• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏窝若巴勒-白龙地区阿布山组沉积岩石、地球化学特征及碎屑锆石对物源信息的指示意义

王志龙, 胡西冲, 石晓龙, 黄强太, 郑浩, 师胜梅

王志龙, 胡西冲, 石晓龙, 黄强太, 郑浩, 师胜梅. 2017: 西藏窝若巴勒-白龙地区阿布山组沉积岩石、地球化学特征及碎屑锆石对物源信息的指示意义. 地质通报, 36(7): 1188-1203.
引用本文: 王志龙, 胡西冲, 石晓龙, 黄强太, 郑浩, 师胜梅. 2017: 西藏窝若巴勒-白龙地区阿布山组沉积岩石、地球化学特征及碎屑锆石对物源信息的指示意义. 地质通报, 36(7): 1188-1203.
WANG Zhilong, HU Xichong, SHI Xiaolong, HUANG Qiangtai, ZHENG Hao, SHI Shengmei. 2017: Sedimentary rocks and geochemical characteristics as well as detrital zircon of Abushan Formation in Woruobale and Bailong area, Tibet, and their indicating significance for provenance information. Geological Bulletin of China, 36(7): 1188-1203.
Citation: WANG Zhilong, HU Xichong, SHI Xiaolong, HUANG Qiangtai, ZHENG Hao, SHI Shengmei. 2017: Sedimentary rocks and geochemical characteristics as well as detrital zircon of Abushan Formation in Woruobale and Bailong area, Tibet, and their indicating significance for provenance information. Geological Bulletin of China, 36(7): 1188-1203.

西藏窝若巴勒-白龙地区阿布山组沉积岩石、地球化学特征及碎屑锆石对物源信息的指示意义

基金项目: 

中国地质调查局项目《西藏窝若巴勒地区1:5万区域地质矿产调查》 1212011221088

《西藏白龙地区1:5万区域地质矿产调查》 1212011221087

详细信息
    作者简介:

    王志龙(1989-), 男, 硕士, 从事地层沉积学研究。E-mail:wzl15977381946@163.com

    通讯作者:

    胡西冲(1988-), 男, 博士, 助理研究员, 从事海洋环境地质学研究。E-mail:xchu@nmemc.org.cn

  • 中图分类号: P595;P597+.3

Sedimentary rocks and geochemical characteristics as well as detrital zircon of Abushan Formation in Woruobale and Bailong area, Tibet, and their indicating significance for provenance information

  • 摘要:

    在白龙地区和窝若巴勒地区1:5万区域地质矿产调查中,根据阿布山组的野外岩石及沉积特征,将阿布山组分为上、下2段,分别为山前河流和湖泊相沉积。该组上段砂岩的地球化学特征显示,物源主要来自上地壳,且主要为长英质岩石。对阿布山组上段的砂岩层进行碎屑锆石采样,从该组的2个样品中得到的最年轻的碎屑锆石年龄分别为85.9Ma和100.39Ma,为该组的时代归属提供了依据。同时,2组样品存在110Ma、440Ma、820Ma、1280Ma四期年龄峰值,结合该组的岩石地球化学特征及物源信息,对羌塘地体的构造演化做了一定的探讨。

    Abstract:

    From the 1:50000 regional geological and mineral survey of Bailong and Woruobale area, and on the basis of the field rock and sendimentary characteristics, the authors divided the Abushan Formation into two sections, i.e., piedmont alluvial and lacustrine facies clastic sediments. Geochemical characteristics of the sandstone samples from the upper Abushan Formation show that the provenance was mainly from the upper crust, and was mainly felsic rocks. The authors obtained for the first time two detrital zircon samples from Upper Abushan Formation, and the analytical results show that the youngest detrital zircon ages are 85.9Ma and 100.39Ma. The results provide a basis for determining the ages of Abushan Formation. In addition, there exist four peak ages for the two samples, i.e., 10Ma, 440Ma, 820Ma and 1280Ma. Combined with the geochemical characteristics and provenance information of this group, the authors made a discussion on the tectonic evolution of Qiangtang terrane.

  • 鄂尔多斯盆地位于中国中西部地区,为中国第二大沉积盆地,跨陕、甘、宁、蒙、晋五省区,盆地面积达到25×104km2。鄂尔多斯盆地的中上三叠统—下白垩统发育,发现有多门类的动植物化石[1],盆地沉积了巨厚的白垩系。含恐龙等脊椎动物足迹的地层属于下白垩统志丹群,自下而上包含宜君组、洛河组、华池组、环河组、罗汉洞组、泾川组,以及仅分布于东北部的喇嘛湾组[2]。在鄂尔多斯盆地西北部,恐龙足迹主要产于罗汉洞组和泾川组[3]。在鄂尔多斯盆地南部边缘旬邑县洛河组也发现过恐龙足迹[1]

    2017年9—11月,陕西省地质调查中心承担的“陕北丹霞地貌地质遗迹调查项目”及神木市公格沟丹霞地质公园申报项目,在鄂尔多斯盆地东北缘神木市中鸡一带的下白垩统洛河组(K1l)上部紫红色砂岩中发现恐龙与其他四足类足迹多处,该组合的发现在中国尚属首次。

    洛河组由“洛河砂岩”演变而来,区域上平行不整合在中侏罗统安定组之上[4]。研究区,即鄂尔多斯东北部一带,洛河组厚度63.79m,以紫红色-暗紫红色厚-块状粉砂质泥岩、泥质粉砂岩与薄层中-粗粒长石石英砂岩、石英砂岩为主,构成典型的丹霞地貌景观。

