• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理

谢晓深, 侯恩科, 高冠杰, 徐友宁, 魏启明, 刘江斌

谢晓深, 侯恩科, 高冠杰, 徐友宁, 魏启明, 刘江斌. 2018: 宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理. 地质通报, 37(12): 2233-2240.
引用本文: 谢晓深, 侯恩科, 高冠杰, 徐友宁, 魏启明, 刘江斌. 2018: 宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理. 地质通报, 37(12): 2233-2240.
XIE Xiaoshen, HOU Enke, GAO Guanjie, XU Youning, WEI Qiming, LIU Jiangbin. 2018: A study of the development regularity and formation mechanism of ground subsidence in shallow coal seam mining of Yangchangwan coal mine, Ningxia. Geological Bulletin of China, 37(12): 2233-2240.
Citation: XIE Xiaoshen, HOU Enke, GAO Guanjie, XU Youning, WEI Qiming, LIU Jiangbin. 2018: A study of the development regularity and formation mechanism of ground subsidence in shallow coal seam mining of Yangchangwan coal mine, Ningxia. Geological Bulletin of China, 37(12): 2233-2240.

宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理

基金项目: 

中国地质调查局项目《秦岭及宁东矿产资源集中开采区地质环境调查》 DD20160336

国家自然科学基金项目《煤层顶板突水机理及突水危险性分区预测研究》 41472234

详细信息
    作者简介:

    谢晓深(1992-), 男, 在读博士生, 从事煤矿区地质灾害防治研究工作。E-mail:957184158@qq.com

    通讯作者:

    侯恩科(1963-), 男, 教授, 博士生导师, 从事煤炭地质、矿区地质灾害和矿井水害防治方面的教学与科研工作。E-mail:houek@xust.edu.cn

  • 中图分类号: P618.11;P694

A study of the development regularity and formation mechanism of ground subsidence in shallow coal seam mining of Yangchangwan coal mine, Ningxia

  • 摘要:

    以宁夏羊场湾煤矿Y110207工作面为研究对象,采用无人机遥感技术、野外调查与有限差分软件模拟方法研究浅埋煤层开采的地面塌陷类型、发育规律及其形成机理。①浅埋煤层开采地面塌陷以地表裂缝发育为主,地表破坏严重。②平行切眼裂缝间隔性出现,展布于整个工作面内,间隔距离为10~120m,局部裂缝形成错台高度约为15cm。平行顺槽裂缝为拉张型裂缝,发育在顺槽至外围一定范围。③采煤活动导致地下形成采空区,上覆岩层发生移动破坏,破坏区分为剪切破坏区、拉张破坏区及剪-拉破坏区,分别对压应力区、拉应力区和压-拉转化区。④当应力扰动传递至地表,应力值超过覆盖层抗拉强度时地表产生裂缝。随着工作面推进,覆岩内部裂缝带上行裂缝与地表下行裂缝贯通,形成错台。研究成果丰富了该区浅埋煤层的地面塌陷理论知识,为地面塌陷防治提供了理论依据。

    Abstract:

    The mechanism of ground subsidence induced by coal mining is an important theoretical basis for the prevention and is also one of the hotspots in the study of geological environment. Subsidence type, features and the mechanism were studied by methods of the UAV remote sensing technology, field observation and numerical simulation software on the Y110207 working face in Yangchangwan coal mine, Ningxia. The results show that, during shallow coal seam mining, cracks and surface collapses are developed, which cause ground surface destruction. In the working face, the parallel cutting cracks are distributed with an interval distance between 10~120m. The parallel channel fracture is a tensile fracture, which is developed in a certain range from the trough to the periphery. The coal mining activities lead to the move and destruction of the overlying strata. The damage can be divides into three types, i.e., shear failure zone, tensile failure zone and shear-tensile failure zone, corresponding to compressive stress region, tensile stress zone and compression tensile transition zone. When the stress is more than the tensile strength of the covering layer transferring to the surface, the cracks will occur. With the advancing of the working face, the water flowing fracture zone will develop to the surface. After that cracks will perforate and the staggered platform will emerge. It enriches the theoretical knowledge of ground subsidence in shallow coal seam and provides a theoretical for the prevention.

