• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测

高海东, 胡宝群, 吕古贤, 郭涛, 申玉科, 李旺超

高海东, 胡宝群, 吕古贤, 郭涛, 申玉科, 李旺超. 2020: 山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测. 地质通报, 39(11): 1793-1806.
引用本文: 高海东, 胡宝群, 吕古贤, 郭涛, 申玉科, 李旺超. 2020: 山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测. 地质通报, 39(11): 1793-1806.
GAO Haidong, HU Baoqun, Lü Guxian, GUO Tao, SHEN Yuke, LI Wangchao. 2020: Geochemical characteristics and deep prediction of tectonic alteration rocks in No. 50 vein of the Linglong gold deposit, Shandong Province. Geological Bulletin of China, 39(11): 1793-1806.
Citation: GAO Haidong, HU Baoqun, Lü Guxian, GUO Tao, SHEN Yuke, LI Wangchao. 2020: Geochemical characteristics and deep prediction of tectonic alteration rocks in No. 50 vein of the Linglong gold deposit, Shandong Province. Geological Bulletin of China, 39(11): 1793-1806.

山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测

基金项目: 

中国地质调查局项目《胶东招平断裂带中段构造解析与靶区验证》 12120113096300

国家自然科学基金项目《江西邹家山铀矿床中的重稀土富集成矿机制研究》 41472069

详细信息
    作者简介:

    高海东(1983-), 男, 在读博士生, 工程师, 从事成矿理论及找矿研究。E-mail:363048252@qq.com

    通讯作者:

    胡宝群(1965-), 男, 博士, 教授, 博士生导师, 从事岩矿地球化学研究。E-mail:bqhu@ecit.cn

  • 中图分类号: P618.51;P612

Geochemical characteristics and deep prediction of tectonic alteration rocks in No. 50 vein of the Linglong gold deposit, Shandong Province

  • 摘要:

    玲珑金矿深部找矿一直是矿床科研生产的难点,经济有效的矿体深部预测,是矿山可持续发展的必要手段。通过对玲珑金矿50号脉地质特征观察及已开采的不同中段的穿脉、沿脉按过矿剖面取样,并取未蚀变岩体作为背景样,测试主量元素及14个微量元素,以过矿剖面为单位,对比矿体及两侧围岩的地球化学特征,并计算元素间的相关性、聚类分析,统计不同蚀变岩体和矿体中微量元素平均值、标准值等,应用地球化学原生晕的方法在平面和纵切剖面上做原生晕地球化学图,从三维构造蚀变岩地球化学方法对50号脉深部进行成矿预测。结果表明:①50号脉As、Ag、Bi、Co、Mo为Au的最佳指示元素;②从围岩到矿体,Au、Ag、As、Cu、Pb、Bi、Mo等元素明显增高;③50号脉原生晕垂直分带序列自上而下为Mn→Mo→As→V→Bi→Co→Au→Ni→Cu→Ag→Pb→Sb→Zn,表现为"反分带"序列,预测50号脉体在深部有较好的成矿前景。

    Abstract:

    The deep prospecting of the Linglong gold deposit is always a difficult point in the scientific research and production of the deposit. In this paper, through the observation of geological characteristics of No. 50 vein and the sampling of cross vein and following-vein in different middle sections and with the undisturbed rock mass as the background sample, the authors determined the major elements and 14 trace elements. The geochemical characteristics of the orebody and surrounding rocks on both sides were compared by taking the ore-passing section as the unit, the correlation and cluster analysis of elements were conducted, and different altered rock masses and orebodies were counted. According to the average and standard values of trace elements, the geochemical primary halo method was used to map the primary halo on the plane and along the longitudinal section, and the metallogenic prognosis of No. 50 vein was carried out by using the geochemical method of three-dimensional structural altered rocks. The results are as follows: ①As, Ag, Bi, Co, Mo are the best indicator elements for Au in vein No. 50; ②The values of Au, Ag, As, Cu, Pb, Bi and Mo obviously increase from surrounding rocks to the orebody; ③The vertical zonation sequence of primary halo of No.50 vein is Mn→Mo→As→V→Bi→Co→Au →Ni→Cu→Ag→Pb→Sb→Zn from top to bottom, showing "reverse zonation" sequence. Based on the above research results and geological analysis, it is predicted that No. 50 vein body has a good metallogenic prospect in the deep part.

  • 中亚造山带是显生宙以来全球最大的陆壳增生与改造地带,其主体是由古亚洲洋岩石圈板片从中元古代晚期开始,不断向两侧古陆之下俯冲而形成岛弧和增生杂岩,并最终闭合使得两侧陆缘碰撞而形成的[1-7]。位于内蒙古东南部的中亚造山带南缘,通常被认为是中朝古板块与西伯利亚古板块之间的古亚洲洋海洋盆地最后消失的地区[3, 8-10] (图 1-a)。近年,综合古地磁、古生物、岩浆岩等关键性地质记录资料,夹于中朝古板块和西伯利亚古板块之间的古亚洲洋最终沿索伦-西拉木伦河缝合带闭合的观点得到了许多学者的认同[4-5, 9-23]。然而,由于对地质记录不同的解释及残余洋壳有限的保留和出露,使古亚洲洋最终闭合的时间及该缝合带的东延位置仍存在很大不确定性。研究区位于中亚造山带南缘,紧邻松辽盆地西缘,靠近索伦-西拉木伦河缝合带向东延伸的大致部位,是研究该缝合带东延进入盆地的关键部位。项目组在区域地质调查工作期间,为了对古亚洲洋最终闭合的位置和时间给予进一步的约束,对西拉木伦河一线的岩石和构造进行了较系统的观察和研究,获得了一些新的发现。在研究区原定分布较广泛的燕山期花岗岩中识别出早二叠世岩浆作用的记录,通过岩石地球化学和锆石Hf同位素研究,结合区域地质资料及前人研究成果,对该岩体成因进行了探讨,以期对该区晚古生代构造演化及缝合带的位置提供约束。

    图  1  内蒙古东南部区域构造简图(a, 据参考文献[3]修改) 和安乐屯地区地质简图(b, 据参考文献修改)
    ①—二连浩特-贺根山缝合带;②—索伦-西拉木伦河缝合带;③—赤峰-巴彦敖包断裂带
    Figure  1.  Sketch regional tectonic map of SE Inner Mongolia(a)and geological map showing the distribution of the Anletun pluton(b)