    鄂尔多斯盆地在中侏罗统安定组沉积末期,受晚侏罗世燕山运动末期的隆升影响,盆地抬升掀斜遭受剥蚀[5]。到早白垩世初期,鄂尔多斯盆地伸展,洛河组开始沉积。前人研究与1:5万区域地质调查资料指出,洛河组的沉积环境属河流、湖泊相[6],而近年来不少学者则认为其属于沙漠相[7-8],在洛河期,鄂尔多斯盆地进入白垩纪第一个沙漠沉积发育的鼎盛期[8]。综合区调等资料,洛河组早期沉积时盆地具准平原性质,河流宽阔,河漫滩较发育,沉积了紫红色、棕红色、砖红色厚层砂岩,并夹有灰白色高岭石质细砂岩,砂岩体中发育以大-巨型槽状交错层、交错层理为特征的中粒长石砂岩夹少量粉砂岩沉积组合,属河流及冲积扇沉积;中期沉积形成紫红色、棕红色、砖红色厚层中粗粒砂岩,砂岩体中发育以大-巨型风成板状交错层、风成斜层理为特征的中粗粒长石砂岩,明显具有沙漠相沙丘、丘间亚相;晚期沉积则形成一套紫红色块状泥岩、粉砂质泥岩夹薄层泥质粉砂岩组合,发育水平层理、低角度斜层理、泥裂、雨痕等,指示了浅水沙漠湖泊相沉积沙丘砂岩发育的低角度斜层理方向,可能反映了以西北风为主,局部有东南暖风作用。

    现将研究区含恐龙等脊椎动物足迹地层岩性描述如下。

    上覆地层:第四纪全新世风成沙、黄土层

    ~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~

    早白垩世洛河组(K1l)                                            >18.74m

    6.紫红色薄层状细粒长石石英砂岩                                    0.51m

    5.紫红色薄层中-粗粒长石石英砂岩,发育板状斜层理,有三趾型恐龙足迹 4.74m

    4.紫红色薄层细粒石英砂岩,发育平行层理                            5.20m

    3.紫红色中厚层中粒长石石英砂岩,具平行层理                        5.80m

    2.紫红色薄层细粒长石石英砂岩,发育水平层理                        1.53m

    1.紫红色薄层中粒石英砂岩,有二趾型恐龙足迹与小型四足类足迹,未见底 0.96m

    ~~~~~~~~~~~~~~~~~不整合接触~~~~~~~~~~~~~~~~~

    下伏地层:中侏罗统安定组(J2a)深灰色微-薄层粉砂质泥岩

    神木市中鸡镇脊椎动物足迹化石分布在宝刀石梨村公格沟水库东岸边,在30km2红色丹霞景观范围内,目前已发现3处恐龙足迹点及2处小型四足类足迹点(图 1)。

    图  1  神木市中鸡镇恐龙等脊椎动物足迹化石分布
    Figure  1.  Distribution map of footprint fossil from dinosaurs and other vertebrate in Zhongji town, Shenmu city

    1号足迹点目前发现两枚足迹,产于洛河组上部紫红色块状泥岩、粉砂质泥岩与微–薄层泥质粉砂岩中的湖泊相近底部薄层泥质粉砂岩层面上,层面发育泥裂。2~5号足迹点分布在洛河组上部滨岸相紫红色薄层中细粒石英砂岩中岩层面上。其中2号足迹点发现21枚三趾型足迹,层面发育雹痕、雨痕。3、5号足迹点为小型四足类所留。4号足迹点,目前发现16枚二趾型脚印,层面发育浅水流水波痕、雹痕、雨痕、虫迹。

    小型四足类足迹约200个,至少组成5道行迹。其中保存最好的行迹长约1.5m(图版Ⅰ-A),由前足迹与后足迹组成,都呈扁椭圆形。前足迹平均长1.0cm,宽1.3cm;后足迹平均长1.1cm,宽1.6cm,前足迹位于后足迹的前内侧。因保存或后期风化的原因,绝大部分足迹的趾痕不清,保存最好的后足迹能观察到至少4个趾痕。这些小型四足类足迹的形态与尺寸都与巴西足迹(Brasilichnium) [9]非常相似。巴西足迹最初发现于巴西上侏罗统—下白垩统博图卡图组,传统上被归于哺乳形类(Mammaliamorpha)或衍生的兽孔类(Therapsida)。此类足迹为中国首次发现。

      图版Ⅰ 
    A.小型四足类足迹;B、C.三趾型兽脚类足迹;D、E.两趾型兽脚类足迹
      图版Ⅰ. 

    三趾型兽脚类分布于1号和2号足迹点。1号足迹点仅1个足迹保存较好(图版Ⅰ-B),长14.5cm,宽15.8cm,长宽比为0.9,三趾较纤细,第Ⅱ趾至第Ⅳ趾之间的趾间角约为110°。2号足迹点的21枚三趾型足迹形成一道拐弯的行迹(图版Ⅰ-C)。拐弯的行迹相对罕见。其中保存最好的足迹长12.5cm,宽10.0cm,长宽比为1.3,第Ⅱ趾至第Ⅳ趾之间的趾间角为69°,其趾垫不清,跖趾垫较发育。从整体形态看,2号足迹点的三趾型足迹与实雷龙足迹类(Eubrontidae) [10]较相似。实雷龙足迹类最初发现于北美的下侏罗统,但衍生的足迹形态广泛出现在中国的侏罗系—白垩系[11-12],鄂尔多斯盆地的白垩系也有类似发现[13]。1号足迹点的孤立足迹的形态特征与实雷龙足迹类完全不同,但其较尖锐的爪痕与宽的趾间角表明其属于兽脚类足迹。

