• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

北山地区发现与古亚洲洋打开相关的新元古代岩浆岩

王二腾, 翟新伟, 陈万峰, 武磊, 宋高瑞, 王金荣

王二腾, 翟新伟, 陈万峰, 武磊, 宋高瑞, 王金荣. 2025: 北山地区发现与古亚洲洋打开相关的新元古代岩浆岩. 地质通报, 44(1): 129-135. DOI: 10.12097/gbc.2022.10.022
引用本文: 王二腾, 翟新伟, 陈万峰, 武磊, 宋高瑞, 王金荣. 2025: 北山地区发现与古亚洲洋打开相关的新元古代岩浆岩. 地质通报, 44(1): 129-135. DOI: 10.12097/gbc.2022.10.022
Wang E T, Zhai X W, Chen W F, Wu L, Song G R, Wang J R. Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area. Geological Bulletin of China, 2025, 44(1): 129−135. DOI: 10.12097/gbc.2022.10.022
Citation: Wang E T, Zhai X W, Chen W F, Wu L, Song G R, Wang J R. Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area. Geological Bulletin of China, 2025, 44(1): 129−135. DOI: 10.12097/gbc.2022.10.022

北山地区发现与古亚洲洋打开相关的新元古代岩浆岩

基金项目: 科技部核设施退役治理专项资助科研项目《北山地下实验室场址深部地质构造特征及成因机理研究(第一阶段)》(编号:科工二司【2020】194号)、第二次青藏高原科学研究考察《活动断裂与地震灾害》(编号:2019QZKK0901) 和中央高校基本科研业务费《北山新场花岗岩类成因及构造机制》(编号:lzujbky-2023-it17)
详细信息
    作者简介:

    王二腾(1997− ),男,在读博士生,从事岩石大地构造研究。E−mail:wanget19@lzu.edu.cn

    通讯作者:

    翟新伟(1976− ),男,博士,副教授,从事构造地质学教学研究工作。E−mail:zhaixw926@lzu.edu.cn

    王金荣(1957− ),男,博士,教授,从事岩石学与大地构造教学研究工作。E−mail:jrwang@lzu.edu.cn

  • 中图分类号: P534.3; P588.1

Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area

  • 摘要:
    研究目的 

    中亚造山带南缘北山地区分布的前寒武系岩石对研究古亚洲洋的形成演化及成矿具有重要的价值,但北山地区与古亚洲洋打开相关的岩浆证据发现极少,北山红山铁矿的形成时代也缺少精确的同位素年代学约束。

    研究方法 

    基于此,在野外调查的基础上,对研究区新发现的新元古代岩浆岩开展了锆石U−Pb年代学和地球化学研究。

    研究结果 

    北山地区中部独红山辉长岩和与红山铁矿相关的安山质凝灰岩年龄分别为765 Ma 和756 Ma,且辉长岩地球化学特征具有板内(大陆)裂谷构造背景。

    结论 

    结合已有研究和区域构造演化,认为古亚洲洋南段在北山地区打开的时限不早于765 Ma,北山红山铁矿形成于南华纪(756 Ma)。

    Abstract:
    Objective 

    Precambrian rocks distributed in the Beishan area, located in the southern Central Asian Orogenic Belt, is significant for the study of the formation of the Paleo−Asian Ocean (PAO) and its associated mineralization. However, there are no constraints on the magmatism related to opening of PAO, and there is a lack of accurate chronological data regarding the formation of the Hongshan Iron Ore (HIO) deposits in the Beishan area.

    Methods 

    We present the results of field investigations, zircon U−Pb dating, and geochemical analyses of the gabbro and andesitic tuff found in the central Beishan area.

    Results 

    The new U−Pb dating results reveal the crystallization ages of the gabbro and andesitic tuff crystallized at 765 Ma, 756 Ma, respectively. The geochemical composition of the gabbro is indicative of an intraplate rift setting, suggesting a continental tectonic environment during its formation.

    Conclusions 

    Integrating our findings with previous studies, we infer that the southern PAO had opened before 765 Ma in the Beishan area. Additionally, we conclude that the HIO formation occurred during the Nanhuanian Period (756 Ma).