    研究区位于内蒙古赤峰市阿鲁科尔沁旗南部地区,隶属大兴安岭南段东坡,毗邻松辽盆地西缘,大地构造位置上处于传统划定的二连浩特-贺根山缝合带以南、索伦-西拉木伦河缝合带偏北,一定程度上保存了中国东北地区古生代洋盆最终消失的地质记录(图 1-a)。研究区以南为中朝古板块及其北缘中段的古生代活动陆缘增生区,两者以赤峰-巴彦敖包断裂为界,以发育近东西向分布的早古生代俯冲增生杂岩和弧岩浆岩,以及具规律性成因的晚古生代活动陆缘型侵入岩和火山-沉积岩系为特征[3, 5, 10-11, 24-27];而中朝古板块北缘中段通过索伦-西拉木伦河缝合带与西伯利亚古板块南缘相接,该区在显生宙期间经历了地壳显著地同造山水平生长和后造山垂向增生,以发育岛弧增生杂岩、多类型蛇绿岩及巨量新生地壳熔融而成的岩浆岩为特征,可能是西伯利亚南缘面向类似现今西太平洋多岛洋盆的格局而长期演化至洋盆消亡的结果[28-31]

    研究区出露的最老地层单元为零星分布于宝日乌苏镇—天山口镇一带的石炭系,主要由片岩、石英岩和结晶灰岩构成,发育中、小型石灰岩工业矿床;而在大兴安岭南缘广泛发育的二叠系在研究区也有出露,为大石寨组(原定青凤山组)海相中基性—酸性火山岩,其与下伏石炭系为断层接触;侏罗系在区内出露最广泛,呈面状分布,主要由陆相中酸性火山岩和砂页岩等碎屑岩构成,其中中侏罗世碎屑岩中产小型煤矿;白垩系在研究区分布有限,出露于阿鲁科尔沁旗北部福兴屯地区,以灰黑色辉石安山岩为主;而新生界在区内以第四纪冲积砂砾层、风成沙等松散堆积物为主,含少量河谷橄榄玄武岩[32]。区域地质调查报告显示,研究区没有出露早于中生代的岩浆作用产物,而是主要记录了燕山中期以来的岩浆活动,以小规模的侏罗纪—白垩纪中酸性侵入体和火山作用为主,但从本文的年代学研究看,研究区至少经历过海西期岩浆活动。此外,研究区遭受了多期构造活动,断裂构造较发育。

    安乐屯岩体呈小岩株出露,面积约5 km2(图 1-b)。野外露头观察表明,岩体经历了不同程度的风化作用和地质构造活动,节理较发育,可见后期酸性或基性岩脉侵入,同时岩体整体发生了变形,可见片理化现象。岩体与晚侏罗世下兴安岭组中酸性火山岩呈断层接触,并被燕山中期花岗岩侵入,但围岩不明。岩体样品采样位置位于安乐屯以东露头良好的小山顶部附近,露头尺度可见组成岩体的岩石类型发生变化(图版Ⅰ-ab),经岩石薄片显微镜下观察,该岩体主要由灰白色中细粒石英二长闪长岩(BL03-4和BL03-7)-花岗闪长岩(BL03-2、BL03-3和BL03-5)-黑云母二长花岗岩(BL03-1)组成(图版Ⅰ-c~f)。岩石样品整体上呈中细粒半自形结晶结构,片麻状构造,但主要造岩矿物组成及含量略有不同:黑云母二长花岗岩主要由石英(约28%)、斜长石(约35%)、碱性长石(约30%)和黑云母(约5%)组成(图版Ⅰ-c);花岗闪长岩主要由石英(约25%)、斜长石(约45%)、碱性长石(约20%)和黑云母(约8%)组成(图版Ⅰ-d);石英二长闪长岩主要由碱性长石(约35%)、斜长石(约40%)、石英(约10%)、黑云母(约10%)和角闪石(约2%)组成(图版Ⅰ-ef)。此外,岩石中包含少量锆石、磷灰石及磁铁矿等副矿物(2%~3%),局部发生了绿帘石化和绿泥石化,而且石英二长闪长岩中的角闪石普遍存在暗化现象。

      图版Ⅰ 
    a.安乐屯岩体花岗岩野外露头;b.安乐屯岩体石英二长闪长岩野外露头;c、d.花岗岩样品显微照片(正交偏光);e.石英二长闪长岩样品显微照片(单偏光);f.石英二长闪长岩样品显微照片(正交偏光)。Af—碱性长石;Bi—黑云母;Pl—斜长石;Q—石英;Mt—磁铁矿
      图版Ⅰ. 

    样品先后采用浮选和电磁选完成单矿物筛选,锆石的挑选由河北省区域地质调查大队地质实验室完成。锆石的阴极发光(CL)图像采集和U-Pb同位素分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。实验室应用Agilent 7500a ICP-MS仪器,按照标准测定程序进行锆石U-Pb测定。实验中采用高纯氦为剥蚀物质载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,样品测定时用哈佛大学标准锆石91500为外部校正标样,以监测标样和样品的仪器条件是否一致。实验中采用8 Hz激光频率、52 mJ激光强度和32 μm激光束斑直径。样品同位素数据处理采用ICPMSDataCal[33-34],运用Andersen方法进行同位素比值校正,以扣除普通铅对定年结果的影响[35]。年龄计算和谐和图的绘制均采用国际标准程序Isoplot(ver3.0)完成[36]。详细的实验步骤和数据处理方法见参考文献[34]。锆石LA-ICP-MS U-Pb分析结果见表 1