    2号足迹点的一道行迹揭示了有趣的受沉积物影响的保存现象。大多数足迹只留下明显的一个趾痕(图版Ⅰ-D),但在一处沉积物条件适宜区,该造迹者留下了一个保存良好的两趾型足迹(图版Ⅰ-E)。该足迹长14.5cm,宽5.0cm,长宽比为2.9,第Ⅲ趾至第Ⅳ趾之间的趾间角为20°。这是二趾型足迹在陕西省的首次记录,与该区相邻的内蒙古鄂托克旗查布地区也曾有报道[3]

    由于与鸟类系统发育学上的紧密联系,近年来,恐爪龙类(deinonychosaurian)演化支得到学者们的充分研究。恐爪龙类包括驰龙类(dromaeosaurids)和伤齿龙类(troodontids),该类群最具代表性的特征是其第Ⅱ趾上有一个高度发育的大爪,这个大爪可以伸出并高度延展[14]。恐爪龙类运动时,该特化的第Ⅱ趾处于扬起状态,因此留下足迹为两趾,仅由第Ⅲ趾和第Ⅳ趾的印迹组成[11]。因此,两趾型足迹对应恐爪龙类造迹者,是迄今为止特征最鲜明的兽脚类足迹之一。自1994年在中国首次发现以来[15],现在至少发现了十余个足迹点[11],均来自白垩系,分布于四川盆地与攀西地区的多个点,以及山东莒南与岌山、河北赤城、北京延庆、甘肃盐锅峡等。中鸡恐爪龙类足迹的尺寸与甘肃盐锅峡标本类似,该记录增加了该类造迹者的古地理分布范围。

    在鄂尔多斯盆地东北缘神木市中鸡白垩系丹霞地貌中发现的恐龙与其他四足类的足迹化石,展示了一个非常独特的组合类型:哺乳形类/兽孔类足迹-实雷龙足迹类-恐爪龙类足迹。这种多样性的兽脚类行迹与小型四足类足迹的组合,在中国属首次发现。虽然其详细分类还有待进一步研究,但这无疑对中国白垩纪沙漠相恐龙动物群的类型与分布,乃至该地区的古气候、古地理和地层对比都具有重要的意义。

    致谢: 感谢西藏地质调查院刘鸿飞院长、黄玮主任,西藏区调队曾庆高总工程师在野外给予的指导,感谢南京大学周国庆老师、中山大学殷征欣和钟云博士在室内研究给予的帮助,以及审稿专家给予的辛苦帮助,在此一并表示衷心的感谢。
  • 图  1   工作区区域构造图[15]及采样位置

    Qhapl—第四系;K2ab—阿布山组;T3t—亭共错组;P1q—曲地组;J1-2M—木嘎岗日岩群;J1q—曲色岩组;J2s—色哇岩组;J3K1s—沙木罗组;δμK1—闪长玢岩;1—蛇绿岩带;2—断裂;3—缝合带北界;4—碎屑锆石样;5—地球化学样

    Figure  1.   Regional tectonic map of the study area, showing sampling sites

    图版Ⅰ   a.阿布山组下段野外露头特征;b.阿布山组下段紫红色粗-巨砾岩;c.阿布山组上段野外露头特征;d.阿布山组下段紫红色粗砂岩中平行层理;e.阿布山组上段粗粒含砾岩屑石英砂岩镜下照片;f.紫红色粗粒石英岩屑砂岩镜下照片

    图版Ⅰ.  

    图  2   阿布山组砂岩构造判别图

    Figure  2.   Structural discrimination diagram for sandstone from Abushan Formation

    图  3   微量元素蛛网图(a,标准化数据据参考文献[17])和稀土元素配分图(b,标准化数据据参考文献[19])

    Figure  3.   Trace element spider diagrams (a) and REE partterns (b)

    图  4   F1-F2物源区判别图解(a)[22]和Hf-La/Th判别图解(b)[23]

    Figure  4.   F1-F2 discrimination diagram (a) of the provenance and Hf-La/Th diagram (b)

    图  5   部分碎屑锆石阴极发光图像(a、b和c、d分别对应样品TG001和TC005)

    Figure  5.   Cathodoluminescence images of part of detrital zircons

    图  6   TG001和TC005样品碎屑锆石U-Pb年龄谐和图

    Figure  6.   U-Pb concordia diagrams of detrital zircons in samples TG001 and TC005

    图  7   TG001和TC005砂岩样品碎屑锆石年龄分布直方图与频率拟合曲线

    Figure  7.   Relative probability plots and age histogram of detrital zircon U-Pb ages for sandstone from samples TG001 and TC005

    表  1   阿布山组砂岩主量、微量和稀土元素分析数据

    Table  1   Major, trace and rare earth elements compositions of sandstone from Abushan Formation

