Processing math: 33%
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

北山造山带增生造山过程

宋东方, 肖文交, 曾浩, 毛启贵, 敖松坚

宋东方, 肖文交, 曾浩, 毛启贵, 敖松坚. 2024: 北山造山带增生造山过程. 地质通报, 43(12): 2131-2150. DOI: 10.12097/gbc.2024.09.040
引用本文: 宋东方, 肖文交, 曾浩, 毛启贵, 敖松坚. 2024: 北山造山带增生造山过程. 地质通报, 43(12): 2131-2150. DOI: 10.12097/gbc.2024.09.040
Song D F, Xiao W J, Zeng H, Mao Q G, Ao S J. Accretionary orogenic processes of the Beishan orogenic belt. Geological Bulletin of China, 2024, 43(12): 2131−2150. DOI: 10.12097/gbc.2024.09.040
Citation: Song D F, Xiao W J, Zeng H, Mao Q G, Ao S J. Accretionary orogenic processes of the Beishan orogenic belt. Geological Bulletin of China, 2024, 43(12): 2131−2150. DOI: 10.12097/gbc.2024.09.040

北山造山带增生造山过程

基金项目: 国家自然科学基金项目《增生造山作用》(批准号:42222210)、《大陆演化与季风系统演变》(批准号:42488201)及中国科学院青年创新促进会项目(编号:2021062)
详细信息
    作者简介:

    宋东方(1986− ),男,博士,研究员,大地构造学专业。E−mail:dfsong@mail.iggcas.ac.cn

  • 中图分类号: P54; P58

Accretionary orogenic processes of the Beishan orogenic belt

  • 摘要:

    北山造山带位于中亚造山带南缘中段,处于东西向构造衔接的关键大地构造位置。近年来,北山造山带构造演化成为研究热点,在基底时代与构造属性、岩浆岩成因、蛇绿岩时代与构造背景、沉积物源与大地构造背景、构造变形样式与时限等方面取得了重要进展。本文以这些新进展为主线,总结北山造山带各构造单元的基本特征,梳理岩浆作用时空格架和蛇绿混杂岩时代,在此基础上探讨北山增生造山过程。北山造山带前寒武纪岩浆记录为零星分布的中元古代(约1.4 Ga)及新元古代(0.9~0.8 Ga)花岗片麻岩,不存在大规模的前寒武纪结晶基底;早古生代—早中生代发育连续的岩浆作用。蛇绿岩时代具有从中部寒武纪—奥陶纪向南北两侧石炭纪—二叠纪变年轻的特点,最终的缝合带位于柳园—后红泉一带,基性岩时代和最年轻的沉积岩基质时代共同限定了最终的增生拼贴时代为中—晚三叠世。北山造山带从中元古代开始位于超大陆外围增生边缘,此后经历了新元古代和古生代的长期增生,在三叠纪完成了最终的增生造山过程并进入陆内演化阶段。增生造山过程中幔源岩浆形成岛弧新生地壳、增生楔和岛弧侧向拼贴增生,对大陆生长具有重要意义。

    Abstract:

    The Beishan orogenic belt is located in the middle of the southern margin of the Central Asian orogenic belt, and is at the key tectonic position of the east−west tectonic connection. In recent years, the tectonic evolution of Beishan has become a research focus, and important progress has been made in the aspects of orogenic basement, magmatism, ophiolitic mélanges, sedimentation, and deformation. This paper focuses on recent advances and summarizes the basic characteristics of each tectonic unit of Beishan, particularly the spatial−temporal distribution of magmatism and ophiolitic mélanges, and discusses the accretionary processes of Beishan. The Precambrian magmatic records are scattered Mesoproterozoic (Ca. 1.4 Ga) and Neoproterozoic (Ca. 0.9~0.8 Ga) gneissic granitoids, and there is no large−scale Precambrian basement in Beishan. Continuous magmatism developed from Early Paleozoic to Early Mesozoic across Beishan. The ophiolitic mélanges changed from Cambrian–Ordovician in the middle to Carboniferous–Permian in the north and south, and the final suture zone is located in the Liuyuan–Houhongquan area in southern Beishan. The ages of mafic rocks and the youngest sedimentary matrix jointly define the age for terminal accretion as the Middle–Late Triassic. Beishan was located at the margin of supercontinent from the Mesoproterozoic, and then experienced long−term accretion in Neoproterozoic and Paleozoic, and terminated accretionary orogeny and shifted to intracontinental evolution in Triassic. The accretion of mantle−derived arc magmatism and growth of accretionary wedges are of great significance to continental growth during the long−lived accretionary orogenesis.

  • 进入新世纪以来,中国面临城镇化进程的跨越。党的十九大报告提出实施区域协调发展战略,要求“以城市群为主体构建大中小城市和小城镇协调发展的城镇格局”,新型城镇化建设进入新时期。城市不断建设和扩张,建设用地、工业用地增长的同时,侵蚀着耕地、水域、草地等。安庆市是快速发展的长三角区域的城市之一,多年来城市地区人类活动剧烈,原始地貌改变众多,地表覆被严重,给城市勘察带来众多困难。其中一个典型问题为,原有的地表河浜可能由于各种原因被填埋形成暗浜。暗浜底部多以淤泥为主,部分地段还含有大量生活垃圾,土性极差。随着时间的推移,这些埋藏于地下的不良地质条件逐渐成为后期市政道路、桥梁工程建设中的质量隐患,造成工程开挖难度加大,尤其给河网地区浅表的工程建设带来较多的困难。因此,提取城市地区的暗浜分布范围,为城市工程建设与城市规划提供决策支持,具有十分重要的意义。

    暗浜反映出地表覆被类型的变化。目前暗浜的探测多以物探方法为主[1-2],如二维微动剖面探测法、瞬态瑞雷波法、高密度电法, 这些探测方法一般是在对工作区地质条件较熟悉的条件下开展的,且适合小范围的勘察,成本较高。随着卫星对地观测技术的发展,遥感影像的时空分辨率在不断提高,这为监测和刻画土地利用变化时空过程提供了丰富、可靠的数据支撑。变化检测是通过观察一个对象或一个现象在不同时间的状态,来确定其发生的差异过程[3-6]。遥感影像变化检测是利用不同时期覆盖同一地表区域的多源遥感影像和相关地理空间数据,结合相应地物特性和遥感成像机理,采用图像、图形处理理论及数理模型方法,确定和分析该地域地物的变化,包括地物位置、范围的变化和地物性质、状态的变化[7]。其研究的目的是找出感兴趣的变化信息,滤除作为干扰因素的不相干的变化信息。

    多时相高分辨率遥感影像具有空间信息丰富、地物细节清晰的特点, 可以利用空间信息提高变化检测精度,已越来越多地应用于城市监测等领域[8-12]。面向对象的处理是高分辨率遥感影像解译领域的重要思想。面向对象的变化检测不仅可以利用基于像素的方法所使用的光谱、纹理和特征变换等作为变化的测度,还可以利用有关对象的形状特征和空间关系的附加信息。面向对象的遥感图像变化检测首先要解决的问题是如何根据多时相影像获取适合变化检测的图像对象,以图像分割技术为基础,基于获取的图像对象进行变化检测。Desclé等[13]对SPOT多期影像进行分割,计算每期影像的光谱值,利用统计方法提取出变化的对象。Conchedda等[14]为检测红树林的变化,利用分割方法中的区域生长法多时相影像进行分割。Stow等[15]应用变化检测技术提取植被的变化信息,其分割方法选择试错法确定分割参数。Duveiller等[16]将多时相遥感影像叠加,同时分割,用以提取森林覆盖的变化。Wang等[17]在此分割方法基础上,对多时相图像对象提取了多种特征,选择最优的阈值界定“变”与“不变”,提取土地覆盖类型的变化信息。很多学者利用基于对象的分类后比较方法对地图或GIS图层进行更新[18-20],能够提取出“from-to”信息,在土地覆盖/利用变化检测中应用广泛。就遥感影像分类方法而言,SVM的独特优势在于可以处理小样本、高维数、非线性数据问题,将SVM算法应用于遥感影像分类时,可以通过少量的训练样本获得比传统分类方法更高的分类精度。由于SVM分类算法应用广泛且分类精度较高,为进行暗浜自动化监测提供了有效途径,故本文选择SVM算法为遥感影像分类方法。

    暗浜反映出地面以下地质体与周围物体结构的差异,如水塘填埋物与其周围土体结构必然是不同的。而传统的光学遥感卫星难以检测地下土体或岩石结构特征。微动测深是一种便捷有效的物探手段,基于微动信号估算地层速度结构,抗干扰能力强,探测深度大,适用于人口密度大、有振动干扰的城区房屋密集区环境[21-24],广泛应用于地铁工程、道路工程、城市地质等工程领域。为了验证利用遥感变化检测提取的暗浜范围是否准确可靠,将遥感技术与微动探测方法相结合,基于暗浜提取结果,选取典型区域,采用微动探测进行实地勘察。

    本文以提取安庆研究区(主要分布在主城区)的暗浜分布范围为目的,利用面向对象的分类后比较的变化监测方法,分别对2期遥感影像T1与T2进行面向对象的监督分类,进而对分类结果进行叠加分析,提取出前期土地利用类型为水体但目前变为其他土地覆盖类型的区域,即为暗浜的分布区域。在此基础上,将检测出来的变化区域作为靶区,选择典型区域,利用物探工作方法中的微动测量方法,探测地下是否存在暗浜,验证变化检测结果的可靠性。本次工作旨在利用遥感影像自动识别暗浜方法和技术流程,为城市工程建设与城市规划提供决策支持。