    创新点

    古亚洲洋南段在中亚造山南缘北山地区打开的时限不早于765 Ma。

  • 罗迪尼亚(Rodinia)超大陆在新元古代汇聚-裂解,形成古亚洲洋,其演化过程中伴随的岩浆-构造活动及成矿作用是首要解决的科学问题。北山地区位于中亚造山带南缘中段(图1−a),发育大量与罗迪尼亚超大陆汇聚相关的新元古代中期岩浆活动(905~870 Ma)和与大洋俯冲-闭合相关的古生代岩浆活动(姜洪颖等,2013; 叶晓峰等,2013; Liu et al., 2015; 牛文超等,2019; Xiao et al., 2010; Wang et al., 2021;李沅柏等,2021),被视为研究罗迪尼亚超大陆汇聚-裂解和古亚洲洋打开-扩张-俯冲-关闭的重要地区。但由于前寒武纪地层、构造、岩浆岩等遭受后期古生代岩浆-构造热事件强烈的叠加和破坏,北山地区保留的前寒武纪岩石较少(图1−b)。因此,北山地区很少发现与罗迪尼亚超大陆裂解,即古亚洲洋打开相关的岩浆岩证据,致使该区关于古亚洲洋的形成时限及机制研究存在很大的空白。另外,位于北山地区的红山铁矿是与火山活动有关的大型浅海相沉积变质型铁矿(左国朝等,2010),因测年介质的匮乏,其具体形成年代主要依据区域地层对比,缺乏精确的同位素年龄,制约了该矿床的成因研究。针对上述2个问题,本文基于野外调查,对北山地区中部(图1−b)新发现的新元古代中期独红山(红山铁矿区域)辉长岩和位于红山铁矿4矿区的赋矿围岩安山质凝灰岩(图版Ⅰ)开展锆石U−Pb测年和地球化学研究,为研究古亚洲洋的演化时限和完善北山地区前寒武纪构造演化过程提供新的岩石学约束。

    图  1  北山地区大地构造位置图(a)和前寒武纪岩石分布地质简图 (b)(据Xiao et al., 2010修改)
    ① —红石山蛇绿岩带;②—明水-小黄山蛇绿岩带;③—红柳河-牛圈子-洗肠井蛇绿岩带;④—辉铜山-账房山蛇绿岩带
    Figure  1.  Tectonic map (a) and simplified geological map of the distribution of Precambrian rocks (b) in the Beishan area
    a.辉长岩野外露头;b.辉长结构;c.辉长岩显微照片,由斜长石(Pl)、辉石(Cpx)和角闪石(Am)组成;d.安山质凝灰岩露头;e.杏仁状气孔结构;f.火山碎屑岩和斜长石斑晶组成凝灰结构

    本文在野外调查的基础上,对辉长岩中斜锆石、安山质凝灰岩中锆石使用LA−ICP−MS进行U−Pb同位素分析。斜锆石分析在中国地质调查局西安地质调查中心国土资源岩浆成矿与找矿重点实验室完成,锆石和辉长岩地球化学分析在兰州大学甘肃省西部矿产资源重点实验室完成。斜锆石分析使用斜锆石标样Phalaborwa(PHA)用于外标,计算同位素分馏效应和质量漂移,利用BUSTER软件进行校正计算,未对数据进行普通铅校正。锆石采用91500和NIST610标样分别作为外部标准样和元素含量的外标样,分析结果见表1

