青藏高原拉萨地体中西段亚日二长花岗岩岩石成因及构造意义: 年代学、地球化学及Hf同位素证据

    陶刚, 杨远江, 杨文光, 朱利东, 祁欣, 卢志友, 何碧

    陶刚, 杨远江, 杨文光, 朱利东, 祁欣, 卢志友, 何碧. 2021: 青藏高原拉萨地体中西段亚日二长花岗岩岩石成因及构造意义: 年代学、地球化学及Hf同位素证据. 地质通报, 40(8): 1344-1356.
    引用本文: 陶刚, 杨远江, 杨文光, 朱利东, 祁欣, 卢志友, 何碧. 2021: 青藏高原拉萨地体中西段亚日二长花岗岩岩石成因及构造意义: 年代学、地球化学及Hf同位素证据. 地质通报, 40(8): 1344-1356.
    TAO Gang, YANG Yuanjiang, YANG Wenguang, ZHU Lidong, QI Xin, LU Zhiyou, HE Bi. 2021: Petrogenesis and tectonic significance of the Yari granites in the west-middle segment of the Lhasa Terrane Tibet Evidences from geochronology geochemistry and Hf isotope. Geological Bulletin of China, 40(8): 1344-1356.
    Citation: TAO Gang, YANG Yuanjiang, YANG Wenguang, ZHU Lidong, QI Xin, LU Zhiyou, HE Bi. 2021: Petrogenesis and tectonic significance of the Yari granites in the west-middle segment of the Lhasa Terrane Tibet Evidences from geochronology geochemistry and Hf isotope. Geological Bulletin of China, 40(8): 1344-1356.

    青藏高原拉萨地体中西段亚日二长花岗岩岩石成因及构造意义: 年代学、地球化学及Hf同位素证据

    基金项目: 

    中国地质调查局项目《西藏唐加地区1:5万区域地质调查》 DD20160015

    西南科技大学博士基金 18zx7115

    详细信息
      作者简介:

      陶刚(1988-), 男, 博士, 讲师, 从事青藏高原区域地质及沉积盆地分析。E-mail: taogangswust@163.com

      通讯作者:

      杨文光(1980-), 男, 博士, 讲师, 从事青藏高原区域地质研究。E-mail: yangwg1018@gmail.com

    • 中图分类号: P534.52;P588.12+1;P597

    Petrogenesis and tectonic significance of the Yari granites in the west-middle segment of the Lhasa Terrane Tibet Evidences from geochronology geochemistry and Hf isotope

    • 摘要:

      广泛分布在拉萨地体的中生代岩浆岩越来越受到地质学者的关注和研究,其研究成果对拉萨地体演化过程具有重要地质意义,而拉萨地体西段晚侏罗世亚日二长花岗岩体岩石成因、岩浆源区性质目前尚未得到很好地约束。对拉萨地体中西段亚日二长花岗岩体进行岩石学、锆石U-Pb年代学、地球化学及Lu-Hf同位素特征研究,结果显示岩体锆石U-Pb年龄为152.1±1.5 Ma,表明其形成于晚侏罗世。二长花岗岩SiO2含量为73.55%~74.19%,P2O5为0.12%~0.14%,铝饱和指数(A/CNK)为1.07~1.23,主要为一套过铝质高钾钙碱性系列。稀土元素总量(ΣREE)在104.12×10-6~247.22×10-6之间,(La/Yb)N值为32.14~51.03,明显富集轻稀土元素,具有明显的负Eu异常(δEu=0.54~0.68),稀土元素配分型式呈右倾特征;微量元素特征显示,样品具有富集大离子亲石元素(LILE)Rb、Th、U,亏损高场强元素(HFSE)Nb、Ti的特征,整体显示其为一套高钾钙碱性系列强过铝质S型花岗岩。岩石学、年代学及地球化学研究综合表明,新特提斯洋壳向北和班公湖-怒江洋壳向南的双向俯冲作用引起冈底斯微陆块与下察隅岩浆弧带发生陆-弧碰撞,而被板块俯冲作用卷入新生地壳的泥质岩夹杂砂岩在受热后抬升减压过程中发生部分熔融,形成晚侏罗世亚日S型二长花岗岩,同时研究区在晚侏罗世可能处于构造背景体制的转换阶段,即可能处于由俯冲向碰撞作用过渡的演化过程。

