27 2212 PM02-N1-05 0.098 0.005 4.180 0.200 0.308 0.005 0.040 0.002 0.769 1590 86 1670 39 1730 24 1590 PM02-N1-06 0.059 0.004 0.683 0.039 0.085 0.002 0.012 0.001 0.800 553 121 529 24 526 10 526 PM02-N1-08 0.077 0.003 1.653 0.055 0.154 0.002 0.041 0.002 0.060 1132 63 991 21 922 11 922 PM02-N1-09 0.107 0.010 2.650 0.219 0.181 0.006 0.034 0.003 0.296 1748 142 1315 61 1072 33 1748 PM02-N1-10 0.057 0.003 0.765 0.040 0.096 0.001 0.012 0.001 0.062 507 113 577 23 589 8 589 PM02-N1-11 0.067 0.004 1.418 0.085 0.151 0.003 0.022 0.001 0.452 849 120 897 36 906 17 906 PM02-N1-12 0.059 0.003 0.971 0.051 0.118 0.002 0.017 0.001 0.361 567 110 689 26 718 12 718 PM02-N1-13 0.096 0.005 3.960 0.195 0.293 0.005 0.043 0.003 0.474 1545 90 1626 40 1658 23 1545 PM02-N1-14 0.060 0.005 0.748 0.061 0.091 0.002 0.012 0.001 0.493 615 174 567 35 561 12 561 PM02-N1-15 0.073 0.005 1.743 0.113 0.171 0.003 0.023 0.002 0.709 1002 130 1025 42 1020 17 1002 PM02-N1-16 0.076 0.003 2.076 0.087 0.196 0.004 0.028 0.002 0.060 1085 76 1141 29 1154 20 1085 PM02-N1-17 0.077 0.004 1.911 0.110 0.178 0.004 0.023 0.002 0.625 1107 112 1085 39 1058 19 1107 PM02-N1-18 0.065 0.005 1.333 0.092 0.148 0.003 0.020 0.002 0.476 783 144 860 40 890 16 890 PM02-N1-19 0.154 0.005 9.895 0.309 0.459 0.006 0.055 0.004 0.324 2388 49 2425 29 2436 27 2388 PM02-N1-20 0.142 0.005 7.702 0.257 0.387 0.005 0.047 0.004 0.417 2249 54 2197 30 2110 24 2249 PM02-N1-21 0.077 0.003 1.851 0.079 0.173 0.003 0.025 0.002 0.232 1111 79 1064 28 1027 17 1111 PM02-N1-22 0.069 0.005 1.466 0.100 0.156 0.003 0.019 0.002 0.543 901 138 916 41 934 17 934 PM02-N1-23 0.070 0.004 1.527 0.081 0.159 0.003 0.020 0.002 0.654 936 103 941 32 951 18 951 PM02-N1-24 0.064 0.004 1.415 0.087 0.158 0.003 0.020 0.002 0.469 736 128 895 37 946 16 946 PM02-N1-25 0.061 0.004 0.734 0.041 0.087 0.002 0.011 0.002 0.229 644 115 559 24 539 10 539 PM02-N1-26 0.110 0.005 5.289 0.264 0.343 0.007 0.038 0.005 1.053 1802 86 1867 43 1899 32 1802 PM02-N1-27 0.110 0.005 3.323 0.162 0.217 0.004 0.025 0.003 1.064 1805 84 1486 38 1263 21 1805 PM02-N1-28 0.073 0.005 2.028 0.134 0.201 0.004 0.024 0.003 0.741 1010 132 1125 45 1178 21 1010 PM02-N1-29 0.107 0.007 4.928 0.282 0.339 0.009 0.039 0.005 0.730 1756 97 1807 48 1879 41 1756 PM02-N1-30 0.107 0.005 4.140 0.172 0.280 0.006 0.036 0.004 0.296 1749 68 1662 34 1590 28 1749 PM02-N1-31 0.075 0.005 1.728 0.094 0.171 0.003 0.021 0.002 0.847 1054 104 1019 35 1015 19 1054 PM02-N1-32 0.061 0.004 0.926 0.059 0.108 0.002 0.015 0.001 1.136 639 135 666 31 664 11 664 PM02-N1-33 0.072 0.004 1.486 0.085 0.149 0.004 0.021 0.002 0.232 982 108 925 35 897 20 897 PM02-N1-34 0.100 0.006 4.356 0.252 0.313 0.007 0.042 0.003 0.529 1631 103 1704 48 1757 32 1631 PM02-N1-35 0.069 0.005 1.070 0.072 0.112 0.002 0.017 0.001 0.671 885 137 739 35 687 13 687 PM02-N1-36 0.153 0.007 10.108 0.469 0.474 0.008 0.061 0.004 0.467 2377 76 2445 43 2503 34 2377 PM02-N1-37 0.075 0.005 1.867 0.114 0.179 0.004 0.026 0.002 0.292 1070 118 1069 40 1060 22 1070 PM02-N1-38 0.066 0.004 1.587 0.106 0.176 0.004 0.023 0.002 0.855 798 135 965 41 1044 22 798 PM02-N1-39 0.077 0.006 1.489 