    安庆市位于安徽省西南部,长江下游北岸,皖河入江处,河网密集,是一个快速发展的城市。多年来安庆市采取了“东进、北扩、西拓”的扩张方式,对于城市的改造力度很大,由此导致了城市地表覆被类型的变化。在城市规划和工程建设中,暗浜是一个较典型的不良工程地质现象,对工程施工、尤其对基础工程建设构成隐患。为避免暗浜对工程建设尤其是基坑工程建设带来不利影响,有必要查明暗浜的特征和空间分布范围,为实施地球物理勘探方法圈定靶区。

    暗浜调查区域布置为矩阵区域,以安庆市辖区为主,包括宜秀区、十里铺、老峰镇、大龙山镇等,数据选取2004年的Quickbird影像与2018年的worldview-2影像。调查区域与数据选择见图 1

    图  1  研究区概况及遥感影像数据
    a—研究区位置图;b—T2(2018年)影像;c—T1(2004年)影像
    Figure  1.  Illustration of the study area and remote sensing images

    暗浜提取采用以遥感图像识别为主,微动探测为辅的思路,首先利用遥感图像变化检测方法提取暗浜范围,进而结合微动探测技术,选择典型区域,验证结果的可靠性。遥感图像变化检测技术通过处理相同区域在不同时相的遥感影像,得到该区域的地物类型变化,已经在城市建设、森林保护、土地监测、灾害评估等领域发挥了重要的作用。在变化检测中,分类后比较法是一种根据分类比较方法得到变化细节的判别方法,目前使用非常广泛。分类后比较具体的做法是分别对不同时相的遥感影像进行分类,得到不同时期的专题图,通过叠加这些专题图像,判别随着时间跃迁,类别的具体变化。微动探测方法可以勘察地表以下地层结构,根据横波波速结构或视横波波速剖面图,结合钻孔钻探资料及其他地质资料加以解释,给出地质现象解译,判断暗浜是否存在。

    技术路线图见图 2,首先针对2期高分辨率遥感影像T1和T2,对数据预处理,进而采用分类后比较的变化检测方法,其中分类时以图像分割得到的影像对象为基本处理单元,不仅利用遥感影像的光谱信息,而且充分利用影像的形状、纹理、上下文等信息,提高分类精度。根据分类结果,提取暗浜范围,进而选择典型的区域,辅以微动探测,布设试验,验证暗浜提取结果的可靠性。

    图  2  技术路线图
    Figure  2.  The flow chart of the method

    影像预处理是面向对象的变化检测的前提,主要包括辐射校正和几何校正。首先对2期影像进行相对辐射校正,以降低因图像辐射差异对变化检测结果的影响。然后对影像进行几何校正,使2期影像精确配准,控制误差小于0.5像素。

    由于高分辨率遥感影像单个地物特征内反射率的变异性及图像的复杂性,传统的逐像素分析方法难以适应于高分影像的应用需求。研究表明,基于对象的影像分析(OBIA)技术可减少地理参考及光谱变异性等带来的影响。图像分割是OBIA的核心,分割过程将图像划分为光谱上相似且在空间上相邻的同质对象。理想的分割结果是,对象内部的方差最小,对象与对象之间的异质性较大。通过分割生成图像对象,即分割体,获得更丰富的信息,包括纹理、形状和与相邻对象的空间关系,从而利用空间上下文信息进一步分类。

    目前的分割方法可以分为2类:①基于边缘的影像分割;②基于区域的影像分割。基于边界的分割算法是按照影像中各类地物像素灰度值不连续的特点、边界特征差异性的原则实现影像分割[19]。目前常用的边缘检测算子有Krisch算子、Robert算子等。基于边缘的方法更符合人们的认知,当影像各地物类型之间有显著差异时,该方法能够取得良好的效果。基于区域分割的方法主要分为2种:①区域增长;②区域分裂与合并。区域分割的依据是影像内像素点或像素块的特征相似性,包括灰度、颜色、纹理、空间结构等特征信息[25]

    影像分割的核心问题在于如何选择最优的影像分割尺度,在最优分割尺度下获得的影像对象能够更好地表达实际地物的特征信息,有利于变化检测结果精度的提高[26]。本文影像分割步骤采用ENVI 5.3的Feature Extraction模块。该模块采用基于边缘的分割方法,可以根据遥感影像内邻近像素的色度、亮度、纹理等信息对影像进行分割,同时通过分割效果预览框可以实时地进行分割尺度的调整,操作简单方便,应用性较强。本文反复试验对比,通过目视判断确定研究区的最优分割尺度。

    利用影像的原始特征光谱,提取指数特征及纹理特征作为特征组合。指数特征有归一化水体指数NDWI及归一化植被指数NDVI

    NDWI=ρgreenρnirρgreen+ρnir (1)

    (1) 式中,ρnirρgreen分别表示影像近红外波段、绿色波段的反射率,突出水体信息。

    NDVI=ρnirρredρnir+ρred (2)

    (2) 式中,ρred表示影像红色波段的反射率,增强植被信息。

    纹理特征使用灰度共生矩阵计算,通过8种基于二阶矩阵的纹理滤波的结果对比,选择均值滤波的结果作为纹理特征。利用PCA提取特征组合。通过协方差矩阵计算主成分,选择包含95%的信息量的前3个特征分量。

    基于分割结果,利用支持向量机(SVM) 算法,对图像进行监督分类。经过对研究区影像进行判读分析,确定建设用地(包括城镇用地、农村居民点、其他建设用地)、林地、草地、耕地、水域、未利用土地等类别,选择各类地物的训练样本,训练样本的位置随机选择。在此基础上,利用SVM算法对影像进行分类。

    SVM算法的基本思想是,基于训练样本集D在样本空间找到具有“最大间隔”的划分超平面,将不同类别的样本分开。SVM在线性分类的基础上引入了结构风险最小化原理,提高了算法的泛化能力,在小样本的情况下也能达到较好的分类精度。SVM与核函数方法结合,解决了非线性分类问题。由于此算法的上述优势,在遥感影像分类中广泛应用。

    具体模型如下:

    min (3)

    其中, w=(w1; w2; …; wd),为超平面的法向量,b为位移项,xiD为训练样本集中的一个样本。

    对式(3)使用拉格朗日乘子可得到其“对偶问题”:

    \begin{gathered} \max \limits_{\alpha} \sum\limits_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum\limits_{i=1}^{m} \sum\limits_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\ { s.t. }\ \sum\limits_{i=1}^{m} \alpha_{i} y_{j}=0 , \\ \alpha_{i} \geqslant 0, i=1, 2, \cdots, m \end{gathered} (4)

    对于线性不可分问题,将核技巧应用到支持向量机,基本思想是通过非线性变换将输入空间对应一个特征空间,使得在输入空间Rn中的超曲面模型对应于特征空间H中的超平面模型。这样,分类问题的学习任务通过在特征空间中求解线性支持向量机就可以完成。此时,对偶问题则为:

    \begin{aligned} &\max \limits_{\alpha} \sum\limits_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum\limits_{i=1}^{m} \sum\limits_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right) \\ & { s.t. }\ \sum\limits_{i=1}^{m} \alpha_{i} y_{j}=0, 0 \leq \alpha_{i} \leq C, i=1, 2, \cdots, m \end{aligned} (5)

    其中, K(xi, xj)为核函数,C为惩罚参数。常用的SVM核函数有多项式核函数,高斯核函数,sigmoid核函数等。已有研究表明,高斯核函数更适用于土地覆被的分类[27],因而采用高斯核函数作为SVM分类器中的核函数,其数学形式为:

    K(x, z)=exp \left(-\frac{|| x-z||^{2}}{2 \sigma^{2}}\right) (6)

    变化检测的流程如图 3所示。变化检测是基于SVM算法得到地物分类结果,将2期图像的结果进行对比,提取时相T1(2004年)影像上的水体在时相T2(2018年)影像的变化情况。首先将2期影像的分类结果图转为分类矢量图,对2个图层进行叠加分析,得到包含变化信息的多边形,同时赋予这些多边形类别变化的属性信息,完成变化检测,并统计各类别的增加、减少情况。

    图  3  技术流程图
    Figure  3.  Technical flow chart

    基于变化检测提取的暗浜范围,选择前期是坑塘目前已变为耕地或道路的区域作为采样点,布设微动测线,根据现场的探测结果解译,判断地下是否有存在暗浜的可能。图 4为在安庆市迎江区布设的3条微动测线(底图 4,为2004年遥感影像),可知在2004年此区域地表覆盖类型为池塘,而现场测量时发现,此处已在开发建设,坑塘早已被填埋。若暗浜填充物的波阻抗大于周围地层介质波阻抗,则微动速度-深度剖面上暗浜区域应表现为相对低速异常,反之则为相对高速异常。由此,推断地质断面图并判断暗浜的位置。

    图  4  微动测量工作布置示意图(2004影像)
    a—测线1和测线2;b—测线3
    Figure  4.  Layout of microtremor survey (images of 2004)

    对2期影像分别进行裁剪、拼接、相对辐射校正、地理配准,得到T1与T2两期影像。本文目的在于提取暗浜的空间分布,即以前地表为水体包括沟塘河渠的地区,现在变化为非水体。因此,实验中,对T1影像即2004年QuickBird影像分为水体和非水体2类,将T2影像即2018年WorldView-2影像分为建设用地(包括城镇用地、农村居民点、其他建设用地)、林地、草地、耕地、水域、未利用土地等类别,分类结果如图 5所示。

    图  5  影像分类结果
    a—研究区位置图;b—T2影像分类结果;c—T1影像水体提取结果
    Figure  5.  The classification results of remote sensing images

    最后对分类结果进行精度评价,发现Kappa系数很高,结果准确度较高(表 1)。

    表  1  分类精度
    Table  1.  Accuracy of classification
    影像类型 总体精度 Kappa系数
    T2影像 90.49% 0.8506
    T1影像 96.12% 0.94
    下载: 导出CSV 
    | 显示表格