    表  1  LA−ICP−MS辉长岩(22NH1)斜锆石和安山质凝灰岩(22NA1)锆石U−Th−Pb分析结果
    Table  1.  LA–ICP–MS baddeleyite and zircon U−Th−Pb dating results of gabbro (22NH1) and andesitic tuff (22NA1)
    样品点 同位素比值 年龄/Ma Th/U
    207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    22NH1-1 1.117129 0.067129 0.121764 0.002376 760 33 741 14
    22NH1-2 1.264123 0.119984 0.130855 0.006655 827 53 792 38
    22NH1-3 1.121016 0.071244 0.118706 0.005253 761 35 723 30
    22NH1-4 1.192607 0.104843 0.129957 0.007484 793 47 787 43
    22NH1-5 1.159991 0.108900 0.128444 0.005101 776 52 779 29
    22NH1-6 1.196924 0.089732 0.126729 0.004735 795 41 769 27
    22NH1-7 1.222216 0.085535 0.127834 0.005236 809 38 775 30
    22NH1-8 1.183342 0.082417 0.126931 0.006272 791 38 770 36
    22NH1-9 1.147928 0.043166 0.123183 0.004378 775 20 749 25
    22NH1-10 1.171261 0.053922 0.127390 0.005529 787 26 773 32
    22NH1-11 1.218945 0.062680 0.132010 0.004891 807 29 799 28
    22NH1-12 1.158849 0.055603 0.129926 0.003349 779 26 787 19
    22NH1-13 1.487374 0.108175 0.134216 0.006542 922 44 812 37
    22NH1-14 1.079578 0.040262 0.123204 0.003824 743 20 749 22
    22NH1-15 1.171701 0.043205 0.124850 0.005035 787 20 758 29
    22NH1-16 1.403479 0.168475 0.128608 0.007667 886 69 780 44
    22NH1-17 1.206492 0.090860 0.129735 0.006194 801 42 786 35
    22NH1-18 1.148425 0.042905 0.124176 0.004229 776 20 755 24
    22NH1-19 1.128534 0.073536 0.127147 0.003716 763 36 771 21
    22NH1-20 1.188456 0.038565 0.122574 0.005935 795 18 745 34
    22NH1-21 1.163731 0.080875 0.123863 0.004524 783 37 753 26
    22NH1-22 1.191809 0.065867 0.122917 0.003866 796 31 747 22
    22NH1-23 1.219003 0.063952 0.130849 0.004897 808 30 793 28
    22NH1-24 1.190767 0.062231 0.130884 0.004749 796 29 793 27
    22NH1-25 1.285008 0.098125 0.128891 0.012415 838 45 781 71
    22NA1-1 1.10282 0.0302 0.12728 0.00288 772 16 755 15 1.61
    22NA1-2 1.09354 0.03944 0.11706 0.00287 714 17 750 19 2.22
    22NA1-3 1.16855 0.03693 0.12875 0.00344 781 20 786 17 1.14
    22NA1-4 1.10348 0.04122 0.12922 0.00357 783 20 755 20 1.32
    22NA1-5 1.12034 0.04114 0.11879 0.00337 724 19 763 20 2.44
    22NA1-6 1.08198 0.05187 0.11896 0.00381 725 22 745 25 2.70
    22NA1-7 1.14455 0.04978 0.12886 0.00437 781 25 775 24 1.69
    22NA1-8 1.74539 0.08037 0.17203 0.00603 1023 33 1025 30 2.00
    22NA1-9 1.21976 0.07509 0.13254 0.00563 802 32 810 34 2.44
    22NA1-10 1.12936 0.08245 0.12381 0.00552 752 32 767 39 6.25
    22NA1-11 1.85548 0.1267 0.16654 0.0077 993 43 1065 45 2.50
    22NA1-12 1.16807 0.08771 0.13138 0.00637 796 36 786 41 1.92
    22NA1-13 3.05115 0.29745 0.24721 0.01398 1424 72 1421 75 1.35
    22NA1-14 4.55978 0.51783 0.31674 0.01904 1774 93 1742 95 1.43
    22NA1-15 4.43174 0.54698 0.30534 0.01944 1718 96 1718 102 1.89
    22NA1-16 5.58515 0.78992 0.34394 0.02334 1906 112 1914 122 1.61
    下载: 导出CSV 
    | 显示表格

    辉长岩体与寒武系双鹰山组和奥陶系罗雅楚山组呈断层接触,岩体主要由辉长岩组成(图版Ⅰ−a)。辉长岩为灰绿色,中细粒辉长结构(图版Ⅰ−b),块状构造,主要由辉石、角闪石和斜长石组成,部分辉石被角闪石和斜长石交代(图版Ⅰ−c)。辉长岩中斜锆石呈短柱状,阴极发光(CL)图像见岩浆振荡环带(图2−a)。25颗斜锆石颗粒(22NH1)的206Pb/238U年龄为812 ± 37~741 ± 14 Ma,其年龄加权平均值为765 ± 10 Ma(MSWD=0.66)(图2−a),代表辉长岩的形成时代为新元古代。辉长岩具低SiO2(47.22%~50.24%)、K2O(0.19%~0.99%)和Na2O(1.43%~2.70%)含量,高CaO(11.57%~12.28%)、MgO(8.06%~8.31%)和TFe2O3(11.50%~11.63%)含量,属于钙碱性拉斑玄武岩系列。岩石亏损Rb、Nb、Ta 和Ti,富集Th和U(图3),Th/Hf值为0.14~0.15,具有大陆板内玄武岩特征,形成于板内(大陆)裂谷构造背景(图4)。