0.107 0.140 0.003 0.019 0.001 0.680 1122 140 926 44 845 18 845 PM02-N1-40 0.077 0.009 1.660 0.170 0.154 0.005 0.022 0.002 1.099 1122 200 993 65 924 29 924 PM02-N1-41 0.081 0.006 2.023 0.136 0.189 0.005 0.026 0.002 2.000 1212 125 1123 46 1113 27 1212 PM02-N1-42 0.074 0.004 1.958 0.115 0.189 0.003 0.028 0.002 0.538 1027 117 1101 40 1118 18 1027 PM02-N1-43 0.065 0.005 0.735 0.050 0.082 0.002 0.011 0.001 0.855 783 141 559 29 510 10 510 PM02-N1-44 0.074 0.006 0.988 0.074 0.096 0.002 0.013 0.001 1.923 1045 146 698 38 592 14 592 PM02-N1-45 0.080 0.003 2.193 0.086 0.198 0.004 0.028 0.001 0.382 1186 71 1179 27 1164 19 1186 PM02-N1-46 0.103 0.004 4.778 0.190 0.332 0.005 0.046 0.003 0.253 1675 69 1781 33 1847 26 1675 PM02-N1-47 0.175 0.006 12.764 0.434 0.519 0.008 0.067 0.003 0.637 2605 52 2662 32 2695 33 2605 PM02-N1-48 0.061 0.004 0.774 0.053 0.091 0.002 0.013 0.001 1.205 633 145 582 30 558 10 558 PM02-N1-49 0.067 0.006 0.819 0.071 0.087 0.003 0.017 0.002 0.046 840 175 607 39 537 15 537 PM02-N1-50 0.265 0.009 24.586 0.858 0.661 0.011 0.083 0.005 0.625 3275 50 3292 34 3270 41 3275 PM02-N1-51 0.079 0.004 2.238 0.098 0.201 0.003 0.029 0.002 0.503 1173 82 1193 31 1181 18 1173 PM02-N1-52 0.076 0.005 1.964 0.108 0.186 0.003 0.027 0.002 0.334 1106 107 1103 37 1097 17 1106 PM02-N1-53 0.086 0.005 2.882 0.176 0.241 0.005 0.032 0.002 0.446 1336 114 1377 46 1389 27 1336 PM02-N1-55 0.060 0.004 0.765 0.045 0.093 0.002 0.013 0.001 0.277 592 121 577 26 575 11 575 PM02-N1-56 0.061 0.003 1.034 0.054 0.122 0.002 0.016 0.001 0.769 635 108 721 27 740 12 740 PM02-N1-57 0.080 0.005 1.896 0.121 0.172 0.004 0.021 0.001 1.299 1186 121 1080 42 1025 21 1186 PM02-N1-58 0.072 0.003 1.884 0.078 0.187 0.003 0.025 0.001 0.524 980 80 1075 27 1107 16 980 PM02-N1-59 0.070 0.003 1.529 0.062 0.158 0.003 0.021 0.001 0.239 917 77 942 25 945 16 945 PM02-N1-60 0.070 0.003 1.834 0.086 0.190 0.003 0.025 0.002 0.203 917 91 1058 31 1123 18 917 PM02-N1-61 0.064 0.004 1.513 0.082 0.170 0.003 0.021 0.001 0.508 749 112 935 33 1013 15 749 PM02-N1-62 0.055 0.003 0.703 0.045 0.091 0.002 0.012 0.001 0.208 395 141 540 27 564 9 564 PM02-N1-63 0.192 0.009 12.970 0.544 0.492 0.010 0.054 0.003 0.578 2757 61 2677 40 2581 44 2757 PM02-N1-64 0.086 0.008 0.997 0.087 0.087 0.003 0.012 0.001 0.595 1330 164 702 44 535 15 535 PM02-N1-65 0.071 0.003 1.722 0.083 0.174 0.003 0.022 0.001 0.621 952 96 1017 31 1032 15 952 PM02-N1-66 0.165 0.007 12.586 0.497 0.549 0.009 0.062 0.004 0.535 2505 62 2649 37 2822 38 2505 PM02-N1-67 0.059 0.005 0.670 0.050 0.086 0.002 0.011 0.001 0.877 571 155 520 30 530 14 530 PM02-N1-68 0.059 0.004 0.930 0.057 0.114 0.002 0.014 0.001 0.571 557 131 668 30 695 12 695 PM02-N1-70 0.066 0.006 0.759 0.064 0.083 0.002 0.011 0.001 0.962 807 172 574 37 513 14 513 PM02-N1-71 0.066 0.004 1.002 0.061 0.110 0.002 0.018 0.001 0.076 807 122 705 31 675 14 675 PM02-N1-72 0.134 0.006 7.235 0.332 0.388 0.007 0.046 0.002 1.429 2147 76 2141 41 2113 32 2147 PM02-N1-73 0.081 0.006 2.043 0.142 0.186 0.004 0.022 0.001 1.010 1221 134 1130 47 1097 22 1221 PM02-N1-74 0.098 0.005 3.939 0.206 0.289 0.006 0.036 0.002 1.149 1589 91 