    对2期影像分类结果进行叠加分析,得到T1影像表现为水体而T2影像表现为非水体的图斑,作为暗浜空间范围(图 6)。

    图  6  暗浜提取结果
    Figure  6.  The extraction results of the underground silt

    对暗浜图斑的属性进行赋值,分析得到研究区暗浜幼前期的水体目前转变为何种地物类别(图 7)。

    图  7  暗浜区域土地覆盖类别
    Figure  7.  Land cover types in the area of underground silt

    基于变化检测结果,选取2个区域,布设微动探测剖面3条,共计140个点,采用直线型布阵方式进行测量,台阵半径1 m-2 m-4 m,采样频率250 Hz,测量时间20 min,点距8 m。采用标准化流程进行数据处理,并根据收集的钻探成果对其过程参数进行修正,在总体与钻探成果较为吻合后确定最终的微动速度-深度剖面图,并推断地质断面图,如图 8所示。根据图 8-a并结合遥感图像可知,1~5号点为深色暗浜或水田区域,11~60号点为暗浜区域,61~71号点为深色暗浜或水田区域。图 8-b为测线1推断地质断面图,10 m以浅的低速异常推测为暗浜分布区域,速度范围在100~300 m/s之间,变化检测结果基本一致。同时,按剖面图 8-c中100~300 m/s速度范围区分暗浜,发现15 m以浅的低速异常为暗浜分布区域,由于该微动测线布设靠近暗浜中心,故而低速异常深度相比图 8-a稍大。

    图  8  不同测线微动速度-深度剖面和推断地质断面图
    (a、c、e分别为测线1、测线2、测线3微动速度-深度剖面图,b、d、f分别为测线1、测线2、测线3推断地质断面图)
    Velocity-depth profile of microtremor survey and inferred geographical profile of different line

    图 8-e分析,发现在14号点、22号点、26号点存在局部的低速异常,根据变化检测结果可知,在2004年时15~22号点都属于暗浜范围(图 8-f),至2018年地物地貌变化极大,暗浜基本被回填。

    利用本文的算法,提取出研究区暗浜面积9.86 km2,从空间分布看,大部分暗浜位于安庆市辖区南部沿江地区,包括宜秀区、十里铺乡、老峰镇、白泽胡乡、山口乡,暗浜表面主要地物类型为建筑物(表 2)。整体看,有89.15%的暗浜区域,其地表覆盖类型目前为建设用地,如道路、桥梁、房屋等,其中居民点占42.35%,其他建设用地占46.80%。这跟安庆市近十五年的发展建设一致,城市的扩张使得不透水层面积急剧增加,以前的很多小池塘沟渠被填埋,用以城市开发建设。此外,暗浜区域地表覆盖类型为耕地的面积为0.69 km2,占暗浜总面积的6.97%,一些湖泊被人为造田,使水域面积减少。

    表  2  暗浜空间范围分布面积
    Table  2.  Area statistics of underground silt  km2
    名称 建设用地 耕地 林地 草地 未利用土地 暗浜总计
    宜秀区 2.3368 0.0486 0.0053 0.1844 2.5751
    十里铺 2.0097 0.0064 0.0510 0.0008 2.0679
    老峰镇 1.6146 0.3560 0.0010 0.0050 0.0093 1.9859
    白泽湖 0.5841 0.0622 0.6463
    山口乡 0.5852 0.0186 0.0010 0.6048
    长风乡 0.5028 0.0607 0.0016 0.0067 0.5718
    龙狮乡 0.5120 0.0496 0.5616
    大龙山 0.3972 0.0021 0.0055 0.0159 0.4207
    大观区 0.0932 0.0007 0.0000 0.0939
    月山镇 0.0716 0.0072 0.0035 0.0007 0.0830
    海口镇 0.0003 0.0659 0.0000 0.0000 0.0662
    迎江区 0.0184 0.0268 0.0045 0.0138 0.0635
    菱北街 0.0306 0.0010 0.0316
    杨桥镇 0.0049 0.0180 0.0024 0.0253
    鲟鱼镇 0.0225 0.0009 0.0000 0.0234
    五横乡 0.0202 0.0015 0.0217
    新洲乡 0.0090 0.0091 0.0018 0.0199
    总计 8.7929 0.6874 0.1345 0.2378 0.0100 9.8626
    下载: 导出CSV 
    | 显示表格

    基于变化检测结果及微动探测实地验证,推断地质断面,能够勘察得到暗浜的深度和边界。经实地验证,发现布设的3处测线均存在暗浜,填充物较复杂,填充不均匀,且2处由于地表城市规划已开始施工作业,导致微动剖面速度特征杂乱;在填充物简单、地表未进行人类工程活动时,微动探测应用效果更好。

    遥感技术的发展为地质调查提供了极大的便利。本文将遥感与物探手段结合,首先利用遥感变化检测技术监测暗浜分布范围,为实施物探划定出靶区或重点区域,这样既能极大程度节约成本,又能提高暗浜检测的准确性。首先从遥感数据入手,利用变化检测方法自动提取安庆市城区暗浜的空间位置与范围,共提取暗浜面积9.86 km2,且发现约89%的区域目前已为建设用地,且建设用地中超过一半的区域为道路、桥梁等工矿用地,留有工程隐患的可能性很大。然而,利用遥感影像提取到的暗浜是二维的空间分布形态,无法得到暗浜位置准确的深度信息。本文基于变化检测技术监测暗浜分布范围,布设3条测线进行了实地勘察,验证了变化检测结果的可靠性。本文的暗浜提取方法与结果能够为城市工程建设与规划提供决策支持,具有十分重要的意义。

  • 图  1   北山造山带大地构造位置及构造单元划分简图(据Song et al., 2024修改)

    Figure  1.   Tectonic location and sketch map of Beishan orogenic belt showing division of tectonic units

    图  2   北山造山带中部勒巴泉地区变质硅质岩中紧闭褶皱(a)和变质碎屑岩中的无根钩状褶皱(b)

    Figure  2.   Tight folds in metachert (a) and rootless folds in metaclastic rock (b) at the Lebaquan area, central Beishan orogenic belt

    图  3   北山造山带岩浆作用时代分布图

    Figure  3.   Temporal distribution of magmatism in the Beishan orogenic belt

  • Ao S, Xiao W, Windley B F, et al. 2016. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U–Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 30: 224−235. doi: 10.1016/j.gr.2015.03.004

    Ao S J, Xiao W J, Han C M, et al. 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149(4): 606−625. doi: 10.1017/S0016756811000884

    Ao S J, Xiao W J , Han C M, et al. 2010. Geochronology and geochemistry of Early Permian mafic−ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 18(2/3): 466−478.

    Bai R, Hu J, Zhao F, et al. 2022a. Zircon U–Pb ages and Hf isotopic characteristics and their geological significances of Syenogranite in the Shuangjianshan gold deposit in the Beishan orogenic belt, Gansu Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 274−286 (in Chinese with English abstract).

    Bai R, Hu J, Zhao F, et al. 2022b. Genesis and tectonic magmatic evolution of Carboniferous granites in the Hongliuhecao−Yuejinshan area of Beishan orogenic belt[J]. Acta Petrologica Sinica, 38(3): 713−742 (in Chinese with English abstract).

    Brander L, Söderlund U. 2007. Mesoproterozoic (1.47~1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif−type anorthosite in S. Sweden[J]. International Journal of Earth Sciences, 98(3): 499−516.

    Chen C, Pan Z, Xiu D, et al. 2017. Analysis on sedimentary period, depositional environment, and provenance tectonic setting of Hongliuyuan Formation in Beishan area[J]. Acta sedimentologica Sinica, 35(3): 470−479 (in Chinese with English abstract).

    Chen Z, Yu Y, Bo H, 2020. Geochemical characteristics and geological significance of the Ordovician volcanic rocks in Ejinaqi, Inner Mongolia[J]. Earth Science, 45(2): 503−518 (in Chinese with English abstract).

    Cleven N, Lin S, Guilmette C, et al. 2015. Petrogenesis and implications for tectonic setting of Cambrian suprasubduction−zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J]. Journal of Asian Earth Sciences, 113, Part 1: 369−390.

    Du Q, Wu S, Zhang Y, et al. 2023. Zircon U−Pb ages and geochemistry of volcanic rocks from the Baishan Formation in the Yuanbaoshan−Xirehada area in Beishan orogenic collage, Inner Mongolia, NW China, and implications for the subduction history of the Paleo−Asian Ocean[J]. Geological Bulletin of China, 42(11): 1875−1893 (in Chinese with English abstract).

    Feng J, Zhang W, Wu T, et al. 2012. Geochronology and geochemistry of granite pluton in the north of Qiaowan, Beishan Mountain, Gansu province, China, and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 61−70 (in Chinese with English abstract).

    Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the central asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71 (in Chinese with English abstract).

    Gillespie J, Glorie S, Xiao W, et al. 2017. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: Insights from low−temperature thermochronology[J]. Gondwana Research, 43: 107−122. doi: 10.1016/j.gr.2015.10.004

    Gong Q, Liu M, Li H, et al. 2002. The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 35(3): 28−34 (in Chinese with English abstract).

    Guan G, Zheng X, Xiao Y, et al. 2022. U−Pb zircon age and petrogeochemical characteristics of the Devonian volcanic rocks in the northern Queershan Group, Hongshishan, Gansu Province[J]. Mineral Exploration, 13(12): 1747−1760 (in Chinese with English abstract).

    Guo Q, Xiao W, Hou Q, et al. 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt[J]. Lithos, 184/187: 361−378.

    Guo Q, Xiao W, Windley B F, et al. 2012. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids[J]. Journal of Asian Earth Sciences, 49: 54−68.