    图  2  辉长岩斜锆石(a)和安山质凝灰岩(b)锆石U−Pb年龄图
    Figure  2.  U−Pb concordia diagrams for the baddeleyite of gabbro (a) and zircon of andesitic tuff (b)
    图  3  辉长岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准数据据Sun et al., 1989
    Figure  3.  Chondrite-normalized rare earth element patterns (a) and primitive mantle normalized trace elements diagrams (b) for gabbro
    图  4  辉长岩Ta/Hf−Th/Hf图解
    Figure  4.  Ta/Hf−Th/Hf diagram of gabbro

    安山岩质凝灰岩与奥陶系罗雅楚山组呈断层接触。岩石为灰黑色,细粒凝灰结构,块状构造(图版Ⅰ−d),见杏仁状气孔结构(图版Ⅰ−e),主要由火山碎屑(75%)和斜长石(25%)组成凝灰结构(图版Ⅰ−f)。安山质凝灰岩中锆石(22NA1)为短柱状,CL图见岩浆振荡环带(图2−b),Th/U值为1.14 ~ 6.25,属于岩浆锆石。其中6颗206Pb/238U年龄大于1000 Ma,为捕获锆石,其余10颗锆石的206Pb/238U年龄在810 ± 34 ~ 745 ± 25 Ma之间,年龄加权平均值为756 ± 23 Ma(MSWD = 2.2)(图2−b),指示安山质凝灰岩形成于新元古代。

    北山地区蛇绿岩带的研究表明,古亚洲洋于早寒武世开始发生俯冲消减(Cleven et al., 2015),广泛发育的中酸性、双峰式晚古生代岩浆活动标志着古亚洲洋在晚古生代消亡(Zheng et al., 2020)。说明北山地区在前寒武纪处于拉伸阶段,即大洋在前寒武纪以前已经形成,具体的形成时限仅为最近报道的形成于765 Ma的A1型花岗岩 (卜涛等,2022),并未发现其他的年龄数据。而本文报道的北山地区牛圈子辉长岩和安山质凝灰岩年龄分别为765 Ma和756 Ma。辉长岩地球化学具有拉斑玄武岩特征,形成于板内(大陆)裂谷构造背景(图4),指示可能与罗迪尼亚超大陆的裂解相关,说明北山地区发育一套与古亚洲洋打开相关的新元古代岩浆活动和火山碎屑岩。

    研究表明,古亚洲洋的形成是罗迪尼亚超大陆裂解以后的产物。而罗迪尼亚超大陆的汇聚-裂解于1300 ~ 900 Ma在全球范围内开始,中亚地区广泛发育的碱性火山岩、双峰式火山岩等是罗迪尼亚超大陆裂解的直接证据(Wan et al., 2018)。在新元古代中期(约850 Ma)—寒武纪,罗迪尼亚超大陆在中亚地区处于由裂谷扩张为古亚洲洋阶段(Li et al., 2008)。根据已报道的研究,中亚造山带南缘塔里木、柴达木、敦煌-阿拉善地块及华北地块中保存有大量的新元古代岩浆、变质记录,这些事件被认为是这些地块参与到新元古代罗迪尼亚超大陆汇聚-裂解的直接证据(He et al., 2018; Huang et al., 2022; Zheng et al., 2022),如中亚造山带南缘天山发育的900 Ma左右的岩浆事件,华北克拉通835 Ma的板内拉斑辉长岩及苏鲁超高压变质体原岩记录的扬子板块780 Ma的裂解事件(Xu et al., 2005; 许志琴等,2006; 朱强等,2018)。