  • 鄂尔多斯盆地位于中国中西部地区,为中国第二大沉积盆地,跨陕、甘、宁、蒙、晋五省区,盆地面积达到25×104km2。鄂尔多斯盆地的中上三叠统—下白垩统发育,发现有多门类的动植物化石[1],盆地沉积了巨厚的白垩系。含恐龙等脊椎动物足迹的地层属于下白垩统志丹群,自下而上包含宜君组、洛河组、华池组、环河组、罗汉洞组、泾川组,以及仅分布于东北部的喇嘛湾组[2]。在鄂尔多斯盆地西北部,恐龙足迹主要产于罗汉洞组和泾川组[3]。在鄂尔多斯盆地南部边缘旬邑县洛河组也发现过恐龙足迹[1]

    2017年9—11月,陕西省地质调查中心承担的“陕北丹霞地貌地质遗迹调查项目”及神木市公格沟丹霞地质公园申报项目,在鄂尔多斯盆地东北缘神木市中鸡一带的下白垩统洛河组(K1l)上部紫红色砂岩中发现恐龙与其他四足类足迹多处,该组合的发现在中国尚属首次。

    洛河组由“洛河砂岩”演变而来,区域上平行不整合在中侏罗统安定组之上[4]。研究区,即鄂尔多斯东北部一带,洛河组厚度63.79m,以紫红色-暗紫红色厚-块状粉砂质泥岩、泥质粉砂岩与薄层中-粗粒长石石英砂岩、石英砂岩为主,构成典型的丹霞地貌景观。

    鄂尔多斯盆地在中侏罗统安定组沉积末期,受晚侏罗世燕山运动末期的隆升影响,盆地抬升掀斜遭受剥蚀[5]。到早白垩世初期,鄂尔多斯盆地伸展,洛河组开始沉积。前人研究与1:5万区域地质调查资料指出,洛河组的沉积环境属河流、湖泊相[6],而近年来不少学者则认为其属于沙漠相[7-8],在洛河期,鄂尔多斯盆地进入白垩纪第一个沙漠沉积发育的鼎盛期[8]。综合区调等资料,洛河组早期沉积时盆地具准平原性质,河流宽阔,河漫滩较发育,沉积了紫红色、棕红色、砖红色厚层砂岩,并夹有灰白色高岭石质细砂岩,砂岩体中发育以大-巨型槽状交错层、交错层理为特征的中粒长石砂岩夹少量粉砂岩沉积组合,属河流及冲积扇沉积;中期沉积形成紫红色、棕红色、砖红色厚层中粗粒砂岩,砂岩体中发育以大-巨型风成板状交错层、风成斜层理为特征的中粗粒长石砂岩,明显具有沙漠相沙丘、丘间亚相;晚期沉积则形成一套紫红色块状泥岩、粉砂质泥岩夹薄层泥质粉砂岩组合,发育水平层理、低角度斜层理、泥裂、雨痕等,指示了浅水沙漠湖泊相沉积沙丘砂岩发育的低角度斜层理方向,可能反映了以西北风为主,局部有东南暖风作用。

    现将研究区含恐龙等脊椎动物足迹地层岩性描述如下。

    上覆地层:第四纪全新世风成沙、黄土层

    ~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~

    早白垩世洛河组(K1l)                                            >18.74m

    6.紫红色薄层状细粒长石石英砂岩                                    0.51m

    5.紫红色薄层中-粗粒长石石英砂岩,发育板状斜层理,有三趾型恐龙足迹 4.74m

    4.紫红色薄层细粒石英砂岩,发育平行层理                            5.20m

    3.紫红色中厚层中粒长石石英砂岩,具平行层理                        5.80m

    2.紫红色薄层细粒长石石英砂岩,发育水平层理                        1.53m

    1.紫红色薄层中粒石英砂岩,有二趾型恐龙足迹与小型四足类足迹,未见底 0.96m

    ~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~

    下伏地层:中侏罗统安定组(J2a)深灰色微-薄层粉砂质泥岩

    神木市中鸡镇脊椎动物足迹化石分布在宝刀石梨村公格沟水库东岸边,在30km2红色丹霞景观范围内,目前已发现3处恐龙足迹点及2处小型四足类足迹点(图 1)。

    图  1  神木市中鸡镇恐龙等脊椎动物足迹化石分布
    Figure  1.  Distribution map of footprint fossil from dinosaurs and other vertebrate in Zhongji town, Shenmu city