    Guo Q Q, Chung S L, Xiao W J, et al. 2017. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd–Sr–Hf isotopic constraints[J]. Lithos, 278/281: 84−96. doi: 10.1016/j.lithos.2017.01.017

    Guo Z, Shi H, Zhang Z, et al. 2006. The tectonic evolution of the south Tianshan paleo−oceanic crust inferred from the spreading structures and Ar−Ar dating of the Hongliuhe ophiolite, NW China[J]. Acta Petrologica Sinica, 22(1): 95−102 (in Chinese with English abstract).

    He S, Zhou H, Ren B, et al. 2005. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 38(3): 6−15 (in Chinese with English abstract).

    He Z Y, Klemd R, Yan L L, et al. 2018a. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon[J]. Scientific Reports, 8(1): 5054. doi: 10.1038/s41598-018-23393-4

    He Z Y, Klemd R, Yan L L, et al. 2018b. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 185: 1−14. doi: 10.1016/j.earscirev.2018.05.012

    He Z Y, Sun L, Mao L, et al. 2015. Zircon U−Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 60(4): 389−399 (in Chinese with English abstract). doi: 10.1360/N972014-00898

    He Z Y, Zong K, Jiang H, et al. 2014. Early Paleozoic tectonic evolution of the southern Beishan orogenic colage: Insights from the granitoids[J]. Acta Petrologica Sinica, 30(8): 2324−2338 (in Chinese with English abstract).

    Hou Q Y, Wang Z, Liu J B, et al. 2012. Geochemistry characteristics and SHRIMP dating of Yueyashan ophiolite in Beishan Orogen[J]. Geoscience, 26(5): 1008−1018 (in Chinese with English abstract).

    Hu X, Yang J, Deng W, et al. 2024. The formation age, origin and tectonic environment of gneissic granite in Xiaohuangshan, Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 43(6): 1059−1071 (in Chinese with English abstract).

    Hu X, Yang Z, Kang W, et al. 2023. Zircon U−Pb age, geochemical characteristics and its geological significance of the Qianhongquan monzonite in Beishan area, Gansu Province[J]. Mineralogy and Petrology, 43(4): 49−59 (in Chinese with English abstract).

    Hu X, Zhao G, Hu X, et al. 2015. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 34(2/3): 425−436 (in Chinese with English abstract).

    Huang B, Wang G, Bu T, et al. 2021. Petrogenesis and tectonic significance of the Silurian granites in Yemadaquan area, Beishan, Gansu Province[J]. Earth Science, 46(11): 3993−4005 (in Chinese with English abstract).

    Huang Z, Jin X. 2006. Geochemistry features and tectonic setting of the Hongshishan ophiolite in Gansu Province[J]. Chinese Journal of Geology, 41(4): 601−611 (in Chinese with English abstract).

    Huo N, Guo Q, Chen Y, et al. 2022. Provenance and tectonic setting of the Gudongjing Group in Beishan Orogen[J]. Acta Petrologica Sinica, 38(4): 1253−1279 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.04.17

    Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions−Royal Society of Edinburgh, 91(1/2): 181−194.

    Jia Y Q, Zhao Z X, Xu H, et al. 2016. Zircon LA−ICP−MS U−Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt[J]. Geology in China, 43(1): 91−98 (in Chinese with English abstract).

    Jiang H, He Z, Zong K, et al. 2013. Zircon U−Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica, 29(11): 3949−3967 (in Chinese with English abstract).

    Li C, Wang Q, Liu X, et al. 1984. Tectonic evolution of Asia[J]. Bulletin of the Chinese Academy of Geological Sciences, 10: 3−11 (in Chinese with English abstract).

    Li J, Xiao X, Tang Y, et al. 1992. Metal deposits and plate tectonics in northern Xinjiang[J]. Xinjiang Geology, 10(2): 138−146 (in Chinese with English abstract).

    Li M, Ren B, Duan X, et al. 2020. Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U−Pb ages and Hf isotopes[J]. Geological Bulletin of China, 39(9): 1422−1435 (in Chinese with English abstract).

    Li M, Xin H, Ren B, et al. 2019. Petrogenesis and tectonic significance of the Late Palaeozoic granitoids in Hazhu Area, Inner Mongolia[J]. Earth Science, 44(1): 328−343 (in Chinese with English abstract).

    Li S. 2013. Triassic granitoids in Beishan−Inner Mongolia, China and its tectonic implications[D]. Doctoral Dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Li S, Wang T, Wilde S A, et al. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 134/135: 123−145.

    Li S, Wang T, Tong Y, et al. 2009. Identification of the Early Devonian Shuangfengshan A−type granites in Liuyuan area of Beishan and its implications to tectonic evolution[J]. Acta Petrologica et Mineralogica, 28(5): 407−422 (in Chinese with English abstract).

    Li S, Wang T, Tong Y, et al. 2011. Zircon U−Pb age, origin and its tectonic significances of Huitongshan Devonian K−feldspar granites from Beishan orogen, NW China[J]. Acta Petrologica Sinica, 27(10): 3055−3070 (in Chinese with English abstract).

    Li S, Wilde S A, Wang T. 2013. Early Permian post−collisional high−K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 179: 99−119. doi: 10.1016/j.lithos.2013.08.002

    Li X, Yu J, Wang G, et al. 2012. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J]. Geological Bulletin of China, 31(12): 2025−2031 (in Chinese with English abstract).

    Li X M, Yu J Y, Wang G Q, et al. 2011. LA−ICP−MS zircon U−Pb dating of Devonian Sangejing formation and Dundunshan group in Hongliuyuan, Beishan area, Gansu Province[J]. Geological Bulletin of China, 30(10): 1501−1507 (in Chinese with English abstract).

    Li X F, Zhang C L, Li L, et al. 2015. Formation age, geochemical characteristics of the Mingshujing pluton in Beishan area of Gansu Province and its geological significance[J]. Acta Petrologica Sinica, 31(9): 2521−2538 (in Chinese with English abstract).

    Liu G, Zhang Z, Dong H, et al. 2021. Geochemical and geochronological characteristics and geological significance of early Carboniferous monzogranite in Biaoshandong area, Beishan District, Inner Mongolia[J]. Mineralogy and Petrology, 41(4): 32−43 (in Chinese with English abstract).

    Liu Q, Zhao G, Sun M, et al. 2015. Ages and tectonic implications of Neoproterozoic ortho− and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 266: 551−578. doi: 10.1016/j.precamres.2015.05.022

    Lv X, Yu X, Du Z, et al. 2022. Late Devonian magmatic event in the South Beishan orogenic belt, Gansu: Constraints from zircon U−Pb chronology, geochemistry and Sr−Nd−Hf isotopes[J]. Acta Petrologica Sinica, 38(3): 693−712 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.07

    Mao Q, Xiao W, Ao S, et al. 2023. Final Amalgamation Processes of the Southern Altaids: Insights from the Triassic Houhongquan Ophiolitic Mélange in the Beishan Orogen (NW China)[J]. Lithosphere, 2023(1): 1988410.

    Mao Q G, Xiao W J, Windley B F, et al. 2012. The Liuyuan complex in the Beishan, NW China: A Carboniferous–Permian ophiolitic fore−arc sliver in the southern Altaids[J]. Geological Magazine, 149(03): 483−506. doi: 10.1017/S0016756811000811

    Meng L, Guan Y, Qi L, et al. 1995. Gravity field and deep crustal structure in Golmud−Ejinqi geoscience transection and nearby area[J]. Acta Geophysica Sinica, 38: 36−45 (in Chinese with English abstract).

    Meng Q, Xu C, Zhang Z, et al. 2021. The geochemical, chronological characteristics and geological significance of the Arminwusu Gongpoquan Formation metavolcanic rocks in Beishan area, Inner Mongolia[J]. Mineralogy and Petrology, 41(1): 67−79 (in Chinese with English abstract).

    Niu W, Xin H, Duan L, et al. 2019. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia−New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China, 46(5): 977−994 (in Chinese with English abstract).

    Niu W, Xin H, Duan L, et al. 2020. Geochemical characteristics, zircon U−Pb age of SSZ ophiolite in the Baiheshan area of the Beishan orogenic belt, Inner Mongolia, and its indication for the evolution of the Paleo−Asian Ocean[J]. Geological Bulletin of China, 39(9): 1317−1329 (in Chinese with English abstract).

    Niu Y, Lu J, Liu C, et al. 2018. Geochronology and distribution of the Upper Carboniferous–Lower Permian Ganquan Formation in the Beishan Region, northwestern China and its tectonic implication[J]. Geological Review, 64(4): 1131−1148 (in Chinese with English abstract).

    Niu Y, Song B, Zhou J, et al. 2020. Lithofacies and chronology of volcano−sedimentary sequence in the southern Beishan Region, Central Asian Orogenic Belt and its paleogeographical implication[J]. Acta Geologica Sinica, 94(2): 615−633 (in Chinese with English abstract).

    Pan J, Guo Z, Liu C, et al. 2008. Geochronology, geochemistry and tectonic implications of Permian basalts in Hongliuhe area on the border between Xinjiang and Gansu[J]. Acta Petrologica Sinica, 24(4): 793−802 (in Chinese with English abstract).

    Pan Z, Wang S, Zhang L, et al. 2021. Early Silurian magma evolution in the Eastern Beishan Orogenic Belt—Geochemical and chronological constraints from the Jidong granodiorite[J]. Journal of Hebei GEO University, 44(6): 1−10 (in Chinese with English abstract).

    Qu J F, Xiao W J, Windley B F, et al. 2011. Ordovician eclogites from the Chinese Beishan: implications for the tectonic evolution of the southern Altaids[J]. Journal of Metamorphic Geology, 29(8): 803−820.

    Ren B, He S, Yao W, et al. 2001. Rb−Sr isotope age of Niujuanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwestern Geology, 34(2): 21−27 (in Chinese with English abstract).

