Processing math: 100%

    内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义

    程招勋, 汪岩, 钱程, 杨晓平, 李中会, 刘洪伟, 肖林

    程招勋, 汪岩, 钱程, 杨晓平, 李中会, 刘洪伟, 肖林. 2018: 内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义. 地质通报, 37(9): 1599-1606. DOI: 10.12097/gbc.dztb-37-9-1599
    引用本文: 程招勋, 汪岩, 钱程, 杨晓平, 李中会, 刘洪伟, 肖林. 2018: 内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义. 地质通报, 37(9): 1599-1606. DOI: 10.12097/gbc.dztb-37-9-1599
    CHENG Zhaoxun, WANG Yan, QIAN Cheng, YANG Xiaoping, LI Zhonghui, LIU Hongwei, XIAO Lin. 2018: The discovery of the Paleoproterozoic metamorphic rocks in Ulanhot, Inner Mongolia, and its geological significance. Geological Bulletin of China, 37(9): 1599-1606. DOI: 10.12097/gbc.dztb-37-9-1599
    Citation: CHENG Zhaoxun, WANG Yan, QIAN Cheng, YANG Xiaoping, LI Zhonghui, LIU Hongwei, XIAO Lin. 2018: The discovery of the Paleoproterozoic metamorphic rocks in Ulanhot, Inner Mongolia, and its geological significance. Geological Bulletin of China, 37(9): 1599-1606. DOI: 10.12097/gbc.dztb-37-9-1599

    内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义

    基金项目: 

    中国地质调查局项目《内蒙古1:5万前公主陵等六幅区域地质调查》 DD20160048-10

    详细信息
      作者简介:

      程招勋(1984-), 男, 学士, 高级工程师, 从事区域地质矿产调查工作。E-mail:158840286@qq.com

    • 中图分类号: P534.3;P588.3

    The discovery of the Paleoproterozoic metamorphic rocks in Ulanhot, Inner Mongolia, and its geological significance

    • 摘要:

      在乌兰浩特东白音乌苏一带新发现一套斜长角闪片岩、透辉透闪岩、斜长角闪片麻岩的岩石组合,岩石普遍经高绿片岩相-低角闪岩相变质,经受了后期多期构造改造。斜长角闪片岩经原岩恢复为基性火山岩,锆石晶形、阴极发光、背散射图像及高Th/U值等特征显示为岩浆锆石。采用LA-ICP-MS锆石U-Pb测年技术,在变质岩系中获得了1864.1±7.3Ma的同位素年龄,时代归属为古元古代,该年龄为岩浆形成年龄。此年龄限定了该套变质岩系的形成时代,证明乌兰浩特地区可能存在前寒武纪结晶基底。与区域上松嫩地块南部新发现的古元古元代岩浆锆石年龄进行对比发现,松嫩地块西缘可延伸至乌兰浩特一带。

      Abstract:

      A set of amphibolite schist, diopside tremolite schist and amphibolite gneiss supracrustal rock assemblage was newly discovered in Dongbaiyinwusu area. The rocks have generally experienced high greenschist facies and low amphibolite facies metamorphism and the multiple tectonic transformation of plagioclase in later stage. The hornblende schist protolith comprised basic volcanic rocks, whose zircon crystal, cathodoluminescence, back scattering image and high Th/U ratio characteristics suggest magmatic zircon. By using zircon U-Pb dating LA-ICP-MS technology, the authors obtained the isotopic age of 1864.1±7.3Ma, suggesting Paleoproterozoic and representing magma formation age, which constrains the formation age of supracrustal rocks and proves the existence of Precambrian crystalline basement in Ulanhot area. A comparison with the Paleoproterozoic magmatic zircon ages of southern Songnen massif shows that the west margin of Songnen massif can extend to the Ulanhot area.