    1号足迹点目前发现两枚足迹,产于洛河组上部紫红色块状泥岩、粉砂质泥岩与微–薄层泥质粉砂岩中的湖泊相近底部薄层泥质粉砂岩层面上,层面发育泥裂。2~5号足迹点分布在洛河组上部滨岸相紫红色薄层中细粒石英砂岩中岩层面上。其中2号足迹点发现21枚三趾型足迹,层面发育雹痕、雨痕。3、5号足迹点为小型四足类所留。4号足迹点,目前发现16枚二趾型脚印,层面发育浅水流水波痕、雹痕、雨痕、虫迹。

    小型四足类足迹约200个,至少组成5道行迹。其中保存最好的行迹长约1.5m(图版Ⅰ-A),由前足迹与后足迹组成,都呈扁椭圆形。前足迹平均长1.0cm,宽1.3cm;后足迹平均长1.1cm,宽1.6cm,前足迹位于后足迹的前内侧。因保存或后期风化的原因,绝大部分足迹的趾痕不清,保存最好的后足迹能观察到至少4个趾痕。这些小型四足类足迹的形态与尺寸都与巴西足迹(Brasilichnium) [9]非常相似。巴西足迹最初发现于巴西上侏罗统—下白垩统博图卡图组,传统上被归于哺乳形类(Mammaliamorpha)或衍生的兽孔类(Therapsida)。此类足迹为中国首次发现。

      图版Ⅰ 
    A.小型四足类足迹;B、C.三趾型兽脚类足迹;D、E.两趾型兽脚类足迹
      图版Ⅰ. 

    三趾型兽脚类分布于1号和2号足迹点。1号足迹点仅1个足迹保存较好(图版Ⅰ-B),长14.5cm,宽15.8cm,长宽比为0.9,三趾较纤细,第Ⅱ趾至第Ⅳ趾之间的趾间角约为110°。2号足迹点的21枚三趾型足迹形成一道拐弯的行迹(图版Ⅰ-C)。拐弯的行迹相对罕见。其中保存最好的足迹长12.5cm,宽10.0cm,长宽比为1.3,第Ⅱ趾至第Ⅳ趾之间的趾间角为69°,其趾垫不清,跖趾垫较发育。从整体形态看,2号足迹点的三趾型足迹与实雷龙足迹类(Eubrontidae) [10]较相似。实雷龙足迹类最初发现于北美的下侏罗统,但衍生的足迹形态广泛出现在中国的侏罗系—白垩系[11-12],鄂尔多斯盆地的白垩系也有类似发现[13]。1号足迹点的孤立足迹的形态特征与实雷龙足迹类完全不同,但其较尖锐的爪痕与宽的趾间角表明其属于兽脚类足迹。

    2号足迹点的一道行迹揭示了有趣的受沉积物影响的保存现象。大多数足迹只留下明显的一个趾痕(图版Ⅰ-D),但在一处沉积物条件适宜区,该造迹者留下了一个保存良好的两趾型足迹(图版Ⅰ-E)。该足迹长14.5cm,宽5.0cm,长宽比为2.9,第Ⅲ趾至第Ⅳ趾之间的趾间角为20°。这是二趾型足迹在陕西省的首次记录,与该区相邻的内蒙古鄂托克旗查布地区也曾有报道[3]

    由于与鸟类系统发育学上的紧密联系,近年来,恐爪龙类(deinonychosaurian)演化支得到学者们的充分研究。恐爪龙类包括驰龙类(dromaeosaurids)和伤齿龙类(troodontids),该类群最具代表性的特征是其第Ⅱ趾上有一个高度发育的大爪,这个大爪可以伸出并高度延展[14]。恐爪龙类运动时,该特化的第Ⅱ趾处于扬起状态,因此留下足迹为两趾,仅由第Ⅲ趾和第Ⅳ趾的印迹组成[11]。因此,两趾型足迹对应恐爪龙类造迹者,是迄今为止特征最鲜明的兽脚类足迹之一。自1994年在中国首次发现以来[15],现在至少发现了十余个足迹点[11],均来自白垩系,分布于四川盆地与攀西地区的多个点,以及山东莒南与岌山、河北赤城、北京延庆、甘肃盐锅峡等。中鸡恐爪龙类足迹的尺寸与甘肃盐锅峡标本类似,该记录增加了该类造迹者的古地理分布范围。