    表  1  内蒙古阿鲁科尔沁旗安乐屯岩体锆石U-Th-Pb分析结果
    Table  1.  Zircon U-Th-Pb data of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品号 含量/10-6 Th/U 比值 年龄/Ma
    Th U 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U 206Pb/238U 208Pb/232Th
    BL03-1-01 89 179 0.50 0.32348 0.01240 0.04348 0.00043 0.01316 0.00036 285 10 274 3 264 7
    BL03-1-02 64 137 0.46 0.29881 0.01647 0.04360 0.00054 0.01315 0.00044 265 13 275 3 264 9
    BL03-1-03 48 111 0.43 0.31618 0.01866 0.04401 0.00061 0.01487 0.00054 279 14 278 4 298 11
    BL03-1-04 76 145 0.53 0.30907 0.01331 0.04296 0.00056 0.01097 0.00038 273 10 271 3 220 8
    BL03-1-05 244 352 0.69 0.33950 0.01024 0.04340 0.00037 0.01465 0.00035 297 8 274 2 294 7
    BL03-1-06 72 152 0.47 0.32433 0.01200 0.04344 0.00049 0.01332 0.00043 285 9 274 3 268 9
    BL03-1-07 70 152 0.46 0.34798 0.01548 0.04371 0.00051 0.01530 0.00050 303 12 276 3 307 10
    BL03-1-08 191 292 0.65 0.31868 0.01265 0.04388 0.00041 0.01375 0.00034 281 10 277 3 276 7
    BL03-1-09 65 149 0.44 0.30551 0.01408 0.04278 0.00049 0.01536 0.00055 271 11 270 3 308 11
    BL03-1-10 122 190 0.64 0.30211 0.01094 0.04401 0.00041 0.01398 0.00033 268 9 278 3 281 7
    BL03-1-11 93 164 0.57 0.30695 0.01392 0.04334 0.00043 0.01423 0.00038 272 11 274 3 286 8
    BL03-1-12 90 187 0.48 0.31149 0.01194 0.04361 0.00043 0.01402 0.00035 275 9 275 3 281 7
    BL03-1-13 104 176 0.59 0.31045 0.01361 0.04418 0.00049 0.01312 0.00033 275 11 279 3 263 7
    BL03-1-14 135 288 0.47 0.35014 0.01089 0.04836 0.00050 0.01546 0.00035 305 8 304 3 310 7
    BL03-1-15 139 178 0.78 0.36058 0.01481 0.04334 0.00053 0.01598 0.00052 313 11 274 3 320 10
    BL03-1-16 61 125 0.49 0.31625 0.01697 0.04389 0.00052 0.01437 0.00055 279 13 277 3 288 11
    BL03-1-17 127 268 0.48 0.31873 0.01430 0.04333 0.00042 0.01397 0.00039 281 11 273 3 280 8
    BL03-1-18 52 132 0.39 0.32111 0.01713 0.04356 0.00053 0.01525 0.00052 283 13 275 3 306 10
    BL03-1-19 66 134 0.49 0.32898 0.01442 0.04342 0.00046 0.01419 0.00048 289 11 274 3 285 10
    BL03-1-20 84 159 0.53 0.33255 0.01287 0.04385 0.00045 0.01556 0.00138 292 10 277 3 312 27
    BL03-1-21 102 203 0.50 0.31970 0.01225 0.04420 0.00041 0.01409 0.00034 282 9 279 3 283 7
    BL03-1-22 142 279 0.51 0.30964 0.00977 0.04344 0.00037 0.01335 0.00027 274 8 274 2 268 5
    BL03-1-23 85 186 0.46 0.32663 0.01261 0.04346 0.00042 0.01430 0.00038 287 10 274 3 287 7
    下载: 导出CSV 
    | 显示表格

    分析样品经显微镜下鉴定后,选择新鲜样品在无污染设备中进行加工粉碎,样品的粗碎和研磨工作在吉林大学地球科学院实验室完成。主量元素分析测试在中国科学院地质与地球物理研究所采用玻璃熔片大型X射线荧光光谱法(XRF)完成。微量元素在中国地质大学(武汉)地质过程与矿产资源国家重点实验室采用电感耦合等离子质谱(ICP-MS)法分析测试完成。对照国际标准参考物质BHVO-1(玄武岩)、BCR-2(玄武岩)和AGV-1(安山岩)的分析结果表明,主量元素分析精度和准确度优于5%,微量元素的分析精度和准确度一般优于10%。样品的主量和微量元素分析结果见表 2

    表  2  内蒙古阿鲁科尔沁旗安乐屯岩体主量、微量和稀土元素分析结果
    Table  2.  Major, trace and rare earth elements compositions of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品 BL03-1 BL03-2 BL03-3 BL03-5 BL03-5r BL03-4 BL03-4r BL03-7
    SiO2 71.00 70.61 70.92 70.41 54.70 54.41
    TiO2 0.30 0.31 0.30 0.35 0.99 0.99
    Al2O3 14.35 14.63 14.74 14.74 19.53 19.48
    TFe2O3 3.42 3.49 3.56 3.67 6.70 6.67
    MnO 0.04 0.04 0.06 0.04 0.13 0.13
    MgO 0.86 0.94 1.01 0.92 3.39 3.37
    CaO 2.36 2.95 2.96 2.42 7.10 7.06
    Na2O 3.93 4.26 4.13 4.48 4.43 4.39
    K2O 2.95 1.42 1.14 1.73 1.01 1.01
    P2O5 0.07 0.08 0.08 0.06 0.31 0.31
    烧失量 0.92 1.18 1.18 1.12 1.64 1.60
    总计 100.20 99.91 100.08 99.94 99.93 99.43
    Mg# 0.33 0.35 0.36 0.33 0.50 0.50
    A/CNK 1.03 1.05 1.10 1.08 0.92 0.92
    Na2O/K2O 1.33 3.00 3.62 2.59 4.39 4.35
    Li 6.87 8.39 7.06 8.85 8.66 17.4 30.84
    Be 0.82 0.82 0.83 0.86 0.85 1.13 2.26
    Sc 7.10 5.52 7.89 2.23 2.25 10.7 16.05
    V 40.56 45.31 45.17 43.54 44.15 124 160
    Cr 1.71 1.85 2.13 1.89 1.83 47.06 85.8
    Co 5.51 6.33 5.92 6.01 6.13 16.4 18.2
    Ni 1.60 1.34 1.81 1.51 1.52 32.5 58.1
    Cu 5.27 3.78 5.42 7.38 7.54 17.6 3.65
    Zn 25.3 47.9 270.0 27.4 28.5 399 6486
    Ga 12.92 13.66 12.87 14.78 14.71 22.77 22.60
    Rb 60.56 50.12 44.95 42.34 41.96 45.09 151
    Sr 391 497 421 684 695 1134 692
    Y 7.59 1.78 10.84 1.41 1.54 13.44 14.16
    Zr 90.9 95.1 97.1 106 117 93.1 105
    Nb 2.78 1.56 3.40 1.83 1.86 4.70 4.55
    Cs 1.87 2.12 2.68 1.84 1.85 3.14 3.29
    Ba 1215 786 700 603 615 287 1048
    La 11.14 9.70 13.9 9.63 9.70 15.9 20.03
    Ce 17.99 14.32 23.16 13.28 13.53 37.87 46.07
    Pr 2.13 1.50 2.80 1.38 1.37 4.95 5.92
    Nd 7.52 4.84 10.0 4.26 4.39 21.2 24.14
    Sm 1.40 0.59 1.87 0.52 0.51 4.31 4.66
    Eu 0.72 0.71 0.66 0.80 0.80 1.38 1.25
    Gd 1.42 0.46 1.85 0.38 0.40 3.73 3.84
    Tb 0.22 0.05 0.30 0.05 0.04 0.53 0.53
    Dy 1.36 0.27 1.87 0.22 0.23 2.84 2.82
    Ho 0.29 0.06 0.40 0.04 0.04 0.53 0.54
    Er 0.80 0.18 1.14 0.14 0.16 1.43 1.46
    Tm 0.13 0.03 0.18 0.02 0.02 0.19 0.20
    Yb 0.85 0.24 1.32 0.18 0.20 1.17 1.25
    Lu 0.14 0.05 0.23 0.04 0.04 0.18 0.18
    Hf 2.35 2.27 2.58 2.49 2.80 2.27 2.73
    Ta 0.21 0.10 0.30 0.12 0.11 0.27 0.32
    Pb 7.90 13.75 26.75 5.92 6.07 78.0 340
    Th 2.45 0.81 4.32 1.30 1.32 2.19 3.82
    U 0.49 0.30 0.83 0.36 0.37 0.57 1.04
    Eu/Eu* 1.56 4.04 1.07 5.25 5.22 1.03 0.88
    LREE 40.90 31.66 52.44 29.86 30.30 85.69 102
    HREE 5.21 1.35 7.30 1.08 1.15 10.60 10.82
    LREE/HREE 7.85 23.45 7.18 27.65 26.35 8.08 9.43
    ∑REE 46.11 33.01 59.74 30.94 31.45 96.29 113
    (La/Yb)N 9.40 28.45 7.54 38.08 34.90 9.78 11.47
    注: Mg#= Mg2+/(Mg2++TFe2+); A/CNK = mole[Al2O3/(CaO+Na2O+K2O)]; Eu/Eu* =(Eu/0.0735)/[(Gd/0.259)+ (Sm/0.195)]/2;LREE = La+Ce+Pr+Nd+Sm+Eu; HREE = Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu; ∑REE = LREE+HREE; (La/Yb)N =(La/0.687)/(Yb/0.493);主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    锆石原位微区Hf同位素分析在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室利用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成。采用Neptune型多接受器等离子体质谱仪(MC-ICP-MS),以氦气为载气,激光束斑直径为44 μm,激光脉冲速率和能量分别为6 Hz和100 mJ。详细仪器操作条件和分析方法可参照文献[37-38]。εHf(0)和εHf(t)值及模式年龄计算中,现今球粒陨石的176Lu/177Hf和176Hf/177Hf值分别采用0.0332和0.282772[39],而亏损地幔的176Lu/177Hf和176Hf/177Hf值分别采用0.0384和0.28325[40],二阶段模式年龄(TDM2)采用大陆地壳的fBCC(-0.65)进行计算[41]。分析数据的离线处理(样品信号区间的选择和同位素质量分馏校正)采用软件ICPMSDataCal完成[33]。样品中锆石的Hf同位素分析结果见表 3