1622 42 1639 31 1589 PM02-N1-75 0.155 0.006 9.718 0.386 0.447 0.006 0.051 0.003 0.917 2404 65 2408 37 2383 27 2404 PM02-N1-76 0.070 0.004 1.559 0.089 0.161 0.003 0.020 0.001 0.331 935 116 954 35 960 15 960 PM02-N1-78 0.096 0.005 2.811 0.162 0.206 0.006 0.026 0.002 0.068 1546 98 1358 43 1210 30 1546 PM02-N1-79 0.058 0.004 0.672 0.046 0.084 0.002 0.010 0.001 0.543 534 148 522 28 520 9 520 PM02-N1-80 0.078 0.005 1.953 0.122 0.183 0.004 0.020 0.002 1.010 1145 120 1099 42 1085 22 1145 PM02-N1-82 0.145 0.006 9.172 0.360 0.455 0.008 0.043 0.005 1.351 2287 61 2355 36 2415 36 2287 PM02-N1-83 0.058 0.004 0.902 0.064 0.113 0.002 0.011 0.001 1.163 524 154 653 34 690 13 690 PM02-N1-84 0.053 0.003 0.739 0.037 0.099 0.002 0.009 0.001 0.105 346 107 562 21 607 11 607 PM02-N1-85 0.177 0.006 13.131 0.468 0.529 0.008 0.041 0.007 0.529 2627 55 2689 34 2736 34 2627 PM02-N1-86 0.111 0.010 2.727 0.236 0.192 0.007 0.016 0.003 0.885 1813 145 1336 64 1133 40 1813 PM02-N1-87 0.069 0.003 1.482 0.071 0.153 0.002 0.011 0.003 0.162 911 97 923 29 916 13 916 PM02-N1-89 0.075 0.006 1.907 0.144 0.187 0.004 0.013 0.004 1.190 1067 150 1084 50 1106 22 1067 PM02-N1-90 0.075 0.004 1.953 0.094 0.187 0.003 0.012 0.004 0.694 1065 93 1099 32 1106 17 1065 注:大于1000Ma时选择207Pb/206Pb年龄;小于1000Ma时选择206Pb/238U -
Chen J L, Xu J F, Zhao W X, et al. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane:Implications for lower crustal flow beneath the Southern Tibetan Plateau[J]. Lithos, 2011, 125(3):928-939. http://cn.bing.com/academic/profile?id=d064dc68fb2e20ca3aa18071fec8b108&encoded=0&v=paper_preview&mkt=zh-cn
Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=865643f3116ab967bfec663b81bae032
刘函, 王保弟, 陈莉, 等.拉萨地块西北日土花岗岩基锆石U-Pb年代学、地球化学及构造意义[J].大地构造与成矿学, 2015, 39(6):1141-1155. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201506014 Huang F, Xu J F, Chen J L, et al. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane:Evidence from geology and geochronology[J]. Lithos, 2016, 245:118-132. doi: 10.1016/j.lithos.2015.08.014
Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1):49-67. http://cn.bing.com/academic/profile?id=35a85948a54b344d61556500e54396af&encoded=0&v=paper_preview&mkt=zh-cn
张泽明, 王金丽, 董昕, 等.青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据[J].岩石学报, 2009, 25(7):1707-1720. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907015 Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 2011, 301(1/2):241-255. doi: 10.1016-j.epsl.2010.11.005/
董昕, 张泽明, 王金丽, 等.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学[J].岩石学报, 2009, 25(7):1678-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907013 Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8):727-730. doi: 10.1130/G31895.1
Metcalfe I. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia[J]. Gondwana Research, 2009, 9(1):24-46. http://cn.bing.com/academic/profile?id=b14717e31fdd5ba526491d466f420c53&encoded=0&v=paper_preview&mkt=zh-cn
Yin A, Harrison T M. Geologic Evolution of the HimalayanTibetan Orogen[J]. Annual Review of Earth & Planetary Sciences, 2003, 28(28):211-280. doi: 10.1673/031.012.11501.full