      Abstract:

      More geological researchers are focusing on the Mesozoic magmatic activities of Lhasa terrane, which is significant for the evolution of the Lhasa terrane. But the petrogenesis and magmatic origin of the Late Jurassic Yari Granites(YRG) remain poorly constrained. This study presents petrology, zircon U-Pb ages, geochemistry, and Lu-Hf isotopic data of YRG. The zircon U-Pb age of the pluton is 152.1±1.5 Ma, indicating that it was formed in the Late Jurassic. The YRG are mainly adamellite characterized by high silicon (SiO2=73.55%~74.19%), rich alkali, peraluminous and poor MgO, MnO and P2O5(0.12%~0.14%). It belongs to the series of high potassium calc-alkaline with high degree of differentiation. It is characterized by ΣREE of 104.12×10-6~247.22×10-6, (La/Yb) N of 32.14~51.03, enrichment of light rare earth elements(ΣLREE), obvious negative Eu anomaly (δEu=0.54~0.68) and right-dipping distribution pattern of rare earth elements. It is enriched in Rb, Th, U and other large ion lithophile elements, and depleted in Nb, Ti. It belongs to highly differentiated S-type granite. Its petrology, geochronology and geochemistry indicate that the double subduction of the Neo-Tethys' northward subduction and Bangong-Nujiang Ocean' southward subduction led to the collision between the Gandese micro-continent and Chayu magmatic arc. The YRG were highly fractionated S-type adamellite and the source area might be related to the partial melting of mudstone with greywacke under the tectonic decompression settings. It is proposed that during the Late Jurassic, the Lhasa terrane area experienced a tectonic transformation from subduction to collision.

    • 致谢: 感谢审稿专家的建设性意见,野外工作得到了原武警黄金部队十一支队的同事、战士们的大力支持,同时还有朱家山工作室师兄弟们野外的帮助,分析测试单位包志安老师在测试工作中给予很大的支持,在此一并感谢。
    • 图  1   青藏高原构造单元图(a)及亚日地区地质简图(b)

      BNSZ—班公湖-怒江缝合带;LSSZ—龙木错-双湖缝合带;JSSZ—金沙江缝合带;IYSZS—雅鲁藏布江缝合带

      Figure  1.   Tectonic division of the Tibet (a) and simplified geological map of the Yari Granites(YRG)

      图  2   亚日二长花岗岩野外露头及显微照片

      Qz—石英;Pl—斜长石;Kf—钾长石;Bt—黑云母

      Figure  2.   Field and microphotographs of YRG

      图  3   亚日花岗岩典型锆石阴极发光(CL)图像

      Figure  3.   CL images of typical zircons of YRG

      图  4   亚日花岗岩锆石U-Pb谐和年龄图解

      Figure  4.   Zircon U-Pb concordia diagram of YRG

      图  5   亚日花岗岩TAS图解(a)和Si2O-K2O图解(b)

      Figure  5.   Diagrams of TAS (a) and SiO2-K2O (b) for YRG

      图  6   亚日花岗岩A/CNK-A/NK图解

      Figure  6.   Diagram of A/CNK-A/NK for YRG

      图  7   亚日花岗岩稀土元素球粒陨石标准化分布型式图解(a)和微量元素原始地幔标准化多元素图解(b)

      Figure  7.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized multielement diagram (b) for YRG

      图  8   亚日花岗岩判别图解

      Figure  8.   Discrimination diagrams of YRG

      图  9   锆石年龄-εHf(t)图解(a)和Rb/Sr-Rb/Ba协变关系图(b)

      Figure  9.   Diagram of zircon ages-εHf(t) (a) and Rb/Sr-Rb/Ba discrimination diagram(b)

      图  10   亚日二长花岗岩Y-Nb(a)和(Y+Nb)-Rb(b)构造环境判别图[43]

      Figure  10.   Y-Nb(a) and (Y+Nb)-Rb(b) discrimination diagrams for the tectonic interpretation of YRG