    表  3  内蒙古阿鲁科尔沁旗安乐屯岩体锆石Hf同位素分析结果
    Table  3.  Zircon Hf isotopic compositions of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma TDM2/Ma fLu/Hf
    BL03-1-01 275 0.062493 0.001648 0.282485 0.000021 -10.2 -4.4 0.8 1104 1577 -0.95
    BL03-1-02 275 0.061973 0.001681 0.282474 0.000019 -10.5 -4.8 0.7 1120 1601 -0.95
    BL03-1-03 275 0.050284 0.001513 0.282497 0.000019 -9.7 -4.0 0.7 1082 1548 -0.95
    BL03-1-04 275 0.049935 0.001621 0.282525 0.000020 -8.7 -3.0 0.7 1045 1485 -0.95
    BL03-1-05 275 0.050878 0.001443 0.282556 0.000020 -7.7 -1.9 0.7 997 1415 -0.96
    BL03-1-06 275 0.055263 0.001663 0.282471 0.000019 -10.6 -4.9 0.7 1123 1607 -0.95
    BL03-1-07 275 0.055092 0.001847 0.282506 0.000018 -9.4 -3.7 0.6 1079 1530 -0.94
    BL03-1-08 275 0.062363 0.001615 0.28245 0.000023 -11.4 -5.7 0.8 1153 1655 -0.95
    BL03-1-09 275 0.064859 0.002239 0.282434 0.000022 -12.0 -6.3 0.8 1195 1697 -0.93
    BL03-1-10 275 0.059236 0.001538 0.282517 0.000019 -9.0 -3.2 0.7 1054 1502 -0.95
    BL03-1-11 275 0.05794 0.001578 0.282479 0.000021 -10.4 -4.6 0.8 1110 1589 -0.95
    BL03-1-12 275 0.064227 0.001708 0.282469 0.000019 -10.7 -5.0 0.7 1129 1613 -0.95
    BL03-1-13 275 0.048154 0.001763 0.282467 0.000019 -10.8 -5.1 0.7 1132 1617 -0.95
    BL03-1-14 304 0.046523 0.001176 0.282487 0.000017 -10.1 -3.6 0.6 1087 1550 -0.96
    BL03-1-15 275 0.077408 0.001962 0.282463 0.000021 -10.9 -5.2 0.8 1144 1629 -0.94
    BL03-1-16 275 0.051141 0.001378 0.282452 0.000020 -11.3 -5.5 0.7 1143 1648 -0.96
    BL03-1-17 275 0.044533 0.001812 0.282422 0.000024 -12.4 -6.7 0.9 1199 1720 -0.95
    BL03-1-18 275 0.052647 0.001446 0.28241 0.000021 -12.8 -7.0 0.7 1203 1741 -0.96
    BL03-1-19 275 0.053443 0.001465 0.282503 0.000020 -9.5 -3.7 0.7 1072 1533 -0.96
    BL03-1-20 275 0.054552 0.001556 0.282461 0.000018 -11.0 -5.2 0.6 1135 1628 -0.95
    BL03-1-21 275 0.043382 0.00141 0.282467 0.000018 -10.8 -5.0 0.6 1122 1614 -0.96
    BL03-1-22 275 0.040575 0.001235 0.282481 0.000017 -10.3 -4.5 0.6 1097 1581 -0.96
    BL03-1-23 275 0.042734 0.001302 0.282466 0.000017 -10.8 -5.0 0.6 1120 1614 -0.96
    下载: 导出CSV 
    | 显示表格