    Ren B, Ren Y, Niu W, et al. 2019. Zircon U−Pb ages and Hf isotope characteristics of the volcanic rocks from Queershan Group in the Hazhudongshan area of Beishan, Inner Mongolia and their geological significance[J]. Earth Science, 44(1): 298−311 (in Chinese with English abstract).

    Ren Y, Ren B, Niu W, et al. 2019. Carboniferous volcanics from the Baishan formation in the Hazhu area, Inner Mongolia: implications for the late Paleozoic active continental margin magmatism in the northern Beishan[J]. Earth Science, 44(1): 312−327 (in Chinese with English abstract).

    Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299−307. doi: 10.1038/364299a0

    Şengör A M C, Sunal G, Natal'in B A, et al. 2022. The Altaids: A review of twenty−five years of knowledge accumulation[J]. Earth−Science Reviews, 228: 104013.

    Shi Y, Zhang W, Kröner A, et al. 2018. Cambrian ophiolite complexes in the Beishan area, China, southern margin of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 153: 193−205. doi: 10.1016/j.jseaes.2017.05.021

    Song D, Xiao W, Ao S, et al. 2024. Contemporaneous closure of the Paleo−Asian Ocean in the Middle−Late Triassic: A synthesis of new evidence and tectonic implications for the final assembly of Pangea[J]. Earth−Science Reviews, 253: 104771.

    Song D, Xiao W, Han C, et al. 2013a. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U–Pb and Hf isotopic data of high−grade complexes[J]. Precambrian Research, 227: 368−388.

    Song D, Xiao W, Han C, et al. 2013b. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 55(14): 1705−1727. doi: 10.1080/00206814.2013.792515

    Song D, Xiao W, Han C, et al. 2018. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar−39Ar geochronology[J]. Acta Petrologica Sinica, 34(7): 2087−2098 (in Chinese with English abstract).

    Song D, Xiao W, Han C, et al. 2014. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 632: 224−243.

    Song D, Xiao W, Han C, et al. 2013c. Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: Constraints from detrital zircon U–Pb and Hf isotopic data[J]. Gondwana Research, 24(3/4): 1127−1151. doi: 10.1016/j.gr.2013.02.002

    Song D, Xiao W, Windley B F, et al. 2015. A Paleozoic Japan−type subduction−accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 224/225: 195−213.

    Song D, Xiao W, Windley B F, et al. 2016. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics, 688: 135−147. doi: 10.1016/j.tecto.2016.09.012

    Song T, Wang J, Lin H, et al. 2008. The geological features of ophiolites of Xiaohuangshan in Beishan area, Inner Mongolia[J]. Northwestern Geology, 41(3): 55−63 (in Chinese with English abstract).

    Sun H, Lv Z, Yu X, et al. 2020. Early Mesozoic tectonic evolution of Beishan Orogenic Belt: Constraints from chronology and geochemistry of the Late Triassic diabase dyke in Liuyuan area, Gansu Province[J]. Acta Petrologica Sinica, 36(6): 1755−1768 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.07

    Sun X, Wang H, Li T, et al. 2021. LA−ICP−MS zircon U−Pb ages of the granodiorites from Shuangfengshan in Beishan Mountain, Gansu Province, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 40(2): 171−184 (in Chinese with English abstract).

    Tang W, Xu L, Fei G, et al. 2024. Study of geochronology, geochemical characteristics and geological implications of quartz diorite in Mingshui area, Beishan, Gansu Province[J]. Mineralogy and Petrology, 44(2): 30−46 (in Chinese with English abstract).

    Tian Z, Xiao W, Shan Y, et al. 2013. Mega−fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo−Triassic termination of the Altaids[J]. Journal of Structural Geology, 52: 119−135.

    Tian Z, Xiao W, Sun J, et al. 2015. Triassic deformation of Permian Early Triassic arc−related sediments in the Beishan (NW China): Last pulse of the accretionary orogenesis in the southernmost Altaids[J]. Tectonophysics, 662(Supplement C): 363−384.

    Tian Z, Xiao W, Windley B F, et al. 2014. Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids[J]. Gondwana Research, 25(2): 820−841. doi: 10.1016/j.gr.2013.05.006

    Tian Z, Xiao W, Windley B F, et al. 2017. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan–Tianshan orogenic collages (NW China)[J]. International Journal of Earth Sciences, 106: 2319−2342.

    Ulmius J, Andersson J, Möller C. 2015. Hallandian 1.45Ga high−temperature metamorphism in Baltica: P–T evolution and SIMS U–Pb zircon ages of aluminous gneisses, SW Sweden[J]. Precambrian Research, 265: 10−39. doi: 10.1016/j.precamres.2015.04.004

    Wang E, Wu L, Zhai X, et al. 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt[J]. Earth Science, 47(9): 3285−3300 (in Chinese with English abstract).

    Wang E, Zhai X, Chen W, et al. 2024. Discovery of Neoproterozoic magmatic rocks relating to the Paleo−Asian Ocean open in Beishan area[J]. Geological Bulletin of China, in press (in Chinese with English abstract).

    Wang F, Luo M, He Z, et al. 2024a. Mid−Cretaceous Accelerated Cooling of the Beishan Orogen, NW China: Evidence from Apatite Fission Track Thermochronology[J]. Lithosphere, 2023(Special 14): liohosphere-2023-239.

    Wang F, Wei Z, Zhang G, et al. 2004. New Silurian stratigraphic data in Hongshishan area, northern Beishan, Gansu Province[J]. Geological Bulletin of China, 23(11): 1162−1163 (in Chinese).

    Wang G, Li X, Xu X, et al. 2014. Ziron U−Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 30(6): 1685−1694 (in Chinese with English abstract).

    Wang G, Li X, Xu X, et al. 2021. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 40(1): 71−81 (in Chinese with English abstract).

    Wang H, Guo F, Zhao H, et al. 2020. Determination of Silurian intrusive rocks in Mazongshan area, Beishan, Gansu and its tectonic significance[J]. Gansu Geology, 29(3−4): 13−21 (in Chinese with English abstract).

    Wang L, Yang J, Xie C, et al. 2007. The discovery and geological significance of an early Paleozoic ophiolite melange belt in the Huoshishan part of Beishan Mountain, Gansu Province, China[J]. Geoscience, 21(3): 451−456 (in Chinese with English abstract).

    Wang S, Zhang K, Song B, et al. 2018a. Detrital Zircon U−Pb Geochronology from Greywackes in the Niujuanzi Ophiolitic Mélange, Beishan Area, NW China: Provenance and Tectonic Implications[J]. Journal of Earth Science, 29(1): 103−113. doi: 10.1007/s12583-018-0824-2

    Wang S, Zhang K, Song B, et al. 2017a. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2017: 1−21.

    Wang X, Yuan C, Zhang Y, et al. 2018b. S−type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition[J]. Journal of Asian Earth Sciences, 153: 206−222. doi: 10.1016/j.jseaes.2017.07.037

    Wang Y, Luo Z, Santosh M, et al. 2017b. The Liuyuan Volcanic Belt in NW China revisited: evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt[J]. Geological Magazine, 154(2): 265−285. doi: 10.1017/S0016756815001077

    Wang Z, Zhang J, Wu C, et al. 2024b. A uniform basement: Implications for the tectonics of Beishan Orogenic Belt in the southern Central Asian Orogenic Belt[J]. Precambrian Research, 404: 107340.

    Wei X, Gong Q, Liang H, et al. 2000. Metamorphic−deformation and evolutionary characteristics of Pre−Changcheng Dunhuang terrain occuring on Mazongshan upwelling area[J]. Acta Geologica Gansu, 9(1): 36−43 (in Chinese with English abstract).

    Wei X, Gong Q, Liang M, et al. 1999. Characteristics and tectonic environment of early Proterozoic volcanic rocks in Cahulehade area, Beishan[J]. Acta Geologica Gansu, 8(2): 23−27 (in Chinese with English abstract).

    Wei Y, Yan T, Yang W, et al. 2020. The establishment of Late Paleozoic stratigraphic framework in the northern belt of Beishan orogenic belt of Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1367−1388 (in Chinese with English abstract).

    Wu P, Wang G, Li X, et al. 2012. The age of Niujuanzi ophiolite in Beishan area of Gansu Province and its geological significance[J]. Geological Bulletin of China, 31(12): 2032−2037 (in Chinese with English abstract).

    Xiao W, Shu L, Gao J, et al. 2008. Continental dynamics of the central Asian orogenic belt and its metallogeny[J]. Xinjiang Geology, 26(1): 4−8 (in Chinese with English abstract).

    Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    Xiao W, Windley B F, Sun S, et al. 2015. A Tale of Amalgamation of Three Permo−Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477−507. doi: 10.1146/annurev-earth-060614-105254

    Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553−1594. doi: 10.2475/10.2010.12

    Xie J, Di P, Yang J, et al. 2018. LA−ICP−MS zircon U−Pb age, geochemistry and tectonic implications of metamorphic dacite from Huanjiushan group in Beishan area, Gansu, China[J]. Northwest Geology, 51(1): 54−64 (in Chinese with English abstract).

    Xin H, Niu W, Tian J, et al. 2020. Spatio−temporal structure of Beishan orogenic belt and evolution of Paleo−Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1297−1316 (in Chinese with English abstract).

    Xu W, Xu X, Niu Y, et al. 2019. Geochronology and petrogenesis of the Permian marine basalt in the southern Beishan region and their tectonic implications[J]. Acta Geologica Sinica, 93(8): 1928−1953 (in Chinese with English abstract).

    Yan T, Xin H, Wei Y, et al. 2020. A new thinking on the process of ocean−continent transition in Beishan orogenic belt of Inner Mongolia: Evidence from the Devonian arc granite in the south of Dahong Mountain[J]. Geological Bulletin of China, 39(9): 1341−1366 (in Chinese with English abstract).

    Yang H, Li Y, Zhao G, et al. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology, 43(1): 26−36 (in Chinese with English abstract).