    送样编号 TG001 TG002 TG004 TG005 TC005
    样品岩性 紫红色长石石英砂岩 紫红色细粒长石石英砂岩 深紫色粗粒含岩屑长石砂岩 紫红色细粒岩屑石英砂岩 紫红色中粒含岩屑长石砂岩
    Bi 2.53 1.38 0.55 0.40 0.09
    Sb 20.26 10.26 3.50 2.18 1.46
    Y 8.39 14.71 13.46 19.21 6.04
    La 15.65 22.09 23.02 15.26 33.53
    Ce 23.96 37.84 39.29 23.54 51.80
    Pr 3.36 4.91 5.28 3.61 6.55
    Nd 13.34 19.42 20.25 15.38 24.25
    Sm 2.46 3.73 3.90 3.51 4.10
    Eu 0.42 0.80 0.67 0.70 0.98
    Gd 3.41 3.69 3.72 3.74 3.77
    Tb 0.43 0.58 0.58 0.65 0.52
    Dy 1.83 3.18 3.00 3.95 1.91
    Ho 0.39 0.57 0.52 0.66 0.34
    Er 0.63 1.37 1.04 1.37 0.35
    Tm 0.22 0.29 0.25 0.27 0.17
    Yb 1.13 1.56 1.27 1.33 0.88
    Ba 140.05 593.28 116.91 93.10 145.25
    Co 14.20 11.60 10.70 7.10 12.00
    Cr 31.40 35.60 46.70 33.00 40.90
    Cu 81.24 49.31 17.14 9.04 25.67
    Nb 5.40 7.60 5.70 3.70 12.30
    Ni 45.30 25.80 22.83 12.20 23.20
    Pb 877.62 426.75 153.34 120.94 23.17
    Rb 41.20 46.10 27.60 21.10 19.10
    Sr 171.11 144.35 101.33 157.58 295.00
    Th 3.01 3.02 3.04 3.01 3.01
    V 49.14 41.70 42.70 40.30 77.30
    Zn 106.30 63.00 43.70 31.70 62.30
    Zr 194.88 194.69 212.26 116.35 167.00
    W 49.42 10.92 77.06 26.96 6.94
    Mo 1.81 1.07 1.32 0.61 0.42
    Au 0.52 0.20 0.06 0.06 0.0006
    Ag 1.88 0.53 0.19 0.13 0.05
    Hf 4.30 6.20 6.50 3.10 8.00
    Sn 2.34 1.73 1.98 1.54 1.64
    Al2O3 4.69 5.73 3.25 2.54 15.26
    CaO 10.58 12.97 15.94 16.82 4.26
    K2O 0.87 1.10 0.54 0.36 0.33
    MgO 1.02 1.30 0.37 0.52 1.35
    MnO 0.06 0.12 0.24 0.29 0.05
    Na2O 0.02 1.31 0.21 0.04 0.83
    P2O5 0.06 0.08 0.10 0.09 0.26
    SiO2 67.68 61.65 61.80 62.16 63.17
    TiO2 0.31 0.43 0.29 0.22 0.61
    TFe2O3 2.58 2.31 3.27 2.60 3.40
    Li 70.08 29.21 32.21 22.83 73.95
    Be 0.76 0.89 0.69 0.48 1.21
    In 0.03 0.03 0.02 0.02 0.05
    Cs 3.49 4.42 1.45 1.21 1.23
    Ce 28.32 42.65 44.04 23.15 48.13
    Ta 0.84 0.89 0.63 0.44 1.30
    Sc \ \ \ \ \
    U 0.89 1.27 0.85 0.84 1.13
      注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表  2   西藏窝若巴勒—白龙地区阿布山组砂岩与不同构造环境砂岩地球化学特征

    Table  2   Geochemical parameter compartion between the sandstone from Abushan Formation in Woruobale and Bailong area, Tibet and that from various tectonic settings

    参数 研究区 被动大陆边缘 活动大陆边缘 大陆岛弧 大洋岛弧 上地壳
    SiO2 63.29 81.95 73.86 70.69 58.83 66
    TiO2 0.37 0.49 0.46 0.64 1.06 0.5
    Al2O3 6.29 8.41 12.89 14.04 17.11 15.2
    TFeO+MgO 2.99 2.89 4.63 6.79 11.73 6.7
    Al2O3/SiO2 0.1 0.1 0.18 0.2 0.29 7.15
    K2O/Na2O 10.08 1.6 0.99 0.61 0.39 0.23
    Al2O3/(CaO+Na2O) 0.84 4.15 2.56 2.42 1.72 0.87
    La 35.29 39 37 27 8.2 30
    Ce 4.74 85 78 59 19.4 64
    ∑REE 94.63 210 186 146 58 146
    LREE/HREE 9.91 8.5 9.1 7.7 3.8 9.47
    (La/Yb)N 12.92 15.9 12.3 11 4.2 9.2
    Th/U 3.12 5.6 4.8 4.6 2.1 3.8
    Ti/Zr 1.28 6.74 15.3 19.7 56.8 15.8
    Rb/Sr 0.21 1.19 0.89 0.65 0.05 0.32
    Ba/Sr 1.43 4.7 3.8 3.55 0.95 1.57
      注:主量元素含量单位为%,稀土元素含量为10-6;构造环境特征参数据参考文献[16];上地壳值据参考文献[17]
    下载: 导出CSV

    表  3   阿布山组砂岩碎屑锆石LA-ICP-MS U-Th-Pb定年数据

    Table  3   Detrital zircon LA-ICP-MS U-Th-Pb dating results of Abushan Formation sandstone