    二长花岗岩样品BL03-1采自阿鲁科尔沁旗南部安乐屯东近山顶处(GPS坐标为北纬43°48′46.10″、东经120°08′30.10″)(图 1-b)。样品锆石晶体颗粒呈无色或浅褐色,柱状或六方双锥状,长宽比多介于2∶1~3∶1之间。阴极发光图像显示,大部分锆石呈自形晶或半自形晶,内部结构清晰,发育典型的岩浆生长环带,显示岩浆成因锆石的特征(图 2)。其较高的Th/U值(0.39~0.78;表 1),也暗示岩浆成因[42-43]。锆石U-Pb年龄谐和图显示,所有分析数据均分布在谐和线上及其附近(图 3-a)。23个测点的206Pb/238U年龄值介于270~304 Ma之间(表 1),除1个测点给出了304 ± 3 Ma的206Pb/238U年龄外,其余22个测点的年龄值相对集中(270 ± 3~279 ± 3 Ma),其206Pb/238U年龄加权平均值为275 ± 1 Ma(MSWD = 0.57)(图 3-b),代表了安乐屯岩体的形成时代。

    图  2  安乐屯二长花岗岩部分锆石阴极发光(CL)图像
    (图中实线圆圈为锆石U-Pb测年位置,虚线圆圈为Hf同位素测定位置,括号内数字为εHf(t)值)
    Figure  2.  CL images of some analyzed zircons from Anletun monzogranite
    图  3  安乐屯二长花岗岩锆石U-Pb年龄谐和图
    Figure  3.  Concordia U-Pb diagram of zircons from Anletun monzogranite

    岩石地球化学分析测试结果表明,安乐屯岩体SiO2含量介于54.41%~71.00%之间,整体上属于中酸性侵入岩体,K2O含量为1.01%~2.95%,Na2O/K2O值为1.33~4.39,显示相对富钠、低钾的特征(表 2)。此外,安乐屯岩体TFe2O3为3.42%~6.70%、MgO为0.86%~3.39%、CaO为2.36%~7.10%,总体上Mg#值介于0.33~0.50之间。主量元素投图显示,安乐屯岩体总体上落入亚碱性系列和中钾钙碱性系列(图 4)。而铝饱和指数A/CNK≤1.1(0.92~1.10),A/NK = 1.49~2.34,显示准铝质岩浆的特征(图 5)。哈克图解显示,安乐屯岩体主量元素与SiO2含量之间显示明显的规律性变化:除K2O与SiO2为正相关性外,其余主量元素TiO2、Al2O3、TFe2O3、MgO、CaO、Na2O和P2O5均随SiO2含量升高而降低(图 6)。安乐屯岩体主量元素与SiO2含量较好的相关关系暗示2个端元可能存在一定的成因联系。

    图  4  安乐屯岩体TAS(a)和SiO2-K2O图解
    Figure  4.  Plots of total alkalis versus SiO2(TAS)(a)and SiO2 versus K2O(b) for the Anletun pluton
    图  5  安乐屯岩体A/CNK-A/NK图解
    Figure  5.  Plot of A/CNK versus A/NK for the Anletun pluton
    图  6  安乐屯岩体主量元素哈克图解
    Figure  6.  Harker variation diagrams for major elements of the Anletun pluton

    安乐屯岩体整体上稀土元素总量偏低(∑REE= 30.94×10-6~113×10-6),轻、重稀土元素分馏较明显,LREE/HREE值为7.18~27.65,(La/Yb)N值介于7.54~38.08之间;石英二长闪长岩端元几乎不存在Eu异常(Eu/Eu* = 0.88~1.03),而花岗岩端元以正Eu异常为特征,尤其样品BL03-2和BL03-5显示明显的正Eu异常(Eu/Eu* = 4.04~5.25),存在重稀土元素分馏且显著亏损的特征(图 7-a)。在微量元素蛛网图(图 7-b)中,2种端元大体上显示类似的配分形式,均表现为富集Rb、Ba、Sr等大离子亲石元素(LILEs),而相对亏损Nb、Ta、Ti等高场强元素(HFSEs),类似于俯冲带岩浆岩的特征[46];所不同的是,石英二长闪长岩端元的配分曲线整体较高,且具有较明显的负Ba异常,而花岗岩端元具有显著的Sm、Nd负异常,尤其样品BL03-2和BL03-5亏损的更明显。

    图  7  安乐屯岩体稀土元素配分图(a)和微量元素蛛网图(b) (球粒陨石、原始地幔标准化数值据参考文献[44-45])
    Figure  7.  REE patterns(a) and trace element spider diagrams(b) of the Anletun pluton

    安乐屯岩体二长花岗岩测年样品原位锆石Hf同位素分析测试结果显示,其锆石Hf同位素组成较均一,除1颗捕获锆石的176Hf/177Hf值为0.282487外,其余代表岩体形成年龄的22颗锆石的176Hf/177Hf值为0.282410~0.282556,以岩体形成年龄(275 Ma)计算得出,εHf(t)值均为负值,介于-7.0 ~ -1.9之间,投影到兴蒙造山带和燕山褶皱带交汇范围内及其附近区域,并与古—中元古代平均地壳演化范围一致(图 8)。岩体两阶段模式年龄TDM2为1415~1741 Ma,与中朝古板块北缘增生区内早二叠世岩浆岩给出的同位素模式年龄范围较一致[26-27]

    图  8  安乐屯岩体锆石Hf同位素特征(燕山褶皱带数据据参考文献[47];西伯利亚古板块南缘数据据参考文献[20, 29, 48-50];中朝古板块北缘数据据参考文献[24, 51-54])
    Figure  8.  Hf isotopic compositions of zircons from the Aletun pluton

    安乐屯岩体最早被确定为燕山早期第一侵入期岩浆活动的产物,时代相当于早侏罗世。前人根据研究区广泛发育燕山期岩浆活动,笼统地将安乐屯岩体划分为同一时期岩浆作用的产物,但该岩体无论从岩貌还是岩石类型都明显区别于研究区其他侏罗纪侵入岩。那么,安乐屯岩体的形成时代到底如何?由于一直缺乏精确的年代学资料的约束,本文对安乐屯岩体进行了锆石U-Pb年代学研究。定年结果表明,二长花岗岩样品(BL03-1)中22个测点给出了较一致且谐和的206Pb/238U年龄,其年龄加权平均值275 ± 1 Ma(MSWD = 0.57)应代表了该岩体的形成时代(图 3),即早二叠世,而非前人认为的早侏罗世。近年来,在中朝古板块北缘达茂旗、镶黄旗、克什克腾旗、翁牛特旗等地区,以及西伯利亚古板块南缘苏左旗—锡林浩特—林西一带均有早二叠世岩浆事件的报道[20, 25-26, 31, 55],与本文确定的安乐屯岩体形成年龄一致或相近,表明区域上存在早二叠世岩浆活动,进一步佐证了本文定年结果的可靠性。