    北山地区位于中亚造山带南缘中段,西接天山造山带,保留了较多的前寒武纪微陆块,特别是新元古代岩浆活动较发育,是研究古亚洲洋打开-扩张的重要区域。北山地区已报道的新元古代岩浆活动有柳园花岗岩(902 Ma)、古堡泉正片麻岩(905~871 Ma)、红石山花岗片麻岩(885 Ma)、花牛山花岗片麻岩(900~890 Ma)、双鹰山花岗片麻岩(895~894 Ma)和黑云母二长花岗岩(892 Ma)及A2型流纹岩(870 Ma),这些新元古代中期岩浆活动均形成于碰撞-后碰撞构造背景(姜洪颖等,2013; 叶晓峰等,2013; Liu et al., 2015; 牛文超等,2019; Wang et al., 2021; 李沅柏等,2021)。说明北山地区在905 ~ 870 Ma处于陆-陆碰撞阶段,而这些岩浆活动可能是罗迪尼亚超大陆在北山地区汇聚-裂解的响应。另外,北山地区明水的784 Ma与陆内裂谷有关的A1型花岗岩,是北山地区发现的最早响应罗迪尼亚超大陆裂解的花岗岩浆记录(卜涛等,2022)。在北山地区红石山埃达克岩中发现的748 Ma岩浆锆石和在中亚造山带南缘塔里木、天山发现的755~740 Ma裂谷型岩浆活动(Su et al., 2011; 杨鑫等,2017),可能与本文报道的辉长岩和安山质凝灰岩指示同一期构造事件,即古亚洲洋的打开。此外,在北山地区中部独红山、洗肠井一带广泛发育一套新元古代中期的火山碎屑沉积建造(余吉远等,2012),指示区域上也处于大陆裂解构造背景。

    因此,笔者认为,北山地区在约870 Ma处于罗迪尼亚超大陆的汇聚-裂解转换阶段,765 Ma前古亚洲洋已经打开,发育一系列裂谷型岩浆活动,处于威尔逊旋回的胚胎期。同时,北山红山铁矿赋矿围岩安山质凝灰岩年龄为756 Ma,也说明北山地区红山铁矿形成时代为南华纪(756 Ma),指示成矿构造背景可能与古亚洲洋打开有关。

    (1)北山地区发现的新元古代牛圈子辉长岩和安山质凝灰岩的LA−ICP−MS斜锆石和锆石年龄分别为765 Ma和756 Ma。

    (2)辉长岩地球化学特征具有板内裂谷背景下的拉斑玄武质岩浆性质。结合区域构造演化,古亚洲洋南段在北山地区打开时限不早于765 Ma。

    (3)北山红山铁矿形成于南华纪。

    致谢:对中国地质调查局西安地质调查中心汪双双高级工程师在斜锆石LA−ICP−MS测试,以及审稿专家对文章提出的宝贵修改意见表示诚挚的感谢。

  • 图  1   北山地区大地构造位置图(a)和前寒武纪岩石分布地质简图 (b)(据Xiao et al., 2010修改)

    ① —红石山蛇绿岩带;②—明水-小黄山蛇绿岩带;③—红柳河-牛圈子-洗肠井蛇绿岩带;④—辉铜山-账房山蛇绿岩带

    Figure  1.   Tectonic map (a) and simplified geological map of the distribution of Precambrian rocks (b) in the Beishan area

    图  2   辉长岩斜锆石(a)和安山质凝灰岩(b)锆石U−Pb年龄图

    Figure  2.   U−Pb concordia diagrams for the baddeleyite of gabbro (a) and zircon of andesitic tuff (b)

    图  3   辉长岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准数据据Sun et al., 1989

    Figure  3.   Chondrite-normalized rare earth element patterns (a) and primitive mantle normalized trace elements diagrams (b) for gabbro

    图  4   辉长岩Ta/Hf−Th/Hf图解

    Figure  4.   Ta/Hf−Th/Hf diagram of gabbro

    表  1   LA−ICP−MS辉长岩(22NH1)斜锆石和安山质凝灰岩(22NA1)锆石U−Th−Pb分析结果

    Table  1   LA–ICP–MS baddeleyite and zircon U−Th−Pb dating results of gabbro (22NH1) and andesitic tuff (22NA1)