      表  1   亚日花岗岩锆石LA- MC-ICP-MS U-Th-Pb年龄数据

      Table  1   LA-MC-ICP-MS U-Th-Pb data of zircon from YRG

      编号 含量/10-6 Th/U 同位素比值 年龄/Ma 谐和度/%
      Pb Th U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U
      1 9 82 346 0.24 0.1513 0.0062 0.0469 0.0020 0.0234 0.0002 143 5.5 42.7 100.0 149 1.5 95
      2 68 141 2797 0.05 0.1795 0.0034 0.0533 0.0010 0.0243 0.0002 168 2.9 343 40.7 155 1.2 92
      3 26 391 985 0.40 0.1748 0.0047 0.0534 0.0015 0.0237 0.0002 164 4.1 346 63.0 151 1.2 92
      4 124 46.3 5114 0.01 0.1780 0.0031 0.0528 0.0010 0.0245 0.0002 166 2.7 320 40.7 156 1.2 93
      5 8 185 263 0.71 0.1590 0.0063 0.0481 0.0019 0.0240 0.0003 150 5.5 106 96.3 153 1.9 97
      6 18 226 698 0.32 0.1760 0.0052 0.0543 0.0016 0.0234 0.0002 165 4.5 383 66.7 149 1.2 90
      7 27 141 1117 0.13 0.1685 0.0042 0.0514 0.0013 0.0238 0.0002 158 3.7 257 59.2 151 1.1 95
      8 34 225 1252 0.18 0.1573 0.0038 0.0485 0.0012 0.0235 0.0002 148 3.4 124 62.0 150 1.1 99
      9 34 44 1373 0.03 0.1710 0.0044 0.0506 0.0012 0.0244 0.0002 160 3.8 233 57.4 156 1.4 97
      10 27 235 1021 0.23 0.1685 0.0046 0.0497 0.0014 0.0246 0.0002 158 4.0 189 66.7 157 1.2 99
      11 13 139 502 0.28 0.1638 0.0059 0.0498 0.0018 0.0239 0.0002 154 5.1 187 118 153 1.6 99
      12 51 91 2103 0.04 0.1657 0.0034 0.0490 0.0010 0.0245 0.0002 156 3.0 150 50.0 156 1.0 99
      13 59 227 2446 0.09 0.1596 0.0035 0.0490 0.0010 0.0236 0.0002 150 3.1 146 50.0 150 1.1 99
      14 42 38 1781 0.02 0.1562 0.0035 0.0479 0.0011 0.0236 0.0002 147 3.0 94.5 51.8 150 1.4 98
      15 22 385 776 0.50 0.1803 0.0067 0.0522 0.0021 0.0251 0.0003 168 5.8 300 95 160 1.7 94
      16 141 121 5582 0.02 0.1746 0.0038 0.0498 0.0009 0.0253 0.0003 163 3.3 183 45.4 161 2.0 98
      17 72 62. 2726 0.02 0.1855 0.0040 0.0506 0.0010 0.0264 0.0003 173 3.4 220 80.5 168 1.7 97
      18 59 153 357 0.43 1.4827 0.0308 0.0730 0.0015 0.1468 0.0010 923 12.6 1013 40.7 883 5.6 95
      19 17 27 100 0.28 1.6229 0.0456 0.0719 0.0018 0.1623 0.0023 979 17.7 983 51.5 970 12.5 99
      20 97 208 310 0.67 3.6576 0.0649 0.1038 0.0016 0.2543 0.0028 1562 14.2 1694 27.8 1461 14.6 93
      21 176 145 213 0.68 21.5819 0.3443 0.2556 0.0041 0.6105 0.0041 3165 15.6 3220 25.6 3072 16.4 97
      下载: 导出CSV