Lin Y H, Zhang Z M, Dong X, et al. Precambrian evolution of the Lhasa terrane, Tibet:Constraint from the zircon U-Pb geochronology of the gneisses[J]. Precambrian Research, 2013, 237(7):64-77. http://cn.bing.com/academic/profile?id=fd3856b8d9e32485579b6e4cb9111f04&encoded=0&v=paper_preview&mkt=zh-cn
Lin Y H, Zhang Z M, Dong X, et al. Early Mesozoic metamorphism and tectonic significance of the eastern segment of the Lhasa terrane, south Tibet[J]. Journal of Asian Earth Sciences, 2013, 78(12):160-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=920caeaf6c8840a5a253e1249ec10d03
Audley-Charles M G. Reconstruction of eastern Gondwanaland[J]. Nature, 1983, 306(5938):48-50. doi: 10.1038/306048a0
Audley-Charles M G. Cold Gondwana, warm Tethys and the Tibetan Lhasa block[J]. Nature, 1984, 310(5973):165-166. doi: 10.1038/310165b0
潘桂棠, 莫学宣, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 王立全, 潘桂棠, 朱弟成, 等.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据[J].地质通报, 2008, 27(9):1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 Zhu D C, Zhao Z D, Niu Y L, et al. The origin and preCenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
Li G W, Sandiford M, Liu X H, et al. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication[J]. Gondwana Research, 2014, 25(4):1680-1689. doi: 10.1016/j.gr.2013.06.019
耿全如, 王立全, 潘桂棠, 等.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据[J].地质学报, 2007, 81(9):1259-1276. doi: 10.3321/j.issn:0001-5717.2007.09.011 刘函, 李奋其, 周放, 等.拉萨地块西段尼雄地区晚古生代地震事件及其地质意义[J].地球科学, 2018, 43(8):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808017 李奋其, 刘伟, 张士贞, 等.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征[J].地质学报, 2012, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004 Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J]. Earth-Science Reviews, 2005, 68(3/4):245-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=270fc23b7e342563b3a34acbc9c7b749
Wang B Q, Wang W, Chen W T, et al. Constraints of detrital zircon U-Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet[J]. Sedimentary Geology, 2013, 289(1):74-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=358cc2f9995551b2da545bb90b1cebcf
张士贞, 向树元, 万俊, 等.西藏比如盆地碎屑锆石LA-ICPMS U-Pb测年及其地质意义[J].地质科学情报, 2010, 29(5):15-22. 胡修棉, 王建刚, 安慰, 等.利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程[J].中国科学:地球科学, 2017, 47(3):261-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703001 张予杰, 朱同兴, 张以春, 等.西藏申扎地区二叠系下拉组地层划分及其沉积(微)相[J].地质学报, 2014, 88(2):273-284. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201402010 周羽漩, 赵兵, 严亮, 等.藏改则地区昂拉仁错中-下二叠统昂杰组-下拉组地层古生物[J].地球科学与环境学报, 2014, 36(4):107-116. doi: 10.3969/j.issn.1672-6561.2014.04.010 仲昭, 纪占胜, 武桂春, 等.西藏班戈县保吉乡纳木错西下石炭统珊瑚动物群的发现及其意义[J].地质论评, 2017, 63(Supp.):333-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1161.htm Pan G T, Wang L Q, Li R S, al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(2):3-14. https://www.researchgate.net/publication/258658273_Tectonic_evolution_of_the_Qinghai-Tibet_Plateau