    样品点 同位素比值 年龄/Ma Th/U
    207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    22NH1-1 1.117129 0.067129 0.121764 0.002376 760 33 741 14
    22NH1-2 1.264123 0.119984 0.130855 0.006655 827 53 792 38
    22NH1-3 1.121016 0.071244 0.118706 0.005253 761 35 723 30
    22NH1-4 1.192607 0.104843 0.129957 0.007484 793 47 787 43
    22NH1-5 1.159991 0.108900 0.128444 0.005101 776 52 779 29
    22NH1-6 1.196924 0.089732 0.126729 0.004735 795 41 769 27
    22NH1-7 1.222216 0.085535 0.127834 0.005236 809 38 775 30
    22NH1-8 1.183342 0.082417 0.126931 0.006272 791 38 770 36
    22NH1-9 1.147928 0.043166 0.123183 0.004378 775 20 749 25
    22NH1-10 1.171261 0.053922 0.127390 0.005529 787 26 773 32
    22NH1-11 1.218945 0.062680 0.132010 0.004891 807 29 799 28
    22NH1-12 1.158849 0.055603 0.129926 0.003349 779 26 787 19
    22NH1-13 1.487374 0.108175 0.134216 0.006542 922 44 812 37
    22NH1-14 1.079578 0.040262 0.123204 0.003824 743 20 749 22
    22NH1-15 1.171701 0.043205 0.124850 0.005035 787 20 758 29
    22NH1-16 1.403479 0.168475 0.128608 0.007667 886 69 780 44
    22NH1-17 1.206492 0.090860 0.129735 0.006194 801 42 786 35
    22NH1-18 1.148425 0.042905 0.124176 0.004229 776 20 755 24
    22NH1-19 1.128534 0.073536 0.127147 0.003716 763 36 771 21
    22NH1-20 1.188456 0.038565 0.122574 0.005935 795 18 745 34
    22NH1-21 1.163731 0.080875 0.123863 0.004524 783 37 753 26
    22NH1-22 1.191809 0.065867 0.122917 0.003866 796 31 747 22
    22NH1-23 1.219003 0.063952 0.130849 0.004897 808 30 793 28
    22NH1-24 1.190767 0.062231 0.130884 0.004749 796 29 793 27
    22NH1-25 1.285008 0.098125 0.128891 0.012415 838 45 781 71
    22NA1-1 1.10282 0.0302 0.12728 0.00288 772 16 755 15 1.61
    22NA1-2 1.09354 0.03944 0.11706 0.00287 714 17 750 19 2.22
    22NA1-3 1.16855 0.03693 0.12875 0.00344 781 20 786 17 1.14
    22NA1-4 1.10348 0.04122 0.12922 0.00357 783 20 755 20 1.32
    22NA1-5 1.12034 0.04114 0.11879 0.00337 724 19 763 20 2.44
    22NA1-6 1.08198 0.05187 0.11896 0.00381 725 22 745 25 2.70
    22NA1-7 1.14455 0.04978 0.12886 0.00437 781 25 775 24 1.69
    22NA1-8 1.74539 0.08037 0.17203 0.00603 1023 33 1025 30 2.00
    22NA1-9 1.21976 0.07509 0.13254 0.00563 802 32 810 34 2.44
    22NA1-10 1.12936 0.08245 0.12381 0.00552 752 32 767 39 6.25
    22NA1-11 1.85548 0.1267 0.16654 0.0077 993 43 1065 45 2.50
    22NA1-12 1.16807 0.08771 0.13138 0.00637 796 36 786 41 1.92
    22NA1-13 3.05115 0.29745 0.24721 0.01398 1424 72 1421 75 1.35
    22NA1-14 4.55978 0.51783 0.31674 0.01904 1774 93 1742 95 1.43
    22NA1-15 4.43174 0.54698 0.30534 0.01944 1718 96 1718 102 1.89
    22NA1-16 5.58515 0.78992 0.34394 0.02334 1906 112 1914 122 1.61
    下载: 导出CSV
  • Bu T, Wang G Q, Huang B T, et al. 2022. Neoproterozoic A−type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break−up[J]. Acta Petrologica Sinica, 38(10): 2988−3002 (in Chinese with English abstract).

    Cleven N, Lin S, Guilmette C, et al. 2015. Petrogenesis and implications for tectonic setting of Cambrian suprasubduction−zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J]. Journal of Asian Earth Sciences, 113: 369−390.

    He Z Y, Klemd L, Zhang M, et al. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 185: 1−14.

    Huang B, Wang X, Li T, et al. 2022. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks[J]. Precambrian Research, 376: 106686.

    Jiang H Y, He Z Y, Zong K Q, et al. 2013. Zircon U−Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica, 29(11): 3949−3967 (in Chinese with English abstract).

    Li Y B, Li H Q, Zhou W X, et al. 2021. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 40(7): 1117−1139 (in Chinese with English abstract).

    Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break−up history of Rodinia: A synthesis[J]. Precambrian Research, 160(1/2): 179−210.