    Yang J, 2017. Geochemical characteristics and tectonic significance of the Early Paleozoic−Early Mesozoic granite in Huaniushan area, Beishan, Lanzhou University (in Chinese with English abstract).

    Yang W, Yan T, Zhang Y, et al. 2020. Zircon U−Pb age and geochemistry of TTG rocks in Xiaohongshan area of the Beishan orogenic belt, Inner Mongolia, and their constraints on the properties of the Baihe Mountain tectonic belt[J]. Geological Bulletin of China, 39(9): 1404−1421 (in Chinese with English abstract).

    Yang Z, Zhao J, Jiang D, et al. 2021. Chronological and geochemical characteristics of the porphyritic granodiorite in the Qiahongquan area, Beishan region, Gansu Province, China and their tectonic significances[J]. Bulletin of Mineralogy, 40(1): 228−241 (in Chinese with English abstract).

    Yang Z, Zhao Q, Zhang J, et al. 2022. Chronological and Geochemical Characteristics of the Heishantou Quartz−monzodiorite in the Beishan Area, Gansu Province, China, and Their Geological Significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1165−1177 (in Chinese with English abstract).

    Yang Z X, Ding S H, Zhang J, et al. 2021. The discovery of Early Devonian adakites in Beishan orogenic belt and its geological significance[J]. Acta Petrologica Et Mineralogica, 40(2): 185−201 (in Chinese with English abstract).

    Ye X, Zong K, Zhang Z, et al. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China, 32(2/3): 307−317 (in Chinese with English abstract).

    Yu F S, Li J B, Wang T. 2006. The U−Pb isotopic age of zircon from Hongliuhe ophiolites in east Tianshan mountains, northwest China[J]. Acta Geoscientia Sinica, 27(3): 213−216 (in Chinese with English abstract).

    Yu J, Guo L, Li J, et al. 2016. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China[J]. Lithos, 256/257: 250−268.

    Yu J, Ji B, Guo L, et al. 2018. Geological characteristics and age determination of the Palaeoproterozoic Gudongjing Group complex in the Beishan Mountain, Gansu Province[J]. Geological Bulletin of China, 37(4): 704−715 (in Chinese with English abstract).

    Yu J, Li X, Wang G, et al. 2012. Zircon U−Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu−Inner Mongolia border area and their significance[J]. Geological Bulletin of China, 31(12): 2038−2045 (in Chinese with English abstract).

    Yuan Y, Zong K, Cawood P A, et al. 2019. Implication of Mesoproterozoic (~1.4 Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research, 327: 314−326. doi: 10.1016/j.precamres.2019.03.014

    Yuan Y, Zong K, He Z, et al. 2015. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research, 266: 409−424. doi: 10.1016/j.precamres.2015.05.034

    Zhang G, Xin H, Duan L, et al. 2020a. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J]. Earth Sci, 47(9): 3258−3269 (in Chinese with English abstract).

    Zhang J, Cunningham D. 2012a. Kilometer−scale refolded folds caused by strike−slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009.

    Zhang W, Feng J, Zheng R, et al. 2011. LA−ICP MS zircon U−Pb ages of the granites from the south of Yin'aoxia and their tectonic significances[J]. Acta Petrologica Sinica, 27(6): 1649−1661 (in Chinese with English abstract).

    Zhang W, Pease V, Meng Q, et al. 2015a. Timing, petrogenesis, and setting of granites from the southern Beishan late Palaeozoic granitic belt, Northwest China and implications for their tectonic evolution[J]. International Geology Review, 57(16): 1975−1991. doi: 10.1080/00206814.2015.1045944

    Zhang W, Pease V, Meng Q, et al. 2017. Recognition of a Devonian‐early Mississippian plutonic belt in the eastern Beishan area, Northwest China, and its tectonic implications[J]. Geological Journal, 53(3): 803−819.

    Zhang W, Pease V, Wu T, et al. 2012b. Discovery of an adakite−like pluton near Dongqiyishan (Beishan, NW China) — Its age and tectonic significance[J]. Lithos, 142/143: 148−160.

    Zhang W, Wu T R, He Y K, et al. 2010. LA−ICP−MS zircon U−Pb ages of Xijianquanzi alkali−rich potassium−high granites in Beishan, Gansu Province, and their tectonic significance[J]. Acta petrologica et mineralogica, 29(6): 719−731 (in Chinese with English abstract).

    Zhang W, Wu T, Zheng R, et al. 2012c. Post−collisional Southeastern Beishan granites: Geochemistry, geochronology, Sr–Nd–Hf isotopes and their implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 58: 51−63. doi: 10.1016/j.jseaes.2012.07.004

    Zhang Y, Dostal J, Zhao Z, et al. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust–mantle interaction[J]. Gondwana Research, 20(4): 816−830. doi: 10.1016/j.gr.2011.03.008

    Zhang Y Y, Guo Z J, 2008. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 24(4): 803−809 (in Chinese with English abstract).

    Zhang Y, Yuan C, Sun M, et al. 2015b. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere–lithosphere interaction in response to slab break−off[J]. Lithos, 233: 174−192. doi: 10.1016/j.lithos.2015.04.001

    Zhang Z, Duan B, Meng Q, et al. 2017. LA−ICP−MS zircon U−Pb dating of amphibolites of the Beishan group in the Beishan area, Inner Mongolia and its geological significance[J]. Geology and Exploration, 53(6): 1129−1139 (in Chinese with English abstract).

    Zhang Z, Xin H, Cheng H, et al. 2020b. The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan−Baiheshan ophiolite belt[J]. Geological Bulletin of China, 39(9): 1389−1403 (in Chinese with English abstract).

    Zhao H, Liang J, Wang J, et al. 2020. Geochronology, geochemical characteristics and tectonic significance of the Shazaoyuan composite pluton in the southern Beishan Mountains, Gansu Province, China[J]. Acta Geologica Sinica, 94(2): 396−425 (in Chinese with English abstract).

    Zhao Z, Guo Z, Wang Y, 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu province, northwest China[J]. Acta Petrologica Sinica, 23(8): 1847−1860 (in Chinese with English abstract).

    Zheng R, Li J, Xiao W, et al. 2018. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 107(2): 729−755. doi: 10.1007/s00531-017-1525-2

    Zheng R, Li J, Zhang J, et al. 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high−Mg diorite in the southern Beishan[J]. Lithos, 358−359: 105406. doi: 10.1016/j.lithos.2020.105406

    Zheng R, Wu T, Zhang W, et al. 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463−475.

    Zheng R, Wu T, Zhang W, et al. 2012a. Geochemical characteristics and tectonic setting of the Yueyashan−Xichangjin ophiolite in the Beishan area[J]. Acta Geologica Sinica, 86(6): 961−971 (in Chinese with English abstract).

    Zheng R, Wu T, Zhang W, et al. 2012b. Early Devonian tectono−magmatic events in the Middle Beishan, Gansu Province: evidence from chronology and geochemistry of Gongpoquan Granite[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(4): 603−616 (in Chinese with English abstract).

    Zheng Y, Zhang Q, Wang Y, et al. 1996. Great Jurassic thrust sheets in Beishan (North Mountains)−−Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111−1126.

    Zhou G, 1988. A discovery of the ophiolite suite on the northeastern margin of Talimu palaeo−continent in the Caledonian stage and its significance in tectonics[J]. Journal of Nanjing University (Natural Sciences Edition), 24(1): 39−54 (in Chinese with English abstract).

    Zhou G, Chen X, Zhao J. 2001. The metamorphic rocks associated with the Shibanjing−Xiaohuangshan Ophiolite from the Inner Mongolia Autonomous Region and its evolution history[J]. Geological Journal of China Universities, 7(3): 329−344 (in Chinese with English abstract).

    Zhu J, Lü X, Peng S, et al. 2015. LA−ICP−MS zircon U−Pb geochronology and geochemical characteristics of the quartz syenite porphyry in the Xiaoxigong gold deposit and their geological implications[J]. Geological Bulletin of China, 34(8): 1460−1469 (in Chinese with English abstract).

    Zong K, Klemd R, Yuan Y, et al. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high−grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010

    Zuo G, Liu C, Bai W, et al. 1995. Volcano−molasse geological structure and geochemical signature in Devonian period collision orogenic in Beishan, Gansu−Inner Mongolia[J]. Acta Geologica Gansu, 4(1): 35−43 (in Chinese with English abstract).

    Zuo G, Liu Y, Liu C. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 12(1): 1−15 (in Chinese with English abstract).

    Zuo G, Zhang S, He G, et al. 1990. Early Paleozoic plate tectonics in Beishan area[J]. Scientia Geologia Sinica, 25(4): 305−314 (in Chinese with English abstract).