    样品号 元素含量/10-6 Th/U 同位素比值 同位素年龄/Ma
    Pb Th U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 谐和度
    TG001-1 27.37 62.40 65.89 0.95 4.51 0.31 1732.53 1726.76 99%
    TG001-2 6.24 289.71 243.36 1.19 0.15 0.02 145.76 107.16 69%
    TG001-3 5.21 59.48 125.18 0.48 0.28 0.03 254.39 214.61 83%
    TG001-4 20.84 195.40 478.09 0.41 0.25 0.04 224.77 224.21 99%
    TG001-5 96.02 43.95 234.44 0.19 5.49 0.34 1899.22 1883.93 99%
    TG001-6 47.52 69.50 214.57 0.32 1.88 0.18 1073.00 1064.42 99%
    TG001-7 19.89 180.09 378.76 0.48 0.35 0.04 306.04 271.70 88%
    TG001-8 146.96 52.07 316.88 0.16 7.06 0.39 2118.83 2102.89 99%
    TG001-9 49.92 182.40 277.11 0.66 1.26 0.14 829.55 835.75 99%
    TG001-10 52.47 155.63 181.19 0.86 2.27 0.21 1204.06 1221.15 98%
    TG001-11 66.20 148.34 139.96 1.06 5.07 0.33 1830.38 1818.16 99%
    TG001-12 33.95 122.78 204.76 0.60 1.19 0.13 794.84 777.99 97%
    TG001-13 34.74 118.63 180.19 0.66 1.34 0.15 864.31 877.06 98%
    TG001-14 42.29 41.89 62.13 0.67 10.74 0.49 2500.89 2582.20 96%
    TG001-15 51.26 262.75 203.97 1.29 1.58 0.17 961.99 997.24 96%
    TG001-16 9.28 255.71 141.25 1.81 0.57 0.04 457.10 236.29 36%
    TG001-17 35.18 79.48 176.49 0.45 1.52 0.16 937.67 948.11 98%
    TG001-18 130.46 67.68 493.31 0.14 2.57 0.22 1293.01 1300.93 99%
    TG001-19 21.13 316.70 431.38 0.73 0.24 0.04 218.35 231.20 94%
    TG001-20 15.08 241.55 239.42 1.01 0.33 0.05 293.26 305.23 96%
    TG001-21 13.38 119.78 288.04 0.42 0.24 0.04 214.97 240.65 88%
    TG001-22 337.22 223.05 643.89 0.35 10.16 0.38 2449.58 2084.27 83%
    TG001-23 13.35 86.42 188.74 0.46 0.54 0.06 440.74 346.79 76%
    TG001-24 35.38 232.15 369.12 0.63 0.56 0.07 454.30 450.28 99%
    TG001-25 106.12 38.64 269.91 0.14 4.93 0.33 1807.39 1838.35 98%
    TG001-26 45.27 73.85 342.78 0.22 1.06 0.11 735.81 656.25 88%
    TG001-27 23.82 117.30 569.26 0.21 0.24 0.04 221.49 225.77 98%
    TG001-28 13.28 258.65 381.34 0.68 0.21 0.03 196.31 177.94 90%
    TG001-29 126.24 314.91 506.61 0.62 2.02 0.19 1120.95 1113.64 99%
    TG001-30 36.58 206.94 736.28 0.28 0.30 0.04 262.51 258.85 98%
    TG001-31 69.81 179.66 227.66 0.79 2.45 0.22 1256.84 1276.79 98%
    TG001-32 80.62 136.18 260.66 0.52 2.64 0.24 1312.31 1365.53 96%
    TG001-33 54.34 185.36 231.06 0.80 1.64 0.17 985.50 1012.97 97%
    TG001-34 154.59 83.50 380.16 0.22 4.72 0.33 1771.38 1820.36 97%
    TG001-35 27.66 297.67 646.32 0.46 0.25 0.03 222.72 209.13 93%
    TG001-36 42.06 134.79 203.09 0.66 1.41 0.15 891.25 923.74 96%
    TG001-37 8.60 168.87 434.59 0.39 0.10 0.02 98.94 100.39 98%
    TG001-38 12.99 68.99 134.66 0.51 0.59 0.07 469.61 454.11 96%
    TG001-39 11.12 247.02 474.35 0.52 0.11 0.02 110.18 119.38 91%
    TG001-40 47.17 43.76 286.50 0.15 1.24 0.14 816.75 823.18 99%
    TG001-41 60.73 175.37 329.20 0.53 1.22 0.14 810.16 839.53 96%
    TG001-42 6.93 45.78 36.57 1.25 1.16 0.12 781.36 748.68 95%
    TG001-43 92.40 168.06 320.13 0.52 2.72 0.22 1333.15 1306.19 97%
    TG001-44 17.04 521.08 752.23 0.69 0.12 0.02 112.51 106.76 94%
    TG001-45 95.63 171.92 670.39 0.26 1.03 0.11 718.16 699.23 97%
    TG001-46 4.27 44.42 69.24 0.64 0.50 0.04 414.97 272.29 58%
    TG001-47 41.01 457.37 367.29 1.25 0.54 0.07 441.42 428.21 96%
    TG001-48 81.01 172.40 406.60 0.42 1.52 0.16 937.67 934.35 99%
    TC005-1 5.15 91.23 200.35 0.46 0.18 0.02 172.26 123.32 66%
    TC005-2 28.84 92.49 227.64 0.41 0.77 0.11 582.61 657.93 87%
    TC005-3 10.24 156.06 221.20 0.71 0.66 0.03 517.29 181.43 93%
    TC005-4 4.56 194.44 211.24 0.92 0.15 0.02 142.43 106.53 71%
    TC005-5 178.61 169.96 295.38 0.58 9.50 0.46 2387.42 2445.26 97%
    TC005-6 187.76 182.38 280.21 0.65 11.09 0.50 2530.45 2601.67 97%
    TC005-7 10.68 86.36 53.23 1.62 1.40 0.13 887.61 783.57 87%
    TC005-8 80.99 288.87 448.85 0.64 1.33 0.14 857.17 852.79 99%
    TC005-9 19.22 36.95 94.46 0.39 1.78 0.17 1039.43 988.67 94%
    TC005-10 3.80 81.25 132.04 0.62 0.25 0.02 226.60 145.03 56%
    TC005-11 25.75 83.81 117.15 0.72 1.71 0.17 1010.62 993.07 98%