    • 为有效履行中国自然资源科学管理需要,推进国土空间现代化治理,自然资源部于2020年印发了《自然资源调查监测体系构建总体方案》,提出地表基质的概念,地表基质是孕育和支撑森林、草原、水、湿地等各类自然资源的基础物质(自然资源部,2020a)。按照地表基质层、地表覆盖层、管理层三大数据层,自然资源部明确了自然资源统一调查监测的思路,并全面启动了全国地表基质调查工作。作为一项新型探索性工作,一些学者从地表基质的内涵、分类方案、调查思路、技术方法等方面进行了深入思考和研究(葛良胜等,2020殷志强等,2020贾磊等,2022李响等,2023),为地表基质相关研究提供了借鉴和参考。地表基质作为地球关键带的重要组成部分,在自然资源多要素物质循环和能量转移转化中起着重要的关键纽带作用,也是植被根系所能触达的基础物质,对植被生长具有复杂的作用过程(Richter et al., 2009Banwart et al., 2013丁永建等,2014张甘霖等,2021)。受成土母质、气候、地形等因素影响,地表基质结构特征、元素组成、养分含量等存在一定的空间分布差异,表现出明显的空间异质性特征,进而影响植被群落的组成、构建和生物量(李新荣,2005邵方丽,2012赵倩等,2020)。由于地表基质空间异质性的复杂性,目前对于地表基质与植被生长作用机理的认识依然不够(姚晓峰等,2022杨顺华等,2024),造成山丘区土地的不合理开发、林地衰退、水土流失等一系列资源环境问题,严重制约着自然资源的可持续利用和发展(刘硕等,2019赵辛金等,2020)。因此,充分研究地表基质空间异质性特征,了解地表基质养分组成和分布规律,阐明地表基质对植被生态的影响机理,对于进一步认识地球关键带结构及地表作用规律,支撑国土空间生态环境修复具有重要意义(马腾等,2020殷志强等,2022)。

      本文结合近年地表基质层调查工作取得的认识,以宁波山丘区地质基质为研究对象,采取剖面研究和样品测试的方法,从地表基质层空间结构异质性和元素特征异质性角度,分析了地表基质异质性产生的原因和影响因素,阐述了地表基质空间异质性对植被群落构建和空间分布的影响机理,探讨了3种典型地表基质对植被生长的适宜性条件,可为植被生态系统修复提供建议。

      宁波市地处长江三角洲南翼,浙江省东部沿海,地理位置东经120°55'~122°16'、北纬28°51'~30°33',属于亚热带季风气候,年均降水量1480 mm,年均气温16.4℃。植被以人工针叶林、毛竹林、经济林为主,少量次生阔叶林,地带性的亚热带常绿阔叶林植被残存于边远山区(蓝雪春,2017),其中针叶林是主要植被类型,广布于中低山、丘陵山地;阔叶林是典型的地带性植被类型,主要分布在宁海、北仑、颍州等地;灌丛以壳斗科、胡桃科、杜鹃花科、金缕梅科为主。

      研究区位于太平洋陆缘火山岩带的西南部浙闽粤中生代火山岩带北段,丽水−余姚深断裂以东(舒良树,2012)。自晚中生代白垩纪以来,区内火山活动十分强烈,先后经历了燕山期和喜马拉雅期2次构造岩浆活动,直至更新世仍见其活动的踪迹。岩石建造以中生代中酸性火山岩为主,其次为新生代基性火山岩(余明刚等,2021),常见岩石类型有花岗岩、玄武岩、流纹岩、砂岩等。土壤以红壤为主,主要由花岗岩、流纹岩和玄武岩风化形成。依据《地表基质分类方案(试行)》的原则(自然资源部,2020b),并结合相关研究成果(贾磊等,2022),研究区地表基质划分为4大类12个小类,其中花岗岩、流纹岩和玄武岩类残坡积地表基质分布最广(图1)。

      图  1  宁波山丘区地表基质分布及剖面采样位置
      Figure  1.  Distribution of ground substrate and sampling locations of profiles in Ningbo hilly area

      本文采取剖面研究和采样测试分析的方式,分析地表基质的空间结构特征和元素变化特征。空间结构主要调查地表基质的剖面结构、质地、岩石裂隙发育程度,质地在野外采用过筛法,微粒组分送相关实验室,采用激光粒度仪进行检测,依据《中国土壤系统分类土族和土系划分标准》进行土质分类(张甘霖,2013)。样品主要包括土质化学样品、质地样品和岩石样品,采样位置见图1,每个点位分别采集6~10个样品,共采集土质化学样品30件,质地样品14件,岩石样品3件,并对其N、P、K、Ca、Na等24种主量和微量元素的含量与变化特征进行测试分析(骆珊等,2021),具体测定方法见表1