      表  2   亚日二长花岗岩锆石LA-MC-ICP-MS Lu-Hf同位素数据

      Table  2   LA-MC-ICP-MS Lu-Hf isotope data of zircon from YRG

      编号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hf(t) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf
      1 149 0.017160 0.000579 0.000048 0.282075 0.000018 0.282073 -21.46 1639 2557 -0.98
      2 155 0.019246 0.000620 0.000028 0.282084 0.000016 0.282082 -21.01 1628 2533 -0.98
      3 151 0.038154 0.001228 0.000044 0.282133 0.000022 0.282130 -19.40 1586 2431 -0.96
      4 156 0.038054 0.001183 0.000019 0.282118 0.000015 0.282115 -19.82 1605 2461 -0.96
      5 161 0.027729 0.000841 0.000019 0.282028 0.000017 0.282026 -22.86 1715 2655 -0.97
      6 153 0.034664 0.001122 0.000025 0.282150 0.000018 0.282147 -18.75 1558 2391 -0.97
      7 970 0.025590 0.000936 0.000036 0.282320 0.000021 0.282303 4.88 1313 1519 -0.97
      8 168 0.021756 0.000655 0.000004 0.282208 0.000017 0.282206 -16.33 1459 2250 -0.98
      9 160 0.021364 0.000682 0.000026 0.282140 0.000019 0.282138 -18.92 1554 2407 -0.98
      10 149 0.010359 0.000334 0.000009 0.282136 0.000018 0.282135 -19.26 1545 2420 -0.99
      11 1694 0.026091 0.000887 0.000018 0.281899 0.000021 0.281871 5.89 1895 2016 -0.97
      12 3220 0.029687 0.001171 0.000028 0.280746 0.000019 0.280673 -1.49 3487 3645 -0.96
      13 1013 0.023558 0.000778 0.000012 0.282144 0.000017 0.282129 -0.32 1552 1880 -0.98
      14 151 0.009411 0.000288 0.000013 0.282120 0.000015 0.282119 -19.78 1565 2454 -0.99
      16 150 0.015485 0.000490 0.000013 0.282092 0.000017 0.282091 -20.8 1612 2519 -0.99
      17 156 0.019563 0.000607 0.000017 0.281788 0.000039 0.281786 -31.46 2033 3188 -0.98
      18 157 0.011089 0.000360 0.000035 0.282113 0.000016 0.282112 -19.90 1577 2465 -0.99
      19 153 0.030065 0.001016 0.000080 0.281821 0.000037 0.281818 -30.39 2009 3118 -0.97
      20 156 0.024600 0.000948 0.000031 0.282226 0.000021 0.282223 -16.00 1445 2219 -0.97
      21 150 0.043087 0.001333 0.000040 0.282064 0.000020 0.282060 -21.89 1687 2585 -0.96
      下载: 导出CSV