    Liu Q, Zhao G, Sun M, et al. 2015. Ages and tectonic implications of Neoproterozoic ortho− and parageneses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 266: 551−578.

    Niu W C, Ren B F, Ren Y W, et al. 2019. Neoproterozoic Magmatic Records in the North Beishan Orogenic Belt: Evidence of the Gneissic Granites from the Hazhu area, Inner Mongolia[J]. Earth Science, 44(1): 284−297 (in Chinese with English abstract).

    Su B X, Qin K Z, Sakyi P A, et al. 2011. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 41: 31−43.

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Wan B, Li S, Xiao W, et al. 2018. Where and when did the Paleo−Asian Ocean form?[J]. Precambrian Research. 317: 241−252.

    Wang B, Yang X, Li S, et al. 2021. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research, 352: 106016.

    Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553−1594.

    Xu B, Jian P, Zheng H, et al. 2005. U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciation[J]. Precambrian Research, 136: 107−123.

    Xu Z Q, Liu L L, Qi X X, et al. 2006. Record for Rodinia supercontinent breakup event in the south Sulu ultra−high pressure metamorphic terrane[J]. Acta Petrologica Sinica, 22(7): 1745−1760 (in Chinese with English abstract).

    Yang X, Xu X H, Li H L, et al. 2017. Early Neoproterozoic tectonie framework of north margin of Tarim Basin, constraints from zircon U−Pb geochronology and geochemistry[J]. Geotectonica et Metallogenia, 41(2): 381−395 (in Chinese with English abstract).

    Ye X X, Zong K Q, Zhang Z M, et al. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China, 32(2/3): 307−317 (in Chinese with English abstract).

    Yu J Y, Li X M, Liang J W, et al. 2012. Evolution of the geological structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region: Constraints on the timing of opening and closing of the Beishan Paleozoic Oceanic Basin[J]. Xinjiang Geology, 30(2): 205−209 (in Chinese with English abstract).

    Zheng R, Li J, Xiao W, et al. 2022. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang–Alxa Block, northwest China[J]. GSA Bulletin, 135(5/6): 1109−1126.

    Zheng R, Li J, Zhang J, et al. 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high−Mg diorite in the southern Beishan[J]. Lithos, 358/359: 105406.

    Zhu Q, Zheng Z X, Li T B, et al. 2018. Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Mountain[J]. Geological Bulletin of China, 37(6): 1075−1086 (in Chinese with English abstract).

    Zuo G C, Liu Y K, Li S X. 2010. Metallogenesis and mechanism of Hongshan Iron deposit in Beishan region of Gansu Province[J]. Gansu Geology, 19(3): 9−18 (in Chinese with English abstract).

    卜涛, 王国强, 黄博涛, 等. 2022. 北山北带新元古代 A 型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 38(10): 2988−3002.
    姜洪颖, 贺振宇, 宗克清, 等. 2013. 北山造山带南缘北山杂岩的锆石U−Pb定年和Hf同位素研究[J]. 岩石学报, 29(11): 3949−3967.
    李沅柏, 李海泉, 周文孝, 等. 2021. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 40(7): 1117−1139.
    牛文超, 任邦方, 任云伟, 等. 2019. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 44(1): 284−297.
    许志琴, 刘福来, 戚学祥, 等. 2006. 南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录[J]. 岩石学报, (7): 1745−1760.
    杨鑫, 徐旭辉, 李慧莉, 等. 2017. 塔里木北缘新元古代早期构造演化的锆石U−Pb年代学和地球化学约束[J]. 大地构造与成矿学, 41(2): 381−395.
    叶晓峰, 宗克清, 张泽明, 等. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 32(2/3): 307−317.
    余吉远, 李向民, 梁积伟, 等. 2012. 甘新蒙北山地区古生代构造演化研究——北山古生代洋盆开启、闭合时限最新进展[J]. 新疆地质, 30(2): 205−209.
    朱强, 曾佐勋, 李天斌, 等. 2018. 华北克拉通对Rodinia超大陆裂解的响应——来自贺兰山北段小松山地区辉长岩地球化学、年代学及Hf同位素的新证据[J]. 地质通报, 37(6): 1075−1086.
    左国朝, 刘义科, 李绍雄. 2010. 甘肃北山地区红山铁矿床成因及成矿机制[J]. 甘肃地质, 19(3): 9−18.
图(5)  /  表(1)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  233
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-02-07
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回