      表  1  各类指标测定方法
      Table  1.  Measurement methods for indicators
      检测项目 分析方法 检测仪器
      Al2O3、CaO、K2O、MgO、MnO、Na2O、SiO2、TFe2O3、P2O5、TiO2 X射线荧光光谱法 X射线荧光
      光谱仪
      FeO 基准重铬酸钾溶液滴定
      As、Cd、Co、Cu、
      Mo、Pb、V 、Zn
      电感耦合等离子体质谱法 等离子质谱仪
      Cl 粉末压片-X射线
      荧光光谱法
      X射线荧光
      光谱仪
      F 离子选择电极法 离子选择性电极
      Hg 蒸汽发生-冷原子荧光
      光谱法
      原子荧光光谱仪
      N 凯氏法
      下载: 导出CSV 
      | 显示表格

      地表基质的空间结构演化与岩石风化成土密切相关,同时母质岩石或者沉积物的性质在很大程度上决定着地表基质的理化性质(Li et al., 2016裴小龙等,2020)。本文主要对研究区花岗岩、流纹岩和玄武岩3类岩石建造的地表基质剖面结构特征和质地特征进行了分析(图2)。

      图  2  三类典型地表基质剖面图
      Figure  2.  Three types of typical surface substrates profiles

      从剖面结构看,花岗岩类地表基质主要为残坡积砂土(PM01),垂向结构为雏形土−母质层,厚度30~50 cm,向下在坡度较缓的区域增厚,整体风化层较深,其浅部非构造节理为锯齿状非贯通型节理,节理密度中等,平均5~10 个/m2,张开度多小于5 mm,以紧闭型为主,风化的残积物及土壤等充填物较少。流纹岩类地表基质上坡区主要为残坡积砂土(PM02),30~50 cm,垂向结构为雏形土−母质层;在缓坡区为残坡积壤质砂土、壤土,土质层较厚,垂向结构为淋溶层−淀积层−母质层,土壤类型为红壤,风化层深度整体较浅,并发育平直型、锯齿状的贯通性节理,节理密度平均为2~3个/m2,张开度集中在1.0~5.0 mm和大于5 mm,属于中等张开程度,风化残积物多属于断续充填。玄武岩类地表基质(PM03)土壤发育程度较高,陡坡区垂向结构为残坡积壤质砂土,厚度30~100 cm,风化深度较厚;在缓坡为残坡积壤土,土质层较厚,垂向结构为淋溶层−淀积层−母质层,土壤类型为红壤,风化层深度整体较浅。玄武岩浅部发育层状节理,节理密度平均为10~15个/m2,深部发育柱状节理,多为贯通性节理,密度平均为3~5 个/m2

      从质地分析结果(小于2 mm粒度)看,花岗岩粒度分布较宽,在2~20 μm有一个主峰值,在0.2~1 μm和50~200 μm分别有较小的峰值,在野外的筛分法中,花岗岩地表基质表层粒度明显较粗,成分主体由难风化的石英颗粒构成。流纹岩粒度分布较稳定,整体粒度峰值为2~20 μm,表层与下部层位差异不明显。玄武岩表层与母质层主峰在20 μm附近,淀积层整体在0.2~1 μm附近,粒度偏细(图3)。

      图  3  不同点位地表基质质地粒度分布曲线( A、B、C 分别对应点位的淋溶层、淀积层、母质层)
      Figure  3.  Grain size distribution curves of surface substrates at different point locations

      综上,3类典型母质岩石形成的地表基质空间结构特征差异较明显,表现出较强的空间异质性。其中,花岗岩母质形成的地表基质土质粗,易形成砂土,裂隙、孔隙发育,深度大,透水性及含水性强;流纹岩母质形成的地表基质土质较粗,易形成壤质砂土、壤土,风化深度浅,裂隙、孔隙相对发育,浅表透气好,水分充足;玄武岩母质形成的地表基质土质细,易形成壤土、粘质壤土,节理发育,孔隙不发育,通气性差。

      山丘区地表基质的空间异质性主要受基岩结构与矿物成分影响(Clair et al., 2015Xavier et al., 2015),同时岩石风化成土与元素的迁移过程直接影响地表基质的养分状况(Katemaher et al., 2019)。因此,探讨地表基质的元素异质性,需要从母质岩石的背景元素、岩石风化强度及元素迁移的特点进行分析,总结元素异质性特征及产生的原因。