    TC005-12 130.05 115.20 228.21 0.50 8.63 0.42 2299.56 2259.77 98%
    TC005-13 185.36 118.19 612.99 0.19 4.54 0.26 1738.21 1469.92 83%
    TC005-14 126.06 139.24 194.60 0.72 9.72 0.46 2408.65 2453.59 98%
    TC005-15 50.07 82.82 104.11 0.80 6.28 0.31 2016.08 1743.07 85%
    TC005-16 32.60 391.34 522.96 0.75 1.15 0.03 775.07 212.12 85%
    TC005-17 59.61 200.05 338.79 0.59 1.24 0.14 817.69 833.94 98%
    TC005-18 32.13 389.48 188.60 2.07 0.78 0.10 587.91 597.07 98%
    TC005-19 27.44 192.39 289.58 0.66 0.55 0.07 447.93 442.91 98%
    TC005-20 85.79 55.61 314.32 0.18 2.71 0.23 1331.69 1335.93 99%
    TC005-21 78.92 141.96 315.06 0.45 2.19 0.21 1177.89 1217.23 96%
    TC005-22 23.80 122.12 254.82 0.48 0.79 0.07 589.08 425.65 67%
    TC005-23 25.30 184.15 195.28 0.94 0.79 0.09 592.99 565.00 95%
    TC005-24 17.31 153.83 394.76 0.39 0.29 0.03 261.09 219.31 82%
    TC005-25 13.21 64.05 103.87 0.62 0.70 0.10 536.88 601.28 88%
    TC005-26 12.67 247.30 355.64 0.70 0.18 0.03 171.58 166.43 96%
    TC005-27 15.61 303.54 505.85 0.60 0.14 0.02 131.20 150.83 86%
    TC005-28 165.74 295.91 842.74 0.35 1.36 0.16 870.97 950.56 91%
    TC005-29 3.88 77.85 151.40 0.51 0.19 0.02 173.27 127.82 69%
    TC005-30 81.45 162.08 159.74 1.01 4.93 0.34 1808.13 1898.06 95%
    TC005-31 36.42 97.26 202.08 0.48 1.15 0.14 778.60 826.65 94%
    TC005-32 11.63 242.93 490.77 0.50 0.13 0.02 121.19 114.65 94%
    TC005-33 19.82 81.71 162.13 0.50 0.76 0.10 575.01 594.60 96%
    TC005-34 85.75 9.01 547.89 0.02 1.32 0.14 855.76 820.02 95%
    TC005-35 172.06 211.22 1057.13 0.20 1.29 0.14 842.48 830.33 98%
    TC005-36 33.48 169.20 128.61 1.32 1.74 0.17 1024.16 1010.62 98%
    TC005-37 99.54 105.00 580.68 0.18 1.36 0.15 874.02 905.98 96%
    TC005-38 9.33 41.34 67.28 0.61 0.85 0.11 623.73 652.77 95%
    TC005-39 138.68 325.35 662.65 0.49 1.41 0.16 891.33 982.18 90%
    TC005-40 19.25 67.68 106.27 0.64 1.03 0.14 717.39 842.65 83%
    TC005-41 8.14 47.95 55.80 0.86 0.87 0.11 635.78 663.23 95%
    TC005-42 138.76 109.76 539.09 0.20 2.11 0.21 1153.05 1254.52 91%
    TC005-43 24.71 222.05 413.84 0.54 0.60 0.04 474.94 237.44 93%
    TC005-44 51.47 139.59 188.15 0.74 1.62 0.20 979.27 1149.20 84%
    TC005-45 47.42 537.73 359.14 1.50 0.74 0.08 564.49 474.69 82%
    TC005-46 47.77 82.47 535.55 0.15 0.42 0.08 355.18 489.34 68%
    TC005-47 18.50 206.13 225.19 0.92 0.80 0.05 596.07 292.28 91%
    TC005-48 8.15 147.61 207.00 0.71 0.51 0.02 415.89 153.83 98%
    TC005-49 14.63 105.93 288.51 0.37 0.23 0.04 208.89 263.60 76%
    TC005-50 150.62 212.45 502.07 0.42 2.40 0.25 1242.76 1446.87 84%
    TC005-51 130.73 160.37 844.45 0.19 1.23 0.15 813.42 880.19 92%
    TC005-52 31.70 159.03 126.26 1.26 1.49 0.17 928.28 1002.73 92%
    TC005-53 6.41 101.77 165.20 0.62 0.27 0.03 242.99 185.99 73%
    TC005-54 6.36 105.15 188.55 0.56 0.24 0.02 216.81 157.65 68%
    TC005-55 7.78 116.18 337.87 0.34 0.15 0.02 144.69 118.73 80%
    TC005-56 20.18 48.05 98.32 0.49 1.62 0.16 977.29 976.44 99%
    TC005-57 43.18 98.64 125.66 0.79 3.42 0.24 1508.45 1396.85 92%
    TC005-58 41.56 176.43 245.52 0.72 1.15 0.13 779.18 780.20 99%
    TC005-59 61.37 68.06 745.56 0.09 0.59 0.07 470.37 444.88 94%
    TC005-60 14.85 198.70 600.47 0.33 0.14 0.02 132.54 131.83 99%
    TC005-61 8.70 207.49 248.61 0.83 0.21 0.03 194.32 162.82 82%
    TC005-62 165.19 78.64 599.11 0.13 3.80 0.21 1591.92 1241.09 75%
    TC005-63 27.60 418.36 1023.06 0.41 0.16 0.02 148.96 135.19 90%
    TC005-64 51.51 36.24 71.00 0.51 14.09 0.39 2755.50 2114.90 73%
    TC005-65 19.62 331.88 625.64 0.53 0.39 0.02 334.79 116.88 93%
    TC005-66 35.44 90.40 270.36 0.33 0.82 0.11 610.22 647.60 94%
    TC005-67 98.53 190.78 264.91 0.72 4.30 0.26 1692.58 1509.20 88%
    TC005-68 183.28 350.55 844.60 0.42 1.59 0.17 966.30 1013.43 95%
    TC005-69 3.59 140.97 193.21 0.73 0.21 0.01 192.07 85.91 93%
    TC005-70 25.73 135.39 123.65 1.09 1.19 0.14 793.79 840.05 94%
    TC005-71 205.31 343.42 296.34 1.16 8.64 0.44 2300.71 2332.78 98%
    TC005-72 48.59 561.26 409.48 1.37 0.51 0.08 421.41 474.96 88%
    下载: 导出CSV