    从岩石学和地球化学特征看,安乐屯岩体由石英二长闪长岩-花岗闪长岩-二长花岗岩组成,出现暗色矿物黑云母和角闪石,SiO2含量为54.41% ~ 71.00%,Na2O含量为3.93% ~ 4.48%,Na2O/K2O为1.33 ~ 4.39,Mg#为0.33 ~ 0.50,A/CNK≤1.1,整体上具Eu的正异常特征,属于钙碱性岩系、准铝质岩石(图 4图 5),这些特征与I-型花岗岩相似。随着SiO2含量的增加,安乐屯岩体的其他主要氧化物呈现有规律的变化,其中,除K2O呈线性增加趋势外,其他氧化物TiO2,Al2O3,TFe2O3,MgO,CaO,Na2O和P2O5均随SiO2含量的增加而减少(图 6),这表明岩浆上升侵位过程中发生了一定程度的分离结晶作用。由于在研究区及邻区没有发现同时代偏基性的岩石类型(SiO2<54.41%),笔者推测中性端元分析样品BL03-4和BL03-7的地球化学属性一定程度上应该代表了母岩浆成分特征,其较高的Nb/Ta(14~17)、Zr/Hf(39~41)值也表明并非岩浆高度分异的产物。基于此推断,酸性端元TFe2O3,MgO和CaO的减少可能与较早结晶的角闪石矿物的分离有关,而Ti和P的亏损一般是榍石和磷灰石等副矿物的分离结晶导致的,而就其稀土元素特征差异而言,可能是相关矿物分离结晶不均一性导致的。在长英质岩浆中Eu异常一般主要受控于斜长石,岩体整体上Eu的正异常特征可能与斜长石的堆晶作用有关,岩体较低的Rb/Sr值(0.04~0.22)也表明熔体可能包含较高程度的斜长石堆晶[56]。那么,显然石英二长闪长岩中Ba元素的相对亏损不大可能由斜长石的分离结晶导致,考虑到Ba替代K亦可赋存于黑云母中,所以其Ba元素的相对亏损可能与黑云母的分离结晶有关。花岗闪长岩样品BL03-2和BL03-5表现为除Eu元素外,中-重稀土(Sm~Lu)的极度亏损,研究表明中稀土元素含量主要受控于普通角闪石[57],尤其在Dy和Er之间其具有最高的分配系数,所以普通角闪石的行为可以对REE(稀土元素)型式的形状起决定性的作用,而Eu元素随角闪石分离结晶应表现的亏损可能已经被斜长石的堆晶效应掩盖,所以普通角闪石的不均一性分离结晶作用一定程度上可以解释酸性端元的稀土元素特征。

    安乐屯岩体具有低的Rb/Sr值、较低的初始176Hf/177Hf值(0.282410~0.282556)、负的εHf(t)值(-7.0 ~ -1.9)及老的模式年龄(1415~1741 Ma),结合其I-型花岗岩成因特征及Nb、Ta亏损而Th相对富集的壳源属性,推断安乐屯岩体主要起源于古老下地壳物质的部分熔融。安乐屯岩体岩石类型包括石英二长闪长岩、花岗闪长岩和二长花岗岩,整体上相对富钠、贫钾,具有中钾钙碱性系列特征,属于准铝质系列岩石,加之富水矿物角闪石的出现,暗示其俯冲带成因特征(图 4图 5)。岩体相对富集Rb、Ba、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素的微量元素特征也反映了岩浆形成于与俯冲带有关的陆缘环境或岛弧构造环境(图 7-b)。此外,在Y-Nb和(Y+Nb)-Rb判别图解(图 9-ab)中,岩体样品均投影到火山弧花岗岩区,同样暗示了类似的构造环境;而在Ta/Yb-Th/Yb构造环境判别图解(图 9-c)中,岩石样品均投影到了活动大陆边缘范围内[58]。综上推断,安乐屯岩体应是古亚洲洋俯冲消减背景下引起古老下地壳物质部分熔融的产物,并在岩浆上升侵位过程中发生了一定程度的角闪石、黑云母等矿物的分离结晶作用。

    图  9  安乐屯岩体Y-Nb(a)、(Y+Nb)-Rb(b)和Ta/Yb-Th/Yb(c)相关图解
    MORB—大洋中脊玄武岩; WPB—板内玄武岩; WPVZ—板内火山岩带; ACM—活动大陆边缘; 0A—大洋岛弧
    Figure  9.  Y-Nb(a),(Y+Nb)-Rb(b) and Ta/Yb-Th/Yb(c) diagrams of the Aletun pluton

    研究区位于的内蒙古中部地区以发育多条蛇绿岩带和弧岩浆岩带为特点[59-62],基于对这些关键性地质记录的认识不同,产生了针对该地区地质历史不同的构造演化模型。就研究区早二叠世的构造背景而言,有学者依据面状分布的早二叠世岩浆活动同时波及中朝古板块北缘和内蒙古中部造山带地区,并结合岩石组合特征推断该时期研究区处于块体碰撞之后的伸展环境[27],也有学者认为古亚洲洋至少在晚泥盆世之前已经闭合,随后区域上发育广泛的裂谷活动,早二叠世岩浆岩应是大陆裂谷环境下的地质记录[63-68]。但本文的研究结果表明,研究区早二叠世安乐屯岩体构造判别图解显示其明显不同于后碰撞或裂谷环境花岗岩,而与活动大陆边缘弧花岗岩类似,暗示该时期古亚洲洋应该还未关闭。前人通过对晚古生代岩浆活动的研究也证实,研究区以南的中朝古板块北部存在晚石炭世—早二叠世连续的岩浆活动,形成了近东西向带状分布的岩浆弧,可以与现今典型的安第斯型活动大陆边缘弧相对比,其形成应与古亚洲洋板块向中朝古板块的俯冲有关[25-26, 51],同样,前人通过对研究区以北苏左旗—西乌旗一线晚石炭世大陆边缘弧岩浆带的识别,结合该带以北地区贺根山蛇绿岩及早二叠世碱性花岗岩的存在,以及区内广泛分布的与俯冲体系相关的早二叠世晚期形成的大石寨组火山岩,认为它们共同构成了区域上晚古生代存在的沟-弧-盆体系,并推断其应与古亚洲洋板块的北向俯冲有关[28, 69-74]。综上可知,古亚洲洋最终关闭位置索伦-西拉木伦河缝合带的南北两侧在早二叠世仍均处于古洋壳俯冲的构造背景,两者都与安乐屯岩体成因背景相吻合。那么,安乐屯岩体的形成到底与哪个俯冲体系有关?这在一定程度上也制约着古亚洲洋最终闭合的位置。