      表  3   亚日花岗岩全岩主量、微量和稀土元素组成

      Table  3   Whole-rock major, trace element and REE compositions of YRG

      样品 T-3-DH1 T-3-DH2 T-3-DH3 T-3-DH4 T-3-DH5 T-3-DH6 T-3-DH7 T-3-DH8 T-3-DH9 T-3-DH10
      SiO2 73.23 72.81 73.05 73.14 72.13 73.43 72.73 73.37 73.06 73.01
      TiO2 0.18 0.23 0.17 0.23 0.23 0.13 0.20 0.23 0.19 0.23
      Al2O3 14.43 14.20 14.50 14.61 14.17 14.38 14.84 14.44 14.42 14.54
      TFe2O3 1.07 1.42 1.05 1.41 1.41 0.78 1.14 1.50 1.37 1.34
      MnO 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.04 0.03
      MgO 0.28 0.38 0.29 0.41 0.38 0.20 0.30 0.39 0.34 0.37
      CaO 0.97 1.14 0.86 0.91 1.58 0.82 0.80 1.10 0.89 1.04
      Na2O 2.97 2.68 2.73 2.78 2.85 2.75 2.57 2.92 2.70 2.89
      K2O 5.09 5.43 5.62 5.35 5.21 5.81 5.86 5.10 5.70 5.30
      P2O5 0.09 0.18 0.11 0.12 0.12 0.09 0.14 0.12 0.14 0.14
      烧失量 1.08 1.15 1.39 1.08 1.93 1.20 1.41 1.10 1.13 1.25
      总计 98.34 98.5 98.41 98.99 98.12 98.41 98.61 99.2 98.85 98.89
      Mg# 37.90 38.40 39.20 40.40 38.60 37.40 38.00 37.70 36.60 39.20
      A/CNK 1.187 1.149 1.195 1.216 1.073 1.169 1.234 1.172 1.179 1.174
      Rb 298 298 326 286 299 314 351 307 344 273
      Sr 88.20 90.90 90.60 83.90 94.40 84.30 89.10 93.00 98.90 92.00
      Ba 279 352 315 316 312 290 341 344 348 352
      Th 24.00 28.40 20.80 26.70 27.60 15.20 25.40 32.70 26.10 28.90
      U 4.26 5.24 3.77 4.39 4.16 2.79 4.16 5.54 4.17 4.75
      Nb 14.90 18.00 15.10 17.30 17.70 12.30 19.20 20.50 22.80 16.90
      Ta 1.80 1.60 1.90 1.20 1.70 1.70 2.10 2.00 3.30 1.50
      Zr 109 174 112 133 148 60 140 171 147 159
      Hf 3.70 5.60 3.60 4.30 4.30 2.00 4.80 5.60 4.70 4.90
      Co 1.00 1.40 0.90 1.40 1.30 0.70 1.10 1.50 1.30 1.30
      Ni 0.70 1.00 0.60 1.10 0.90 0.50 0.70 0.90 1.00 0.90
      Cr 1.00 3.00 1.00 3.00 3.00 <1 2.00 1.00 1.00 1.00
      V 8.00 11.00 7.00 11.00 10.00 4.00 10.00 13.00 10.00 10.00
      Sc 1.90 2.60 2.00 2.50 2.60 1.70 3.00 3.00 2.60 2.40
      Cs 6.33 5.36 7.28 5.50 5.12 7.47 6.38 6.85 8.06 7.55
      Ga 21.00 20.10 20.60 20.10 20.40 20.10 23.30 22.20 22.10 21.40
      Cu 0.20 <0.20 0.20 <0.20 0.30 0.20 0.20 0.20 <0.20 <0.20
      Pb 45.70 49.20 45.70 44.90 43.20 49.90 48.30 45.70 47.20 50.60
      Zn 29.00 44.00 29.00 41.00 33.00 22.00 31.00 45.00 46.00 34.00
      Ti 1090 1430 1020 1350 1310 820 1270 1490 1250 1320
      La 41.90 51.30 36.50 46.90 49.80 24.60 45.60 57.50 46.60 52.50
      Ce 84.00 103.50 73.00 93.90 98.70 48.70 90.50 116.00 93.00 105.00
      Pr 8.77 10.65 7.63 9.87 10.20 5.14 9.46 12.10 9.73 10.88
      Nd 30.10 36.30 26.00 33.80 34.60 16.90 32.40 40.80 33.00 37.00
      Sm 5.51 6.85 4.75 5.72 6.39 3.11 5.92 7.38 6.09 6.61
      Eu 0.65 0.66 0.61 0.54 0.62 0.52 0.65 0.68 0.65 0.64
      Gd 4.09 5.35 3.58 4.09 4.49 2.21 4.44 5.36 4.51 4.60
      Tb 0.59 0.71 0.47 0.57 0.57 0.30 0.57 0.69 0.58 0.62
      Dy 2.67 3.65 2.32 2.71 2.87 1.30 3.05 3.45 2.76 3.15
      Ho 0.44 0.61 0.37 0.45 0.49 0.24 0.52 0.59 0.49 0.51
      Er 1.04 1.41 0.90 0.95 1.09 0.55 1.18 1.35 1.15 1.18
      Tm 0.13 0.16 0.11 0.12 0.13 0.07 0.15 0.17 0.17 0.16
      Yb 0.71 0.81 0.64 0.67 0.70 0.42 0.84 1.01 1.04 0.95
      Lu 0.09 0.11 0.10 0.09 0.09 0.06 0.11 0.14 0.15 0.14
      Y 11.50 17.40 10.50 11.80 13.40 6.50 14.80 15.90 13.20 13.90
      K 4.36 4.54 4.64 4.36 4.34 4.83 5.01 4.34 4.86 4.23
      P 420.00 810.00 490.00 590.00 580.00 420.00 710.00 580.00 670.00 620.00
      ΣREE 180.69 222.07 156.98 200.38 210.74 104.12 195.39 247.22 199.92 223.94
      LREE 170.93 209.26 148.49 190.73 200.31 98.97 184.53 234.46 189.07 212.63
      HREE 9.76 12.81 8.49 9.65 10.43 5.15 10.86 12.76 10.85 11.31
      LREE/HREE 17.51 16.34 17.49 19.76 19.21 19.22 16.99 18.37 17.43 18.80
      LaN/YbN 42.33 45.43 40.91 50.21 51.03 42.01 38.94 40.84 32.14 39.64
      δEu 0.42 0.33 0.45 0.34 0.35 0.61 0.39 0.33 0.38 0.35
      CaO/Na2O 0.33 0.43 0.32 0.33 0.55 0.30 0.31 0.38 0.33 0.36
      Nb/Ta 8.30 11.30 7.90 14.40 10.40 7.20 9.10 10.30 6.90 11.30
      Zr/Hf 29.46 31.07 31.11 30.93 34.42 30.00 29.17 30.54 31.28 32.45
      Rb/Sr 3.38 3.28 3.60 3.41 3.17 3.72 3.94 3.30 3.48 2.97
      刚玉 2.50 2.27 2.64 2.88 1.25 2.3 3.16 2.39 2.52 2.49
        注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
      下载: 导出CSV