      通过对比不同地质背景的元素变化,分析地表基质元素异质性特征。从主量元素特征看,花岗岩、流纹岩富Si、K,贫Fe、Mg,而基性岩恰相反,富Fe、Mg,贫Si、K,土质元素A、B层也表现为同样的富集特点,即岩石元素含量偏高时,土质中的含量相对偏高,Na、Ca受淋滤作用影响,A层含量普遍偏低(图4−a)。从微量元素特征看,玄武岩中微量元素含量普遍偏高,仅Mo含量相对较低;花岗岩、流纹岩类Se、Mo相对较高,其他元素含量相对较低,A、B、C层中微量元素具有相似的富集关系,非金属元素多数表现为表层含量偏高,这与生物作用密切相关(图4−b)。综合主量和微量元素特征看,地表基质自下而上具有明显的继承性。

      图  4  主量元素(a)和与微量元素(b)含量变化特征(A、B、C、R分别对应点位的淋溶层、淀积层、母质层、基岩层)
      Figure  4.  The variation characteristics of main elements (a) and the trace elements (b)

      本文依据《土地质量地球化学评价规范》(DZ/T 0295—2016),对剖面不同表层土壤的8种养分元素(Co、Ca、Cu、Zn、Mg、Mn、Mo、Fe)进行对比分析(图5)。从不同地质背景土壤养分元素看,花岗岩土壤中多数元素较缺乏或缺乏,仅Mo丰富;流纹岩土壤中Mo、Zn丰富,Fe、Mn中等—较缺乏,其他元素均缺乏;玄武岩土壤Fe、Mg、Co、Cu、Zn等元素均为丰富,Ca较缺乏,Mo缺乏。总体来说,玄武岩风化形成的土壤养分元素较丰富,而花岗岩、流纹岩形成的土壤养分元素整体较缺乏。

      图  5  不同点位单元素养分含量评价图
      Figure  5.  Evaluation map of component content of unit literacy at different points

      研究表明,岩石的地球化学特征直接影响地表基质各层位的元素含量,目前用来描述衡量岩石或风化壳化学风化强度的指标,最常用的是化学蚀变指数CIA包志伟等,1992Priscia et al., 1999刘成禹等,2011)。

      CIA=[Al2O3/(Al2O3+CaO+Na2O+K2O)]×100 (1)

      式中,氧化物按摩尔百分比计算,CaO*指存在于硅酸盐中的CaO。

      3种典型岩石类型的化学风化强度具有一定差异(表2),玄武岩化学风化强度值明显高于花岗岩、流纹岩,意味着玄武岩更容易释放岩石中的营养元素,易于形成地表基质的养分。

      表  2  地表基质风化强度CIA指数
      Table  2.  CIA index of weathering strength of surface substrates
      点位层位CIA点位层位CIA
      D106淋溶层73.09D206淋溶层77.98
      母质层79.68淀积层83.36
      D204淋溶层74.95母质层92.29
      母质层77.03D302淋溶层85.86
      D303淋溶层97.62淀积层87.74
      母质层95.96母质层98.26
      下载: 导出CSV 
      | 显示表格

      本文以母岩元素含量为基础,分析元素的迁移特征,进而分析不同元素的迁移富集规律。迁移系数K由公式(2)计算获得(宁晓波等,2009刘孜等,2020)。

      K=Cn/CD (2)

      式中,K为迁移系数,Cn为土壤各发生层元素含量,CD为母岩元素含量。其中,当K>1时表示富集,K<1时表示贫瘠。KAKCKR分别代表表层、母质层、基岩层的K值。

      图  6  地表基质垂向元素迁移系数图
      KA—表层K值;KC—母质层K值;KR—基岩层K
      Figure  6.  Vertical element migration coefficient of ground substrate

      通过统计不同点位的元素迁移特征发现,地表基质中向上富集的元素主要有N、Cl、K及较多的微量元素,Na、Ca、Mg等元素流失量最大(图6)。As、Cd、Pb等重金属元素明显富集,N的K值最高,在10~30之间;Na和P元素表层微弱富集,母质层明显贫瘠。在玄武岩缓坡区个别点位,由于存在汇水区,表现为Na、Ca富集。