    白荣龙, 虎金荣, 赵甫峰, 等. 2022a. 甘肃北山造山带双尖山金矿区正长花岗岩锆石U−Pb年龄和Hf同位素特征及地质意义[J]. 矿物岩石地球化学通报, 41(2): 274−286.
    白荣龙, 虎金荣, 赵甫峰, 等. 2022b. 北山造山带红柳河槽-跃进山地区石炭纪花岗岩成因及构造岩浆演化研究[J]. 岩石学报, 38(3): 713−742.
    陈超, 潘志龙, 修迪, 等. 2017. 北山地区红柳园组沉积时代、沉积环境及源区构造背景分析[J]. 沉积学报, 35(3): 470−479.
    陈智斌, 于洋, 薄海军, 2020. 内蒙古额济纳地区奥陶纪火山岩地球化学特征及其地质意义[J]. 地球科学, 45(2): 503−518.
    杜庆祥, 伍赛男, 张永, 等. 2023. 内蒙古北山造山带圆包山—希热哈达地区白山组火山岩锆石U−Pb年龄、地球化学特征及对古亚洲洋俯冲作用的启示[J]. 地质通报, 42(11): 1875−1893. doi: 10.12097/j.issn.1671-2552.2023.11.007
    冯继承, 张文, 吴泰然, 等. 2012. 甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义[J]. 北京大学学报(自然科学版), 48(1): 61−70.
    甘肃省地质调查院. 2001. 中华人民共和国地质图: K47 C 003001(马鬃山幅): 1: 25万[R].
    甘肃省地质局第二区域地质测量队. 1969. 中华人民共和国地质图: K-47-XIX 牛圈子幅(1: 20万)[R].
    高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71. doi: 10.3969/j.issn.0001-5717.2019.01.004
    龚全胜, 刘明强, 李海林, 等. 2002. 甘肃北山造山带类型及基本特征[J]. 西北地质, 35(3): 28−34. doi: 10.3969/j.issn.1009-6248.2002.03.004
    管诰, 郑小明, 肖昱, 等. 2022. 甘肃红石山北泥盆纪雀儿山群火山岩锆石U−Pb年龄及其岩石地球化学特征[J]. 矿产勘查, 13(12): 1747−1760.
    郭召杰, 史宏宇, 张志诚, 等. 2006. 新疆甘肃交界红柳河蛇绿岩中伸展构造与古洋盆演化过程[J]. 岩石学报, 22(1): 95−102.
    何世平, 周会武, 任秉琛, 等. 2005. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 38(3): 6−15. doi: 10.3969/j.issn.1009-6248.2005.03.002
    贺振宇, 孙立新, 毛玲娟, 等. 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U−Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 60(4): 389−399.
    贺振宇, 宗克清, 姜洪颖, 等. 2014. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 30(8): 2324−2338.
    侯青叶, 王忠, 刘金宝, 等. 2012. 北山月牙山蛇绿岩地球化学特征及SHRIMP定年[J]. 现代地质, 26(5): 1008−1018. doi: 10.3969/j.issn.1000-8527.2012.05.022
    胡小春, 杨镇熙, 康维良, 等. 2023. 甘肃北山前红泉二长花岗岩地球化学特征、锆石U−Pb年龄及其地质意义[J]. 矿物岩石, 43(4): 49−59.
    胡新茁, 杨济远, 邓雯, 等. 2024. 内蒙古北山地区小黄山一带片麻状花岗岩形成时代、成因及构造环境[J]. 地质通报, 43(6): 1059−1071.
    胡新茁, 赵国春, 胡新悦, 等. 2015. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 34(2/3): 425−436. doi: 10.3969/j.issn.1671-2552.2015.02.019
    黄博涛, 王国强, 卜涛, 等. 2021. 甘肃北山野马大泉志留纪花岗岩的成因和构造意义[J]. 地球科学, 46(11): 3993−4005.
    黄增保, 金霞. 2006. 甘肃红石山蛇绿岩地球化学特征及构造环境[J]. 地质科学, 41(4): 601−611. doi: 10.3321/j.issn:0563-5020.2006.04.005
    霍宁, 郭谦谦, 陈艺超, 等. 2022. 北山中部古硐井群物源区性质与构造意义[J]. 岩石学报, 38(4): 1253−1279. doi: 10.18654/1000-0569/2022.04.17
    贾元琴, 赵志雄, 许海, 等. 2016. 北山风雷山地区白山组流纹岩LA−ICP−MS锆石U−Pb年龄及构造环境[J]. 中国地质, 43(1): 91−98. doi: 10.3969/j.issn.1000-3657.2016.01.006
    姜洪颖, 贺振宇, 宗克清, 等. 2013. 北山造山带南缘北山杂岩的锆石U−Pb定年和Hf同位素研究[J]. 岩石学报, 29(11): 3949−3967.
    李春昱, 王荃, 刘雪亚, 汤耀庆. 1984. 亚洲大地构造的演化[J]. 中国地质科学院院报, 10: 3−11.
    李锦轶, 肖序常, 汤耀庆, 等. 1992. 新疆北部金属矿产与板块构造[J]. 新疆地质, 10(2): 138−146.
    李敏, 任邦方, 段霄龙, 等. 2020. 内蒙古北山造山带小红山地区三叠纪花岗岩成因——来自锆石U−Pb年龄和Hf同位素的约束[J]. 地质通报, 39(9): 1422−1435.
    李敏, 辛后田, 任邦方, 等. 2019. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J]. 地球科学, 44(1): 328−343.
    李舢. 2013. 北山—内蒙古地区三叠纪花岗岩及其构造意义[D]. 中国地质科学院博士学位论文.
    李舢, 王涛, 童英, 等. 2009. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义[J]. 岩石矿物学杂志, 28(5): 407−422. doi: 10.3969/j.issn.1000-6524.2009.05.001
    李舢, 王涛, 童英, 等. 2011. 北山辉铜山泥盆纪钾长花岗岩锆石 U−Pb 年龄, 成因及构造意义[J]. 岩石学报, 27(10): 3055−3070.
    李向民, 余吉远, 王国强, 等. 2012. 甘肃北山地区芨芨台子蛇绿岩LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质通报, 31(12): 2025−2031. doi: 10.3969/j.issn.1671-2552.2012.12.011
    李向民, 余吉远, 王国强, 等. 2011. 甘肃北山红柳园地区泥盆系三个井组和墩墩山群LA−ICP−MS锆石U−Pb测年及其意义[J]. 地质通报, 30(10): 1501−1507. doi: 10.3969/j.issn.1671-2552.2011.10.003
    李小菲, 张成立, 李雷, 等. 2015. 甘肃北山明舒井岩体形成年龄、地球化学特征及其地质意义[J]. 岩石学报, 31(9): 2521−2538.
    刘广, 张正平, 董洪凯, 等. 2021. 内蒙古北山地区标山东一带早石炭世二长花岗岩地球化学、年代学特征及其地质意义[J]. 矿物岩石, 41(4): 32−43. doi: 10.3969/j.issn.1001-6872.2021.4.kwys202104004
    吕鑫, 于晓飞, 杜泽忠, 等. 2022. 甘肃北山南带晚泥盆世岩浆事件: 锆石U−Pb年代学、地球化学和Sr−Nd−Hf同位素体系约束[J]. 岩石学报, 38(3): 693−712. doi: 10.18654/1000-0569/2022.03.07
    孟令顺, 管烨, 齐立, 等. 1995. 格尔木-额济纳旗地学断面及其邻区重力场与深部地壳构造[J]. 地球物理学报, 38: 36−45. doi: 10.3321/j.issn:0001-5733.1995.z2.005
    孟庆涛, 徐翠, 张正平, 等. 2021. 内蒙古北山地区阿民乌素公婆泉组变质火山岩年代学、地球化学特征及地质意义[J]. 矿物岩石, 41(1): 67−79.
    牛文超, 辛后田, 段连峰, 等. 2019. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 46(5): 977−994. doi: 10.12029/gc20190503
    牛文超, 辛后田, 段连峰, 等. 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征, 锆石U−Pb 年龄及其对古亚洲洋演化的指示[J]. 地质通报, 39(9): 1317−1329.
    牛亚卓, 卢进才, 刘池阳, 等. 2018. 甘肃北山地区上石炭统——下二叠统干泉组的时代、分布及其构造意义[J]. 地质论评, 64(4): 806−827.
    牛亚卓, 宋博, 周俊林, 等. 2020. 中亚造山带北山南部下泥盆统火山—沉积地层的岩相、时代及古地理意义[J]. 地质学报, 94(2): 615−633. doi: 10.3969/j.issn.0001-5717.2020.02.017
    潘金花, 郭召杰, 刘畅, 等. 2008. 新甘交界红柳河地区二叠纪玄武岩年代学, 地球化学及构造意义[J]. 岩石学报, 24(4): 793−802.
    潘志龙, 王硕, 张立国, 等. 2021. 北山造山带东段早志留世岩浆演化特征——来自基东花岗闪长岩的地球化学和年代学约束[J]. 河北地质大学学报, 44(6): 1−10.
    任邦方, 任云伟, 牛文超, 等. 2019. 内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U−Pb年龄、Hf同位素特征及其地质意义[J]. 地球科学, 44(1): 298−311.
    任秉琛, 何世平, 姚文光, 等. 2001. 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 34(2): 21−27. doi: 10.3969/j.issn.1009-6248.2001.02.004
    任云伟, 任邦方, 牛文超, 等. 2019. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 44(1): 312−327.
    宋东方, 肖文交, 韩春明, 等. 2018. 北山中部增生造山过程: 构造变形和40Ar−39Ar年代学制约[J]. 岩石学报, 34(7): 2087−2098.
    宋泰忠, 王瑾, 林海, 等. 2008. 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 41(3): 55−63. doi: 10.3969/j.issn.1009-6248.2008.03.005
    孙海瑞, 吕志成, 于晓飞, 等. 2020. 甘肃柳园地区晚三叠世辉绿岩脉年代学和地球化学研究及其对北山造山带早中生代构造演化的指示[J]. 岩石学报, 36(6): 1755−1768. doi: 10.18654/1000-0569/2020.06.07
    孙新春, 王怀涛, 李通国, 等. 2021. 甘肃北山双峰山花岗闪长岩锆石LA−ICP−MS定年及其构造意义[J]. 岩石矿物学杂志, 40(2): 171−184. doi: 10.3969/j.issn.1000-6524.2021.02.002
    唐文轶, 徐磊, 费光春, 等. 2024. 甘肃省明水地区石英闪长岩年代学、地球化学特征及其地质意义[J]. 矿物岩石, 44(2): 30−46.
    王二腾, 翟新伟, 陈万峰, 等. 2024. 北山地区发现与古亚洲洋打开相关的新元古代岩浆岩[J/OL]. 地质通报, https://link.cnki.net/urlid/11.4648.P.20240229.1407.004.
    王二腾, 武磊, 翟新伟, 等. 2022. 中亚造山带南缘甘肃北山地区花牛山闪长玢岩地球化学特征及地质意义[J]. 地球科学, 47(9): 3285−3300. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209012
    王方成, 魏志军, 张国英, 等. 2004. 甘肃北山北带红石山地区志留纪地层新资料[J]. 地质通报, 23(11): 1162−1163. doi: 10.3969/j.issn.1671-2552.2004.11.021
    王国强, 李向民, 徐学义, 等. 2014. 甘肃北山红石山蛇绿岩锆石U−Pb年代学研究及地质意义[J]. 岩石学报, 30(6): 1685−1694.
    王国强, 李向民, 徐学义, 等. 2021. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 40(1): 71−81.
    王红杰, 郭峰, 赵海波, 等. 2020. 甘肃北山马鬃山地区志留纪侵入岩的厘定及其构造意义[J]. 甘肃地质, 29(3−4): 13−21.
    王立社, 杨建国, 谢春林, 等. 2007. 甘肃北山火石山地区早古生代蛇绿混杂岩的发现及其地质意义[J]. 现代地质, 21(3): 451−456. doi: 10.3969/j.issn.1000-8527.2007.03.003
    卫彦升, 闫涛, 杨五宝, 等. 2020. 内蒙古北山造山带北带晚古生代地层时空格架的建立[J]. 地质通报, 39(9): 1367−1388.
    魏学平, 龚全胜, 梁明宏, 等. 2000. 马鬃山隆起区前长城系敦煌岩群变质变形和演化特征[J]. 甘肃地质学报, 9(1): 36−43.
    魏学平, 龚全胜, 梁明宏, 等. 1999. 北山草呼勒哈德地区早元古代火山岩特征及构造环境探讨[J]. 甘肃地质学报, 8(2): 23−27.
    武鹏, 王国强, 李向民, 等. 2012. 甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J]. 地质通报, 31(12): 2032−2037. doi: 10.3969/j.issn.1671-2552.2012.12.012
    肖文交, 舒良树, 高俊, 等. 2008. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 26(1): 4−8. doi: 10.3969/j.issn.1000-8845.2008.01.002
    肖文交, 宋东方, Windley B F, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学, 49(10): 1512−1545.
    谢建强, 第鹏飞, 杨婧, 等. 2018. 甘肃北山地区花牛山群变英安岩LA−ICP−MS锆石U−Pb年龄、地球化学特征及其地质意义[J]. 西北地质, 51(1): 54−64. doi: 10.3969/j.issn.1009-6248.2018.01.007
    辛后田, 牛文超, 田健, 等. 2020. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 39(9): 1297−1316.
    许伟, 徐学义, 牛亚卓, 等. 2019. 北山南部二叠纪海相玄武岩地球化学特征及其构造意义[J]. 地质学报, 93(8): 1928−1953. doi: 10.3969/j.issn.0001-5717.2019.08.008
    闫涛, 辛后田, 卫彦升, 等. 2020. 对内蒙古北山造山带洋-陆转换认识的新思考——来自大红山南泥盆纪弧花岗岩的证据[J]. 地质通报, 39(9): 1341−1366.
    杨合群, 李英, 赵国斌, 等. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质, 43(1): 26−36. doi: 10.3969/j.issn.1009-6248.2010.01.002
    杨婧. 2019. 北山花牛山早古生代—早中生代花岗岩类地球化学特征及构造意义研究[D]. 兰州大学硕士学位论文.
    杨五宝, 闫涛, 张永, 等. 2020. 内蒙古北山造山带小红山TTG岩石锆石U−Pb年龄、地球化学特征及其对百合山构造带性质的制约[J]. 地质通报, 39(9): 1404−1421.
    杨镇熙, 丁书宏, 张晶, 等. 2021a. 北山造山带早泥盆世埃达克岩的发现及地质意义[J]. 岩石矿物学杂志, 40(2): 185−201.
    杨镇熙, 赵吉昌, 荆德龙, 等. 2021b. 甘肃北山前红泉地区斑状花岗闪长岩年代学、地球化学特征及其构造意义[J]. 矿物岩石地球化学通报, 40(1): 228−241.
    杨镇熙, 赵青虎, 张晶, 等. 2022. 甘肃北山地区黑山头石英二长闪长岩年代学、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 41(6): 1165−1177.
    叶晓峰, 宗克清, 张泽明, 等. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 32(2/3): 307−317. doi: 10.3969/j.issn.1671-2552.2013.02.010
    于福生, 李金宝, 王涛. 2006. 东天山红柳河地区蛇绿岩U−Pb同位素年龄[J]. 地球学报, 27(3): 213−216. doi: 10.3321/j.issn:1006-3021.2006.03.004
    余吉远, 计波, 过磊, 等. 2018. 甘肃北山地区古硐井群地质特征与时代厘定[J]. 地质通报, 37(4): 704−715.
    余吉远, 李向民, 王国强, 等. 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA−ICP−MS锆石U−Pb年龄及地质意义[J]. 地质通报, 31(12): 2038−2045. doi: 10.3969/j.issn.1671-2552.2012.12.013
    张国震, 辛后田, 段连峰, 等. 2022. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J]. 地球科学, 47(9): 3258−3269. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209010
    张文, 冯继承, 郑荣国, 等. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA−ICP MS定年及其构造意义[J]. 岩石学报, 27(6): 1649−1661.
    张文, 吴泰然, 贺元凯, 等. 2010. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA−ICP−MS定年及其构造意义[J]. 岩石矿物学杂志, 29(6): 719−731. doi: 10.3969/j.issn.1000-6524.2010.06.009
    张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 24(4): 803−809.
    张正平, 段炳鑫, 孟庆涛, 等. 2017. 内蒙古北山地区北山岩群斜长角闪岩LA−ICP−MS锆石U−Pb定年及其地质意义[J]. 地质与勘探, 53(6): 1129−1139. doi: 10.3969/j.issn.0495-5331.2017.06.008
    张正平, 辛后田, 程海峰, 等. 2020. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 39(9): 1389−1403.
    赵宏刚, 梁积伟, 王驹, 等. 2020. 甘肃北山南带沙枣园复式岩体年代学、地球化学特征及其构造意义[J]. 地质学报, 94(2): 396−425. doi: 10.3969/j.issn.0001-5717.2020.02.004
    赵泽辉, 郭召杰, 王毅. 2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J]. 岩石学报, 23(8): 1847−1860. doi: 10.3969/j.issn.1000-0569.2007.08.007
    郑荣国, 吴泰然, 张文, 等. 2012a. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 86(6): 961−971.
    郑荣国, 吴泰然, 张文, 等. 2012b. 甘肃北山中带早泥盆世的构造-岩浆作用: 来自公婆泉花岗岩体年代学和地球化学证据[J]. 北京大学学报: 自然科学版, 48(4): 603−616.
    周国庆. 1988. 古塔里木大陆东北缘加里东期蛇绿岩套的发现及其构造意义[J]. 南京大学学报(自然科学), 24(1): 39−54.
    周国庆, 陈小明, 赵建新. 2001. 内蒙石板井-小黄山与蛇绿岩相伴的变质岩及其演化[J]. 高校地质学报, 7(3): 329−344. doi: 10.3969/j.issn.1006-7493.2001.03.009
    朱江, 吕新彪, 彭三国, 等. 2015. 甘肃北山小西弓金矿区石英正长斑岩LA−ICP−MS锆石U−Pb年龄和地球化学特征[J]. 地质通报, 34(8): 1460−1469. doi: 10.3969/j.issn.1671-2552.2015.08.006
    左国朝, 刘春燕, 白万成, 等. 1995. 北山泥盆纪碰撞造山火山-磨拉石地质构造及地球化学特征[J]. 甘肃地质学报, 4(1): 35−43.
    左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 12(1): 1−15.
    左国朝, 张淑玲, 何国琦, 等. 1990. 北山地区早古生代板块构造特征[J]. 地质科学, 25(4): 305−314.
  • 期刊类型引用(11)