    前人大量的研究显示,中朝古板块北缘晚古生代岩浆岩的同位素组成与西伯利亚古板块南缘明显不同,中朝古板块北缘的岩浆岩一般具有负的εNd(t)值和εHf(t)值,暗示它们来自富集岩石圈地幔或古老地壳物质的熔融[24, 26, 47, 52-54, 75-79],而西伯利亚古板块南缘的岩浆岩以正的εNd(t)值和εHf(t)值为特征,表明其起源于亏损地幔或新生地壳物质[14, 50, 70, 73]。基于此,通过对比缝合带两侧与俯冲相关的晚石炭世—早二叠世岩浆岩的锆石Hf同位素数据发现,安乐屯岩体锆石Hf同位素特征与中朝古板块北缘岩浆岩给出的εHf(t)值范围较一致,而明显不同于西伯利亚古板块南缘(图 8-b)。以此推断,安乐屯岩体的源区物质组成更亲缘于中朝古板块北缘的物质特性,其应与中朝古板块北缘同时代岩浆岩一样,形成于古亚洲洋板块向南俯冲于中朝古板块之下的构造环境。基于此,笔者推断安乐屯岩体很可能隶属于中朝古板块北缘古生代增生带,而古亚洲洋最终沿索伦-西拉木伦河关闭,向东延伸至研究区附近时,大洋的关闭位置很可能位于安乐屯岩体的北侧(图 1-a)。本文对索伦-西拉木伦河缝合带向东延伸位置提供了一定的约束,但确定板块缝合最终位置的关键地质记录的挖掘还需要进一步的工作。

    (1) 内蒙古阿鲁科尔沁旗南部安乐屯岩体形成于275 ± 1 Ma,即早二叠世,而非前人认为的早侏罗世。

    (2) 该岩体由石英二长闪长岩-花岗闪长岩-二长花岗岩组成,主要起源于古老下地壳物质的部分熔融,通过区域资料对比分析推断,岩体的形成与古亚洲洋板块向南俯冲于中朝古板块之下有关,指示其应隶属于中朝古板块北缘古生代增生带的一部分。

  • 图  1   玲珑金矿田矿区地质略图(a)与大开头矿区89线地质剖面(b)(据参考文献[19]修改)

    Figure  1.   Geological sketch map (a) andgeological section along No. 89 exploration line of the Dakaitou mining area (b) of the Linglong gold deposit

    图  2   玲珑金矿大开头50号脉及围岩蚀变特征

    Figure  2.   The characteristics of No. 50 vein and wall rock alteration of the Dakaitou mining area in the Linglong gold deposit

    图  3   大开头50号脉原生晕样品中各元素聚类分析图解

    Figure  3.   The cluster analysis about elements of zoning of No. 50 vein of the Dakaitou mining area

    图  4   50号矿脉88号勘探线原生晕浓度分带剖面

    Figure  4.   Primary halo concentration zonation profile along No. 88 exploration line of No. 50 vein

    图  5   50号矿脉Au元素浓度分带图

    Figure  5.   Concentration zoning map of Au elements in horizontal direction in No.50 vein

    表  1   玲珑金矿大开头矿区原生晕找矿分析精度参数

    Table  1   Precision analysis of parameters about primary halo in the Dakaitou mining area of the Linglong gold deposit

    检测项目 检出下限
    /10-6
    检出上限
    /10-6
    精密度
    控制/%
    准确度
    控制/%
    Au(低含量样) 0.001 10 10 6
    Au(高含量样) 0.05 10000 10 6
    Ag(低含量样) 0.01 25 10 10
    As 0.1 250 10 10
    Bi 0.01 250 10 10
    Co 1 10000 10 10
    Cu 1 10000 10 10
    Hg 0.005 25.0 15 15
    Mn 5 100000 10 10
    Mo 0.05 250 10 10
    Ni 1 10000 10 10
    Pb 2 10000 10 10
    Sb 0.05 250 15 15
    V 1 10000 10 10
    Zn 2 10000 10 10
    下载: 导出CSV

    表  2   玲珑金矿区背景样及背景值

    Table  2   Background samples and background values of the Linglong gold deposit  10-6

    Au Ag As Bi Co Cu Hg Mn Mo Ni Pb Sb V Zn
    B-1 0.001 0.02 < 0.1 0.01 1 2 < 0.005 162 0.54 2 27 < 0.05 4 12
    B-2 < 0.001 0.01 < 0.1 0.01 1 < 1 0.008 209 0.51 1 29 < 0.05 1 7
    B-3 < 0.001 0.01 < 0.1 0.01 1 < 1 0.008 187 0.40 3 23 < 0.05 2 7
    B-4 0.001 0.01 < 0.1 0.01 < 1 < 1 0.008 202 0.32 1 23 < 0.05 130 65
    B-5 < 0.001 0.01 < 0.1 0.01 1 < 1 < 0.005 134 0.38 1 26 < 0.05 4 2
    B-6 < 0.001 0.02 < 0.1 0.01 2 1 0.005 169 0.30 1 26 < 0.05 3 11
    B-7 < 0.001 0.01 < 0.1 0.01 1 < 1 < 0.005 91 0.48 1 32 < 0.05 3 37
    B-8 0.002 0.01 0.1 0.01 1 < 1 0.008 174 0.35 < 1 24 < 0.05 2 30
    B-9 < 0.001 0.01 < 0.1 0.01 1 < 1 0.006 157 0.34 2 29 < 0.05 3 33
    B-11 < 0.001 0.01 < 0.1 0.03 1 3 0.010 113 0.23 5 21 < 0.05 5 31
    B-12 < 0.001 0.01 < 0.1 0.03 1 < 1 < 0.005 112 0.40 2 21 < 0.05 3 35
    B-13 < 0.001 0.01 < 0.1 0.01 1 < 1 0.006 132 0.55 1 21 < 0.05 2 7
    B-14 < 0.001 0.01 < 0.1 0.01 1 < 1 < 0.005 81 0.32 1 25 < 0.05 2 23
    B-15 < 0.001 0.01 < 0.1 0.01 < 1 < 1 < 0.005 147 0.38 < 1 27 < 0.05 3 25
    B-16 < 0.001 0.02 0.1 0.01 1 4 0.005 151 0.49 1 25 < 0.05 3 12
    平均值 0.001 0.01 0.1 0.01 1 3 0.007 148 0.40 2 25 < 0.05 3 22
    地壳元素丰度 0.004 0.08 2.2 0.004 25 63 0.08 1300 1.3 89 0.01 0.6 140 94
    注:澳大利亚澳实分析检测(广州)有限公司澳实矿物实验室测试; Au和Ag测试采用DZG 93—09方法,其他元素测试采用DZG 20.03—1987
    下载: 导出CSV