    表  4   羌塘盆地工作区部分前人碎屑锆石年龄及地质事件解释表

    Table  4   The explanation table about previous work of detrital zircon ages and geological events of study area in Qiangtang Basin workplace

    资料来源 样品类型 年龄组/Ma 地质解释
    [13] 绢云母石英糜棱片岩 509~548 羌塘地块与拉萨地块碰撞事件
    929~1126 新元古代超大陆碰撞拼合事件年龄
    1300~1372 羌塘结晶基底主期变质作用年龄
    2056~2432 羌塘变质结晶基底原岩年龄
    [24] 黑云母片麻岩 198~223 班-怒洋的打开与岩浆活动
    233~402 古特提斯洋的演化岩浆活动
    420~465 加里东造山运动
    522~645 羌塘地块与拉萨地块碰撞事件年龄
    1666~1780 羌塘结晶基底主期变质作用年龄
    2374~2498 太古代末全球超大陆拼合事件年龄
    [25] 石英岩 520~700 泛非构造岩浆热事件
    800~1100 格林威尔-晋宁构造岩浆热事件
    > 1200 变质基底早期年龄纪录
    [26] 石英砂岩 470~520 泛非运动晚期的岩浆热事件
    580~800 格林威尔-晋宁构造岩浆热事件
    950~1100 变质基底早期年龄记录
    本文 石英岩屑砂岩 90~230(120) 班-怒洋演化岩浆活动
    240~330 古特提斯洋演化岩浆活动
    410~430 加里东造山运动
    510~630 泛非构造岩浆热事件
    720~1200(830) 新元古代超大陆碰撞拼合事件年龄
    > 1200 变质基底早期年龄纪录(主变质年龄期在1280±60Ma左右)
    下载: 导出CSV
  • Wang C S, Li X H, Liu Z F, et al. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone[J]. Gondwana Research, 2011, 22(2): 415-433. http://www.deepdyve.com/lp/elsevier/revision-of-the-cretaceous-paleogene-stratigraphic-framework-facies-skWgy2U8TZ

    常承法, 郑锡澜, 潘裕生.喜马拉雅的地质发展历史构造带的划分和隆起原因探讨[M].北京:地质出版社, 1978: 108-175.

    Kapp P, Decelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geologic Society of American, 2007, 119(7/8): 917-932. https://www.researchgate.net/publication/234118793_Geological_records_of_the_Cretaceous_Lhasa-Qiangtang_and_Indo-Asian_collisions_in_the_Nima_basin_area_central_Tibet?ev=auth_pub

    Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geologic Society of American Bulletin, 2005, 117(7): 865-878. doi: 10.1130/B25595.1

    王立成, 魏玉帅.西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据[J].岩石学报, 2013, (3): 1039-1047. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303025.htm
    夏军, 钟华明, 童劲松, 等.藏北龙木错东部三岔口地区下奥陶统与泥盆系的不整合界面[J].地质通报, 2006, 25(1/2): 113-117. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1017.htm
    黄继均.藏北羌塘盆地构造特征及演化[J].中国区域地质, 2001, 20(2): 178-186. http://cdmd.cnki.com.cn/Article/CDMD-10697-2003097227.htm
    李才.羌塘基底质疑[J].地质论评, 2003, 49(1): 5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200301001.htm
    黄继均.羌塘盆地基底构造特征[J].地质学报, 2001, 75(3): 333-337. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200103009.htm

    Yue Y, Graham S A, Ritts B D, et al. Detrital zircon provenance evidence for large scale extrusion along the Altyn tagh fault[J]. Tectonophysics. 2005, 406(3/4): 165-178. https://www.researchgate.net/publication/229416181_Detrital_zircon_provenance_evidence_for_large-scale_extrusion_along_the_Altyn_Tagh_Fault

    Rainbird R H, Mcnicoll V J, Thériault R J, et al. Pan-contineral river system dranning Grenville Oregen record by U-Pb and SmNd geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada[J]. Journal of Geology, 1997, 105(1): 1-17. doi: 10.1086/606144

    Fedo C M, Eriksson K A. Stratigraphie framework of the-3.0Ga Buhwa Greenstone Belt:a unique stable-shelf sueeession in the Zimbabwe Archean Craton[J]. Precambrian Research, 1996, 77(3): 161-178. http://www.sciencedirect.com/science/article/pii/0301926895000534

    王成善, 伊海生, 林金辉.西藏羌塘盆地地质演化与油气远景评价[M].北京:地质出版社, 2001: 1-215.
    谭富文, 王剑, 丁俊, 等.青藏高原油气资源战略选区调查与评价[M].北京:地质出版社, 2009: 1-645.
    李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, (3): 531-543 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm

    Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. Geology, 1983, 91(6): 611-627. doi: 10.1086/628815

    Taylor S R, McLennan S M. The continenetal crust: Its composition and evolution[M]. Oxford: Balcwell Scientific, 1985.