    1. 刘娟娟,林一杰,张新英. 农田土水稻系统中硒与镉的相互关系研究. 农业与技术. 2025(01): 1-5 . 百度学术
    2. 谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 . 百度学术
    3. 刘瑞,周卫军,彭素华,商贵铎,周雨舟,李敏. 湖南省石门县耕地土壤硒含量特征及影响因素解析. 土壤通报. 2023(04): 840-847 . 百度学术
    4. Xiu-jin Liu,Ke Yang,Fei Guo,Shi-qi Tang,Ying-han Liu,Li Zhang,Hang-xin Cheng,Fei Liu. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China. China Geology. 2022(01): 1-11 . 必应学术
    5. 王蕊,陈楠,张二喜. 基于总量与形态的矿区周边土壤重金属生态风险与健康风险评估. 环境科学. 2022(03): 1546-1557 . 百度学术
    6. 吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 . 本站查看
    7. 袁宏伟,陈江均,郭腾达,吴艳君,杨敏. 巴彦淖尔市临河区狼山镇和新华镇一带富硒土壤地球化学特征及影响因素. 地质与勘探. 2022(05): 1027-1041 . 百度学术
    8. 刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 . 百度学术
    9. 杨泽,刘国栋,戴慧敏,张一鹤,肖红叶,阴雨超. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力. 地质通报. 2021(10): 1773-1782 . 本站查看
    10. 郭军,刘明,汤恒佳,廖琦,邢新丽. 湖南汨罗市范家园地区富硒土壤特征及其影响因素研究. 华南地质. 2021(04): 387-397 . 百度学术
    11. 于炎炎. 安徽砀山县土壤锌地球化学特征及影响因素. 矿产与地质. 2021(06): 1147-1155+1170 . 百度学术

    其他类型引用(2)

图(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-09-29
  • 刊出日期:  2024-12-14

目录

/

返回文章
返回