      地表基质的空间结构和元素分异是岩石风化、水文和生物化学长期共同作用的结果(Sharma et al., 2000Li et al., 2016Russell et al., 2022)。岩石风化时,裂隙不断崩解形成微粒,地表基质的空间结构在横向上表现为粗骨土—壤土的变化,垂向上表现为粒度向上不断变细的特征。元素在不同地质作用下会发生不同的迁移富集行为,造成元素分异的特征。风化作用下,易风化矿物元素优先释放,如Fe、Mg、Na、Ca等;水文作用下,Na、K、Ca、Mg等活泼金属的离子态受流水作用而流失;生物化学作用下,N、Cl、F、K等元素逐渐向表层富集。总体看,生物所需元素和重金属元素会向表层富集(图7),活泼金属元素向下游迁移。

      岩石母质的元素背景和岩石风化程度一定程度上控制着地表基质的养分状况,进而影响植被的群落构建和空间分布。地表基质的空间结构直接影响表层土的地气和水分交换、微生物群落类型和有机质组成,进而影响植被根系的生长和分布(黄金廷等,2008赵建飞等,2022)。基岩的抗风化矿物的浓度调节其蓄水能力,进而直接影响植被的空间分布(Russell et al., 2022)。基岩中抗风化矿物浓度越高,颗粒越大,越影响地表基质中水分的分布;当基岩中抗风化矿物含量少时,易风化矿物将释放更多的养分,地表基质层中的养分元素含量也随之升高(汪振立等,2002顾尚义等,2003Roering et al., 2010)。从水分与养分的供给看,花岗岩风化形成的土壤,土质以砂土居多,水分蒸发快,水肥易流失,浅表缺水,深部含水,植被必须耐旱或者根系可以达到潜水/裂隙水才能生长,适宜松、杉、灌木等植被。流纹岩以粉土居多,下坡区表层砂壤土具有良好的通气性,下层壤土、粘壤土具有一定保水性,且风化层较浅,但部分养分元素相对缺乏,适宜槭、栎、竹、茶等多类植被。玄武岩整体保水性较好,矿质营养元素丰富,但土壤中粘粒含量高,不利于植被向下层扎根,且部分土壤通气性差,对植被根系具有要求,适宜杉、竹、茶等多类植被(表3)。

      表  3  三种典型地表基质的植被适宜条件
      Table  3.  Vegetation suitability conditions for three typical ground substrate
      地表基质
      类型
      养分特征 水分制约 优势根系 适宜植被
      花岗岩类 缺乏,富K、Mo 深层水分
      较丰富
      垂直根系 松、杉、
      灌木等
      流纹岩类 缺乏—中等,富K、Zn、P 上坡相对缺水,下
      坡水分供给丰富
      垂直根系、辐射根系 槭、栎、竹、茶等多类
      植被
      玄武岩类 多数元素丰富 水分充沛,
      中层隔水
      辐射根系、串珠根系 杉、竹、茶等多类植被
      下载: 导出CSV 
      | 显示表格
      图  7  地表基质异质性演化示意图
      A—淋溶层;B—淀积层;C—母质层;R—基岩;a—风化作用;b—水文作用;c—生物化学作用
      Figure  7.  Schematic diagram of ground substrate heterogeneity evolution

      在自然环境中,因受地形、降水、水文等因素的影响,地表基质结构特征和元素特征的空间分布往往不是均质的,表现出空间分布上的复杂性和不均匀性,具有明显的空间异质性特征。地表基质与其他资源要素的空间异质性具有一定的相似性,由时间和空间维度上的综合作用形成,具有空间梯度性和空间缀块性特征(Li et al., 1995张志永,2017)。空间异质性可以理解成尺度的函数,具有尺度的表现性,随着尺度的改变,其空间异质性也会发生改变(Titus et al., 2002王志述等,2015),意味着离开尺度去讨论其空间异质性将毫无意义。同时,地表基质空间异质性为促进各资源要素寻求和占据其适宜生态条件,形成多元空间格局提供了基础条件,这对优化景观空间配置、保护生物多样性和维持生态系统稳定具有重要意义(徐武美等,2015刘绿怡,2018)。

      地表基质空间异质性影响着植被生态,如植被群落的构建、组成、分布等。同时,植被生态对地表基质空间异质性具有一定的反馈作用,如植被的物种组成、营养积累和贮留能力会影响地表基质元素的空间分布格局,此外,植被的退化将加剧土壤的风蚀和营养元素的迁移,进而影响地表基质元素空间异质性(胡忠良等,2009刘晨,2015)。因此,地表基质空间异质性对植被的影响是一种复杂的相互作用过程,本文仅从地质学角度定性探讨了地表基质对植被的影响机理,具有一定的局限性,今后还需加大研究力度,定量分析其影响规律和反馈机制,对于进一步掌握现有植被生态状态并预测其动态变化具有重要意义。