      表  4   中拉萨地体中西段晚侏罗世代表性花岗岩体基本特征

      Table  4   General features of Late Jurassic granites in the west-middle segment of Central Lhasa Terrane

      岩体名称 岩石类型 测年数据/Ma 构造亲缘性 资料来源
      夏定勒岩体 黑云母二长花岗岩 153.1±0.6 俯冲环境
      巴嘎岩体 二云母花岗岩 140 碰撞环境 [43]
      央雄勒岩体 白云母黑云二长花岗岩 142 碰撞环境 [44]
      松木果岩体 黑云二长花岗岩 163 碰撞环境 [44]
      许如错岩体 二长花岗岩 155.1±0.7 俯冲环境 [45]
      差绒—丁欧复式岩体 石英闪长岩(早期)
      黑云母二长花岗岩(晚期)
      155.4±2.7
      152.0±1.3
      早期俯冲环境
      晚期碰撞环境
      [21]
      下载: 导出CSV
    • 董国臣, 莫宣学, 赵志丹, 等. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据[J]. 岩石学报, 2006, 22(4): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm

      Hou Z Q, Duan L, Lu Y, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541

      纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, 39(7): 849-871. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm
      王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄, Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200502&flag=1
      刘治博, 李海峰, 高轲, 等. 西藏班公湖-怒江缝合带中段去申拉组火山岩锆石U-Pb年龄及Hf同位素特征[J]. 地质通报, 2019, 38(6): 1018-1027. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190612&flag=1

      Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. http://www.sciencedirect.com/science/article/pii/S0012821X10007004

      莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
      朱弟成, 潘桂堂, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013

      Ma S W, Meng Y K, Xu Z Q, et al. The Discovery of Late Triassic Mylonitic Granite and Geologicsignificance in the Middle Gangdese Batholiths, Southern Tibet[J]. Journal of Geodynamics, 2017, 104(3): 49-64. http://www.sciencedirect.com/science/article/pii/S0264370716300758

      潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      付燕刚, 唐菊兴, 胡古月, 等. 新特提斯洋早期俯冲的岩浆岩记录及其成矿——西藏日喀则西北部花岗岩类锆石U-Pb年龄及Hf同位素[J]. 地质通报, 2018, 37(6): 1026-1036. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180607&flag=1
      钟云, 夏斌, 刘维亮, 等. 西藏南冈底斯带拢布村花岗岩LA-ICP-MS锆石U-Pb年龄及其成因[J]. 地质通报, 2013, 32(9): 28-36. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20130905&flag=1

      Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(6): 1429-1454.

      计文化, 陈守建, 赵振华, 等. 西藏冈底斯中段晚侏罗-早白垩世花岗岩特征[J]. 资源调查与环境, 2006, 7(4): 277-285. doi: 10.3969/j.issn.1671-4814.2006.04.005

      Pan G T, Ding J, Yao D S, et al. Guidebook of 1: 1 500 000 Geological Map of the Qinghai-Xizang(Tibet) Plateau and Ajacent Areas[M]. Chengdu: Chengdu Cartographic Publishing House, 2004.

      Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

      Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324. http://www.sciencedirect.com/science/article/pii/S0012821X04000123

      Blichert-Toft J, Chauvel C, Albarède F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy & Petrology, 1997, 127(3): 248-260. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s004100050278

      Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf Isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269. http://www.sciencedirect.com/science/article/pii/S0024493702000828

      Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x

      秦臻, 佘朋涛, 易鹏飞, 等. 西藏冈底斯带昂仁县差绒-丁欧复式花岗岩的成因: 锆石U-Pb年代学及地球化学制约[J]. 地质论评, 2018, 64(6): 1557-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201806021.htm
      吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社, 1992: 101-113.
      王森, 张达, Vatuva A, 等. 福建龙岩大洋-莒舟花岗岩地球化学、年代学、铪同位素特征及其地质意义[J]. 地球化学, 2015, 44(5): 450-468. doi: 10.3969/j.issn.0379-1726.2015.05.005
      陈佩嘉, 戴朝成, 黄成, 等. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中国地质, 2017, 44(5): 959-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705010.htm
      李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-992. doi: 10.3321/j.issn:0023-074X.2007.09.001

      Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Trans Royal Soc Edinburgh: Earth Science, 1992, 83: 1-26. doi: 10.1017/S0263593300007720

      Chappell B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3

      Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1

      Li X H, Chen Z G, Liu D Y, et al. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province, SE China: age, origin and tectonic significance[J]. Int. Geol. Rev., 2003, 45: 898-921. doi: 10.2747/0020-6814.45.10.898

      Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma[J]. Precambrian Research, 2003, 122: 45-83. doi: 10.1016/S0301-9268(02)00207-3

      Lee C T A, Morton D M. High silica granites: Terminal porosity and crystal settling in shallow magma chambers[J]. Earth & Planetary Science Letters, 2015, 409: 23-31. http://www.cintylee.org/s/105-LeeMorton-TrappedMeltPRB.pdf

      张永明, 裴先治, 李佐臣, 等. 青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(5): 742-756. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190505&flag=1
      史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
      朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报, 2008, 27(4): 458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003
      耿全如, 潘桂棠, 王立全, 等. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 2011, 30(8): 1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013
      杜德道, 曲晓明, 王根厚, 等. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报, 2011, 27(7): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm
      高顺宝, 郑有业, 王进寿, 等. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约[J]. 岩石学报, 2011, 27(7): 1973-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm

      Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168(3): 144-159.

      陶刚, 李智武, 朱利东, 等. 羌塘地体南缘改则格列戈阿尔辉长岩锆石U-Pb年代学、地球化学及地质意义[J]. 地质论评, 2016, 62(5): 1149-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201605006.htm
      莫宣学. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm

      Pearce J, Aharris N B, Wtindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

      卢书炜, 任建德, 白国典, 等. 西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义[J]. 中国地质, 2006, 33(2): 332-339. doi: 10.3969/j.issn.1000-3657.2006.02.012
      闫晶晶, 赵志丹, 刘栋, 等. 西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因[J]. 岩石学报, 2017, 33(8): 2437-2453. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708007.htm
      和钟铧, 杨德明, 王天武, 等. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2005, 35(3): 302-307. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200503004.htm
      成都理工大学. 中华人民共和国1: 25万措勤县幅区域地质调查报告. 2005.
    • 期刊类型引用(1)

      1. 侯代文,梁欢,李洪强,刘明霞,张汉泉. 西非某中低品位磁铁矿的工艺矿物学研究. 有色金属(选矿部分). 2024(10): 28-35+46 . 百度学术

      其他类型引用(0)

    图(10)  /  表(4)
    计量
    • 文章访问数:  2078
    • HTML全文浏览量:  272
    • PDF下载量:  1565
    • 被引次数: 1
    出版历程
    • 收稿日期:  2021-02-21
    • 修回日期:  2021-05-04
    • 网络出版日期:  2023-08-15
    • 刊出日期:  2021-08-14

    目录

      /

      返回文章
      返回