    在鄂尔多斯盆地东北缘神木市中鸡白垩系丹霞地貌中发现的恐龙与其他四足类的足迹化石,展示了一个非常独特的组合类型:哺乳形类/兽孔类足迹-实雷龙足迹类-恐爪龙类足迹。这种多样性的兽脚类行迹与小型四足类足迹的组合,在中国属首次发现。虽然其详细分类还有待进一步研究,但这无疑对中国白垩纪沙漠相恐龙动物群的类型与分布,乃至该地区的古气候、古地理和地层对比都具有重要的意义。

    致谢: 地表裂缝的野外调查工作由羊场湾煤矿地测科张仲杰等工作人员协助完成, 在此表示衷心的感谢。
  • 图  1   MD4-1000无人机

    Figure  1.   MD4-1000 unmanned aerial vehicle

    图  2   航线设计图

    Figure  2.   Route map

    图  3   航拍范围

    Figure  3.   Aerial range

    图  4   Y110207工作面地表裂缝展布

    Figure  4.   Surface cracks distribution map of Y110207 working face

    图  5   Y110207工作面FlAC3D模型

    Figure  5.   FlAC3D model of Y110207 working face

    图  6   覆岩竖向位移及竖向应力云图

    Figure  6.   Vertical displacement and vertical stress nephogram of overlying strata

    图  7   覆岩及地表破坏分区

    A—走向;B—倾向

    Figure  7.   Destructive zoning map of overlying strata and ground

    图  8   地表下沉云图

    Figure  8.   The map of land subsidence

    图  9   地表下沉曲线

    A—走向地表下沉曲线;B—倾向地表下沉曲线

    Figure  9.   Land subsidence curve

    图  10   地表走向水平应力云图及位移曲线

    Figure  10.   Horizontal movement map of parallel mining direction on the surface

    图  11   地表倾向水平应力云图及位移曲线

    Figure  11.   Horizontal movement map of vertical mining direction on the surface

    图  12   地表裂缝发育范围

    Figure  12.   Development range of surface cracks

    表  1   MD4-1000四旋翼低空无人机指数

    Table  1   MD4-1000 four indexes of the UAV

    性能指标 参数
    爬升速率 7.5m/s
    最大功率 1000W
    飞行时间 <50min/电池
    飞行半径 5000m
    遥控距离 5000m
    巡航速度 15.0m/s
    机身自重 2650g
    任务载荷 2000g(最大)
    飞行高度 1000m
    抗风能力 <12m/s
    下载: 导出CSV