      本文以典型剖面阐述了3类地表基质的空间异质性,结合岩石的结构特征和元素组成,分析了地表基质空间异质性产生的原因,进而探讨了不同植被与地表基质的适宜性。

      (1)宏观尺度下,地表基质的异质性受岩石风化、生物地球化学、水文等作用共同影响。岩石风化作用和水文作用影响基质的结构、厚度和粒度变化。受化学风化、水文作用及生物化学作用的影响,不同元素表现出不同的地球化学行为,相似的迁移行为促使性质相近的元素具有类似的分布规律。

      (2)景观尺度下,岩石地质建造控制着景观尺度下的地表基质空间异质性。基岩中抗风化矿物浓度越高,颗粒越大,其形成的土质越粗;当基岩中某些元素含量越高,其形成的土质元素含量越高。

      (3)地表基质主要影响水分和养分的分布,进而影响着植被类型。因地表基质的空间结构制约着水分空间分布,而元素的异质性表现为不同的养分状况,水分和养分的空间分布和丰度差异,制约着山丘区的植被生长。

      致谢:感谢长三角宁波地区自然资源地表基质层调查项目组提供的基础资料。感谢审稿专家的宝贵意见和建议,极大地提升了本文的质量,感谢团队成员的辛勤工作和努力付出。

    • 图  1   研究区地质简图(大地构造位置图据参考文献[10])

      Figure  1.   Geological schematic map of the study area

      图  2   内蒙古乌兰浩特市东古元古代斜长角闪片岩岩组人工露头实测剖面

      Figure  2.   Measured section of eastern Proterozoic epidermal rocks in Ulanhot, Inner Mongolia

      图  3   斜长角闪片岩和斜长角闪片麻岩宏观照片

      Figure  3.   Macrophotograph of plagioclase amphibole schist and plagioclase amphibole gneiss

      图  4   变质岩系中脉体的褶皱变形

      Figure  4.   Fold deformation of the middle vein of metamorphic rock series

      图  5   F-TiO2图解

      Figure  5.   Diagram of F-TiO2

      图  6   ((al+fm)-(c+alk))-Si图解

      Figure  6.   Diagram of ((al+fm)-(c+alk))-Si

      图  7   (al-alk)-c图解

      Ⅰ—钙质泥岩;Ⅱ—白云质泥灰岩;Ⅲ—粘土岩;Ⅳ—中酸性凝灰岩;Ⅴ—角斑岩;Ⅵ—细碧岩-玄武岩;Ⅶ—二长安山质凝灰岩;Ⅷ—英安质凝灰岩

      Figure  7.   Diagram of(al-alk)-c

      图  8   样品野外和镜下照片

      a—古元古代变质岩系岩貌特征;b—样品PM028B101斜长角闪片岩镜下照片;c—样品PM028B102斜长角闪片麻岩镜下照片;dsk—透光透闪矽卡岩;sch—黑云斜长片岩;hos—斜长角闪片岩;gnt—斜长角闪片麻岩;δμ—闪长玢岩;λ—流纹岩;γπ—花岗斑岩

      Figure  8.   Field features and microphotograph

      图  9   PM028B101锆石阴极发光(CL)图像

      Figure  9.   CL images of zircons in PM028B101

      图  10   PM028B101斜长角闪片岩年龄谐和图

      Figure  10.   PM028B101 age concordent diagram of zircon in plagioclase amphibole schist