    McLennan S M. Rare earth element in sedimentary rocks:Influence of provenance and sedimentary processes[C]//Linpin B R, Mckay G A. Geochemistry and Mineralogy of Rare Earth Elements. Review Mineralogy, 1989, 21: 169-200. https://www.researchgate.net/publication/303145235_Rare_earth_elements_and_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes

    Boynton W V. Geochemistry of the rare earth elements: metcoritestudies[C]//Henderson P. Rare earth element geochemistry. Elservier, 1984: 63-114.

    Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118. https://www.researchgate.net/publication/279710026_Provenance_and_depositional_setting_of_Paleozoic_chert_and_argillite_Sierra_Nevada_California

    Wronkiewicz D J, Condie K C. Geochemistry and provenance of sediments from the Pongola Supergroup, South africa:Evidence for a 3.0Ga old Continental craton[J]. Geochim Cosmochim Acta, 1989, 53: 1537-1549. doi: 10.1016/0016-7037(89)90236-6

    Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discrimiant function analysis of major-element data[J]. Chemical Geology, 1988, 67: 119-139. doi: 10.1016/0009-2541(88)90010-1

    Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society of London, 1987, 144: 531-542. doi: 10.1144/gsjgs.144.4.0531

    谭富文, 王剑, 付修根, 等.藏北羌塘盆地基底变质岩的错石SHRIMP年龄[J].岩石学报, 2009, 25(1): 139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901012.htm
    董春艳, 李才, 万渝生, 等.西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约[J].中国科学(D辑), 2011, (3): 299-308. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103003.htm
    杨耀, 赵中宝, 苑婷媛, 等.藏北羌塘奥陶纪平行不整合面的厘定及其构造意义[J].岩石学报, 2014, 30(8): 2381-2392. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408019.htm
    王国芝, 王成善.西藏羌塘基底变质岩系的解体和时代厘定[J].中国科学(D辑), 2001, 31(增刊): 77-82. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1011.htm
    多吉, 温存齐, 郭建慈, 等.西藏4.1Ga碎屑锆石年龄的发现[J].科学通报, 2007, 52(1): 19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701002.htm

    Kapp P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoic buleschist-bearing Qiangtang lmetamorphic belt, central Tibet[J]. Tectonic, 2003, 22: 1043-1068. doi: 10.1029/2002TC001383/citedby

    Pullen A, Kapp A, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the PaleoTethys Ocean[J]. Geology, 2008, 36: 351-354. doi: 10.1130/G24435A.1

    Leier A, Kppa P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Res., 2007, 19: 361-378. doi: 10.1111/bre.2007.19.issue-3

    Gehrels G E, Kapp P, Pullen A, et al. U-Pb basement and detrital zircon geochronology of the southern Tibetan Plateau and Tethyan Himalaya[J]. Geol. Soc. Amer. Abstract Programs. 2008, 40: 329. https://gsa.confex.com/gsa/2008AM/finalprogram/abstract_146790.htm

    李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1): 105-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801013.htm
    李才, 翟刚毅, 王立全, 等.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序)[J].地质通报, 2009, 28(9): 1169-1177. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200909002.htm
    吉林大学地质调查研究院. 1: 25万玛依岗日幅地质调查成果与进展[J].沉积与特提斯地质, 2005, 25(Z1): 51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1008.htm
    李才, 王天武.西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究[J].长春科技大学学报, 2000, 30(2): 1236-1243. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200002000.htm
    施建荣, 董永胜, 王云生.藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义[J].地质通报, 2009, 28(9): 1236-1243. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200909012.htm
    王剑, 汪正江, 陈文西, 等.藏北北羌塘盆地那底岗日组时代归属的新证据[J].地质通报, 2007, 26(4): 32-37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704004.htm
    翟庆国, 李才.藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J].地质学报, 2007, 81(6): 795-800. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706006.htm
    李才, 翟庆国, 陈文, 等.青藏高原羌塘中部榴辉岩Ar-Ar定年[J].岩石学报, 2006, 22: 2843-2849. doi: 10.3969/j.issn.1000-0569.2006.12.003
    邱瑞照, 周肃, 邓晋福, 等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3): 262-268. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200403003.htm
    史仁灯.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 2007, 52(2): 223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200702016.htm

    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1029. doi: 10.1029/2001TC001332/full

    曲晓明, 辛洪波, 杜德道, 等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J].地球化学, 2012, 41(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
    翟庆国, 李才, 王军, 等. 青藏高原羌塘中部中奥陶世片麻状花岗岩及其地质意义(内部资料). 2009.
图(8)  /  表(4)
计量
  • 文章访问数:  3068
  • HTML全文浏览量:  430
  • PDF下载量:  2067
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-06
  • 修回日期:  2017-06-04
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-06-30

目录

/

返回文章
返回