张予杰, 张以春, 庞维华, 等.西藏申扎地区拉嘎组岩相/沉积相分析[J].沉积学报, 2013, 31(2):269-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201302007 安显银, 张予杰, 朱同兴, 等.西藏申扎地区下二叠统昂杰组CO同位素地球化学特征[J].地质通报, 2015, 34(2/3):347-353. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2015020311&flag=1 辛洪波, 曲晓明, 任立奎, 等.藏西措勤含铜岩系的物质来源与成因[J].地质学报, 2007, 81(7):939-945. doi: 10.3321/j.issn:0001-5717.2007.07.009 于玉帅, 杨竹森, 戴平云, 等.西藏措勤尼雄矿田日阿铜多金属矿床岩浆活动时代及成因[J].中国地质, 2015, 42(1):118-133. doi: 10.3969/j.issn.1000-3657.2015.01.010 范景年.西藏石炭系[M].重庆:重庆出版社, 1988:1-128. 林宝玉.西藏申扎地区古生代地层的新认识[J].地质论评, 1981, 27(4):353-354. doi: 10.3321/j.issn:0371-5736.1981.04.010 林宝玉.西藏申扎地区古生代地层[C]//青藏高原地质文集, 1983: 1-13. 林宝玉.西藏晚古生代若干床板珊瑚化石[C]//青藏高原地质文集, 1983: 249-265. 杨式溥, 范影年.西藏申扎地区石炭系及生物群特征[C]//青藏高原地质文集, 1982, (4): 46-69. 盛怀斌.藏北申扎县永珠早石炭世晚期菊石动物群[C]//青藏高原地质文集, 1983: 38-65. 纪占胜, 姚建新, 高联达, 等.藏北申扎地区下石炭统永珠组下部孢子组合的特征及意义[J].古生物学报, 2006, 45(3):399-409. doi: 10.3969/j.issn.0001-6616.2006.03.010 李勇, 张士贞, 李奋其, 等.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义[J].地球科学, 2018, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016 何世平, 李荣社, 王超, 等.青藏高原拉萨地块发现古元古代地体[J].地球科学-中国地质大学学报, 2013, 38(3):519-528. http://d.old.wanfangdata.com.cn/Periodical/dqkx201303009 裴英茹, 杨竹森, 赵晓燕, 等.藏北商旭金矿床的碎屑锆石U-Pb年龄及其地质意义[J].地球学报, 2017, 38(5):711-722. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705011 Huang T T, Xu J F, Chen J L, et al. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:insights from detrital zircons[J]. International Geology Review, 2016, 59(2):166-184. http://cn.bing.com/academic/profile?id=af41d243151e46798826fd133337322a&encoded=0&v=paper_preview&mkt=zh-cn
胡道功, 吴珍汉, 江万, 等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究[J].中国科学:地球科学, 2005, 35(1):29-37. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200501003 Dong C Y, Li C, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet:Constraint on tectonic affinity and source regions[J]. Science China:Earth Sciences, 2011, 54(7):1034-1042. doi: 10.1007/s11430-010-4166-x
王洪浩, 李江海, 李维波, 等.冈瓦纳大陆古生代冰盖分布研究[J].中国地质, 2014, 41(6):2132-2143. doi: 10.3969/j.issn.1000-3657.2014.06.026 范建军, 李才, 王明, 等.青藏高原羌塘南部冈玛错地区展金组的沉积环境分析及碎屑锆石U-Pb定年[J].地质学报, 2014, 88(10):1820-1831. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201410004 Pullen A. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f623010eadc63566d9468cc13436e077
Myrow P M. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya:Implications for the age and nature of rocks in the Mount Everest region[J]. Geological Society of America Bulletin, 2009, 121(3/4):323-332. http://cn.bing.com/academic/profile?id=379a27918a2ea0fb185487fe27cb6b0b&encoded=0&v=paper_preview&mkt=zh-cn
董春艳, 李才, 万渝生, 等.西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约[J].中国科学:地球科学, 2011, 41(3):299-308. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201103003.htm 李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011 Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174(4):28-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c0ed5a23431e2dabf3c768434b3d6ad
朱同兴, 潘桂棠, 冯心涛, 等.藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义[J].地质通报, 2002, 21(11):717-722. doi: 10.3969/j.issn.1671-2552.2002.11.004 江西省地质调查院. 西藏1: 250000邦多幅. 措麦区幅区域地质调查. 2002.