      表  1   古元古代变质岩系主量元素分析结果

      Table  1   Major element of the Paleoproterozoic metamorphic rocks

      %
      样品号 PM028B92—1 PM028B101 PM028B103 PM028B102—1 PM028B94—1 PM028B98—2 PM028B116—1
      镜下定名 斜长角闪片岩 斜长角闪片岩 斜长角闪片岩 黑云阳起片岩 角闪斜长片岩 黑云斜长片岩 黑云斜长片岩
      SiO2 49.26 49.40 54.50 48.92 61.80 71.42 66.08
      TiO2 2.46 2.22 2.65 2.52 0.88 0.42 0.59
      Al2O3 12.00 11.96 15.49 12.36 14.81 13.70 15.69
      Fe2O3 4.52 1.59 2.67 4.48 3.36 2.86 3.25
      FeO 7.81 9.64 4.21 7.94 3.15 0.50 0.62
      MnO 0.20 0.18 0.14 0.19 0.10 0.055 0.059
      MgO 7.31 7.65 3.73 7.37 2.63 1.12 1.85
      CaO 9.76 10.29 7.99 10.01 5.42 2.61 4.00
      Na2O 2.52 2.49 4.38 2.63 3.66 4.59 4.05
      K2O 0.17 1.09 2.06 1.06 1.86 1.56 1.45
      P2O5 0.38 0.35 1.13 0.37 0.27 0.11 0.19
      烧失量 2.34 1.74 1.18 1.50 1.30 1.56 2.36
      总计 98.7 98.6 100.1 99.4 99.2 100.5 100.2
      注:测试单位为黑龙江地质矿产测试应用研究所
      下载: 导出CSV

      表  2   PM028B101斜长角闪片岩锆石U-Th-Pb同位素分析结果

      Table  2   PM028B101 zircon U-Th-Pb isotopic sample analytical results of plagioclase amphibole schist

      样品号 含量/10-6 207Pb/206Pb 207Pb/235U 206Pb/238U 232Th/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      Pb U 比值 比值 比值 年龄/Ma 年龄/Ma 年龄/Ma
      1 174 370 0.12 0.001 5.28 0.077 0.33 0.003 0.6 1883 22 1866 12 1848 15
      2 225 487 0.11 0.002 5.13 0.079 0.33 0.004 0.7 1869 18 1842 13 1816 20
      3 635 2102 0.11 0.001 3.97 0.057 0.25 0.002 0.1 1843 14 1628 12 1463 11
      4 250 540 0.12 0.001 5.26 0.057 0.33 0.002 0.6 1881 17 1863 9 1844 12
      5 11 301 0.05 0.002 0.13 0.057 0.02 0.000 1.4 209 67 128 4 124 1
      6 147 309 0.11 0.001 5.19 0.057 0.33 0.003 0.6 1862 18 1851 12 1838 17
      7 167 384 0.11 0.001 5.09 0.057 0.33 0.002 0.7 1854 17 1834 9 1815 11
      8 6 148 0.05 0.002 0.20 0.057 0.03 0.000 0.5 272 93 185 6 179 2
      8-1 138 292 0.11 0.001 5.25 0.057 0.33 0.003 0.5 1876 19 1861 10 1845 13
      9 230 483 0.11 0.001 5.13 0.057 0.33 0.003 0.6 1856 17 1841 9 1835 13
      10 207 414 0.11 0.001 5.28 0.057 0.33 0.005 0.6 1866 17 1866 16 1860 24
      11 703 2403 0.11 0.001 4.12 0.057 0.26 0.003 0.4 1852 24 1658 13 1507 17
      12 239 503 0.11 0.001 5.20 0.057 0.33 0.003 0.6 1856 19 1853 9 1857 14
      13 140 319 0.11 0.001 5.26 0.057 0.33 0.003 0.4 1872 17 1862 10 1852 14
      14 142 352 0.11 0.001 5.06 0.057 0.33 0.003 0.3 1856 16 1830 10 1814 13
      15 7 285 0.05 0.002 0.13 0.057 0.02 0.000 0.3 154 87 128 4 127 1
      16 854 1574 0.12 0.001 5.37 0.057 0.34 0.003 0.9 1880 19 1880 11 1877 16
      17 440 975 0.11 0.001 5.24 0.057 0.33 0.002 0.5 1862 12 1859 9 1853 12
      18 199 449 0.11 0.001 5.15 0.057 0.33 0.004 0.6 1839 18 1845 12 1848 20
      19 225 433 0.11 0.001 5.27 0.057 0.33 0.004 0.9 1863 12 1864 12 1862 20
      20 319 700 0.11 0.001 5.21 0.057 0.33 0.004 0.6 1856 20 1854 10 1859 18
      21 184 379 0.11 0.001 5.16 0.057 0.33 0.004 0.6 1850 17 1846 10 1842 17
      22 57 123 0.11 0.001 5.11 0.057 0.33 0.004 0.5 1847 22 1838 12 1832 21
      23 69 153 0.11 0.001 5.15 0.057 0.33 0.003 0.5 1843 22 1844 11 1843 15
      24 75 153 0.11 0.001 5.29 0.057 0.33 0.003 0.6 1876 22 1868 12 1859 16
      25 199 450 0.12 0.001 5.38 0.057 0.34 0.003 0.3 1884 19 1882 11 1877 15
      26 135 269 0.11 0.001 5.29 0.057 0.34 0.004 0.6 1869 26 1867 14 1864 21
      27 5 193 0.05 0.003 0.17 0.057 0.02 0.000 0.4 391 110 160 7 145 2
      28 110 226 0.12 0.002 5.42 0.06 0.34 0.008 0.6 1898 23 1888 22 1878 37
      下载: 导出CSV
    • 吴福元, 孙德友, 李惠民, 等.松辽盆地基底岩石的锆石U-Pb年龄[J].科学通报, 2000, 45(6):656-660. doi: 10.3321/j.issn:0023-074X.2000.06.021
      裴福萍, 王志伟, 曹花花, 等.吉中地区早古生代英云闪长岩的成因:锆石U-Pb年代学和地球化学证据[J].岩石学报, 2014, 30(7):2009-2019. http://d.wanfangdata.com.cn/Periodical/ysxb98201407014