    表  2   岩石力学参数

    Table  2   Rock mechanical parameter table

    岩性 自重密度/(g·cm3) 体积模量/GPa 切变模量/GPa 粘结力/MPa 内摩檫角/° 抗拉强度/MPa
    松散层 1780 2.1 0.4 0.9 28 0.6
    粉砂岩 2600 3.0 1.1 1.2 33 0.8
    中砂岩 2650 4.6 1.2 1.0 35 1.1
    粉砂岩 2600 3.3 1.8 1.3 33 0.8
    细砂岩 2750 6.4 2.2 2.0 40 1.0
    粉砂岩 2600 3.3 2.5 1.3 33 0.8
    砂岩 2900 4.6 1.7 2.0 40 1.3
    煤层 2030 2.2 1.0 1.1 31 0.6
    底板砂岩 2860 3.9 3.3 3.5 35 1.0
    下载: 导出CSV
  • 何芳, 徐友宁, 袁汉春, 等.煤矿地面塌陷区的防治对策[J].煤炭工程, 2003, 7:10-13. http://d.old.wanfangdata.com.cn/Periodical/mtgc200307003
    初影.采煤诱发地表裂缝数值模拟研究[D].辽宁工程技术大学硕士学位论文, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10147-1011025019.htm
    蔡怀恩, 侯恩科, 张强骅, 等.黄土丘陵区房柱式开采地表塌陷特征及机理分析——以陕北府谷县新民镇小煤矿为例[J].地质灾害与环境保护, 2010, 21(2):101-104. doi: 10.3969/j.issn.1006-4362.2010.02.023
    蔡怀恩.彬长矿区地面塌陷特征及形成机理研究[D].西安科技大学硕士学位论文, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10704-2008145586.htm
    贺卫中, 向茂西, 刘海南, 等.榆神府矿区地面塌陷特征及环境问题[J].煤田地质与勘探, 2016, 44(5):131-135. doi: 10.3969/j.issn.1001-1986.2016.05.025
    赵兵朝, 刘宾, 王建文, 等.柠条塔煤矿叠置开采地表岩移参数分析[J].煤矿安全, 2016, 47(9):213-216. http://d.old.wanfangdata.com.cn/Periodical/mkaq201609060
    赵兵朝, 刘飞, 凡奋元, 等.黄土沟壑区下斜交叠置开采地表下沉系数研究[J].矿业安全与环保, 2016, 43(5):54-57. doi: 10.3969/j.issn.1008-4495.2016.05.013
    杨帆, 余海锋, 郭俊廷.采动地表裂缝形成机理的数值模拟[J].辽宁工程技术大学学报, 2016, 6:566-570. doi: 10.11956/j.issn.1008-0562.2016.06.002
    吴侃, 胡振琪, 常江, 等.开采引起的地表裂缝分布规律[J].中国矿业大学学报, 1997, 2:56-59. http://cdmd.cnki.com.cn/Article/CDMD-10290-2010280128.htm
    胡振琪, 王新静, 贺安民.风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J].煤炭学报, 2014, 39(1):11-18. http://d.old.wanfangdata.com.cn/Periodical/mtxb201401002
    胡振琪, 龙精华, 王新静.论煤矿区生态环境的自修复、自然修复和人工修复[J].煤炭学报, 2014, 39(8):1751-1757. http://d.old.wanfangdata.com.cn/Periodical/mtxb201408048
    杜善周.神东矿区大规模开采的地表移动及环境修复技术研究[D].中国矿业大学(北京)博士学位论文, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11413-2010240648.htm
    邓喀中, 王刘宇, 范洪冬.基于InSAR技术的老采空区地表沉降监测与分析[J].采矿与安全工程学报, 2015, 32(6):918-922. http://d.old.wanfangdata.com.cn/Periodical/ksylydbgl201506008
    王瑞国.基于WorldView-2数据的乌东煤矿地质灾害遥感调查及成因分析[J].国土资源遥感, 2016, 28(2):132-138. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201602022
    刘辉, 何春桂, 邓喀中, 等.开采引起地表塌陷型裂缝的形成机理分析[J].采矿与安全工程学报, 2013, 30(3):380-384. http://d.old.wanfangdata.com.cn/Periodical/ksylydbgl201303011
    余学义, 邱有鑫.沟壑切割浅埋区塌陷灾害形成机理分析[J].西安科技大学学报, 2012, 32(3):269-274. doi: 10.3969/j.issn.1672-9315.2012.03.001
    刘辉, 刘小阳, 邓喀中, 等.基于UDEC数值模拟的滑动型地裂缝发育规律[J].煤炭学报, 2016, 41(3):625-632. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603015.htm
    黄庆享, 张文忠.浅埋煤层条带充填保水开采岩层控制[M].北京:科学出版社, 2014.
    周文生, 吴振宇, 刘海燕.无人机遥感在矿山地质环境调查中的应用[J].地下水, 2014, 2:128-129. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DXSU201402053&dbname=CJFD&dbcode=CJFQ
    张启元.无人机航测技术在青藏高原地质灾害调查中的应用[J].青海大学学报, 2015, 2:67-72. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb-zr201502012
    侯恩科, 首召贵, 徐友宁, 等.无人机遥感技术在采煤地面塌陷监测中的应用[J].煤田地质与勘探, 2017, 6:102-110. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201706017
    赵坤阳.煤矿地下开采诱发地表裂缝与导水裂缝分布规律预测[D].中国地质大学(北京)硕士学位论文, 2015. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391331.htm
    余学义, 张恩强.开采损害学[M].北京:煤炭工业出版社, 2010.
图(12)  /  表(2)
计量
  • 文章访问数:  3178
  • HTML全文浏览量:  597
  • PDF下载量:  2618
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-06-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-11-30

目录

/

返回文章
返回