      Liu S, Hu R Z, Gao S, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust[J].Lithos, 2010, 114:423-436. doi: 10.1016/j.lithos.2009.10.009

      Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J].Chinese Science Bulletin, 2007, 52(7):942-948. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXTW200707011&dbname=CJFD&dbcode=CJFQ

      Wang Y, Zhang F Q, Zhang D W, er al. Zircon SHRIMP U-Pb dating of metadiorite from the basement of the Songliao Basin and its geological significance[J].Chinese Science Bulletin, 2006, 51(15):1877-1883. http://www.cqvip.com/QK/86894X/200615/22623281.html

      Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 2013, 170/171:191-207. http://www.sciencedirect.com/science/article/pii/S0024493713000947

      Jahn B M, Litvinovsky B A, Zanvilevich A N, et al. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution, petrogenesis and tectonic significance[J].Lithos, 2009, 113(3/4):521-539. https://www.sciencedirect.com/science/article/pii/S0024493709002643

      刘建峰, 李锦轶, 迟效国, 等.华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩——锆石U-Pb定年及地球化学证据[J].地质通报, 2013, 32(2/3):267-279. http://www.cqvip.com/QK/95894A/201302/45407385.html
      章凤奇, 陈汉林, 董传万, 等.松辽盆地北部存在前寒武纪基底的证据[J].中国地质, 2008, 35(3):421-428. doi: 10.3969/j.issn.1000-3657.2008.03.006
      徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001
      潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分和演化[J].地学前缘, 2016, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001
      任纪舜, 陈廷愚, 牛宝贵, 等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社, 1990.
      李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评, 1998, 44(4):339-347. doi: 10.3321/j.issn:0371-5736.1998.04.002

      Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. chem. Geol., 2002, 192:59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X

      Ludwig K R. Isoplot/exv.26[M]. Berkeley Geochronological Center, 1999.

      李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究, 2009, 33(3):161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001
      吴元宝, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      包创, 陈岳龙, 李大鹏.内蒙古巴彦乌拉山古元古代斜长角闪岩LA-ICP-MS锆石U-Pb年龄和Hf同位素组成[J].地质通报, 2013, 32(10):1513-1524. doi: 10.3969/j.issn.1671-2552.2013.10.003
      贾维馨, 姜琦刚, 王冬艳, .松辽盆地南缘基性岩脉中捕获锆石U-Pb年龄及其对基底岩浆事件的制约[J].岩石学报, 2016, 32(9):2881-2888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609020

      Koschek G. Orign and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3

      裴福萍, 许文良, 杨德彬.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义[J].科学通报, 2006, 51(24):2881-2887. doi: 10.3321/j.issn:0023-074X.2006.24.012
      王颖, 张福勤, 张大伟.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报, 2006, 51(15):1810-1816. http://d.old.wanfangdata.com.cn/Periodical/kxtb200615012
      王兴光, 王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质科技情报, 2007, 26(1):23-27. doi: 10.3969/j.issn.1000-7849.2007.01.004
    图(10)  /  表(2)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-19
    • 修回日期:  2018-06-20
    • 网络出版日期:  2023-08-15
    • 刊出日期:  2018-09-14

    目录

    /

    返回文章
    返回