    表  3   50号脉主量元素含量

    Table  3   The constant elements of No. 50 vein  %

    样品号 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO 烧失量 总计
    LL127 58.00 2.55 9.90 11.75 0.24 0.01 0.72 0.01 0.01 0.24 0.014 0.05 0.02 7.09 90.59
    LL126 59.07 3.60 7.51 13.28 0.26 0.12 1.04 0.01 0.04 0.23 0.010 0.06 0.02 4.49 89.71
    LL123 68.52 7.82 2.74 9.53 0.49 0.11 2.45 0.01 0.11 0.16 0.026 0.04 0.05 6.53 98.56
    LL122 70.59 14.09 3.30 0.56 0.45 2.33 3.56 0.01 0.20 0.01 0.022 0.01 0.10 4.41 99.61
    LL085 71.71 14.50 1.39 0.80 0.40 3.01 5.24 0.01 0.08 0.02 0.023 0.05 0.42 1.69 99.32
    LL087 81.63 8.17 2.47 0.37 0.27 2.97 1.23 0.01 0.10 0.01 0.036 0.02 0.04 1.80 99.11
    LL086 70.70 12.15 2.53 2.30 0.75 2.99 2.60 0.01 0.07 0.09 0.030 0.06 0.21 3.68 98.14
    LL084 71.94 14.41 1.42 1.11 0.33 3.33 5.28 0.01 0.11 0.01 0.021 0.07 0.47 1.26 99.75
    LL128 73.48 14.04 0.88 1.52 0.26 3.52 3.78 0.01 0.06 0.02 0.024 0.04 0.15 2.12 99.89
    LL125 73.00 13.79 1.31 1.38 0.36 3.46 3.95 0.01 0.18 0.02 0.043 0.04 0.20 2.14 99.86
    LL117 71.61 13.55 1.68 1.23 0.27 3.30 3.50 0.01 0.17 0.01 0.029 0.03 0.17 3.60 99.14
    LL124 72.92 12.97 1.48 2.56 0.52 1.71 3.61 0.01 0.18 0.05 0.037 0.03 0.08 2.92 99.05
    LL089 70.32 15.17 1.32 1.45 0.40 4.06 4.75 0.01 0.10 0.01 0.027 0.08 0.29 1.52 99.48
    LL118 80.00 10.42 0.85 0.49 0.27 2.93 2.65 0.01 0.06 0.01 0.016 0.02 0.06 1.03 98.78
    LL116 92.90 2.23 1.44 0.31 0.21 0.06 0.57 0.01 0.01 0.01 0.015 0.01 0.01 0.89 98.62
    LL120 70.87 14.82 1.59 1.40 0.37 3.70 4.31 0.01 0.22 0.01 0.043 0.06 0.25 1.95 99.58
    LL119 73.69 13.67 1.29 1.24 0.55 3.50 2.88 0.01 0.18 0.01 0.043 0.03 0.11 2.17 99.35
    LL121 42.55 12.28 7.64 8.81 8.70 1.20 2.82 0.07 0.79 0.11 0.595 0.06 0.29 12.65 98.56
    LL114 70.79 14.32 1.54 1.19 0.34 3.57 4.65 0.01 0.17 0.01 0.042 0.06 0.26 1.80 98.71
    LL088 45.46 13.69 7.74 8.17 9.13 1.69 1.95 0.08 0.79 0.11 0.195 0.06 0.10 9.02 98.19
    LL115 70.37 13.88 2.19 1.71 1.35 2.91 3.71 0.01 0.11 0.01 0.036 0.06 0.12 3.43 99.88
    注:澳大利亚澳实分析检测(广州)有限公司澳实矿物实验室测试
    下载: 导出CSV

    表  4   50号脉微量元素含量

    Table  4   The trace elements of No. 50 vein  10-6

    剖面
    序号
    样品
    编号
    样品野外定名 采样位置 Au Ag As Bi Co Cu Hg Mn Mo Ni Pb Sb V Zn
    1 LL084 钾化花岗岩 -620m50脉的72线 0.115 0.05 0.2 0.05 1 3 < 0.005 139 0.59 < 1 22 < 0.05 4 18
    LL085 硅化硫化物(矿体) -620m50脉的72线 0.224 0.25 3.4 0.15 3 3 < 0.005 233 0.32 2 16 < 0.05 4 9
    LL086 硅化碎裂花岗岩 -620m50脉的72线 0.116 0.29 7.8 0.44 5 7 < 0.005 779 0.46 3 14 0.07 4 15
    LL087 硅化硫化物(矿体) -620m50脉的72线 0.187 0.59 7.2 0.43 6 4 < 0.005 188 0.67 3 6 0.06 3 7
    LL088 基性岩脉 -620m50脉的72线 0.002 0.03 0.1 0.05 35 20 < 0.005 906 0.71 150 8 0.05 163 82
    LL089 硅化钾华花岗岩 -620m50脉的72线 0.032 0.04 0.9 0.04 2 9 < 0.005 127 0.35 2 19 < 0.05 5 14
    2 LL114 钾化花岗岩 -670m50#矿脉-
    主巷道88川
    0.005 0.01 0.2 0.02 2 9 < 0.005 96 0.40 1 20 < 0.05 3 14
    LL115 硅化碎裂花岗岩 -670m50#矿脉-
    主巷道88川
    0.002 0.01 < 0.1 0.02 3 8 < 0.005 174 0.39 25 19 < 0.05 15 25
    LL116 石英脉 -670m50#矿脉-
    主巷道88川
    0.024 0.04 0.6 0.31 4 9 < 0.005 98 0.92 3 < 2 < 0.05 3 7
    LL117 硅化硫化物(矿体) -670m50#矿脉-
    主巷道88川
    0.071 0.11 1.4 0.98 4 8 < 0.005 90 0.54 4 11 0.06 5 10
    LL118 硅化、钾化花岗岩 -670m50#矿脉-
    主巷道88川
    0.028 0.03 0.3 0.18 2 6 < 0.005 74 0.64 2 7 < 0.05 3 7
    LL119 钾化花岗岩 -670m50#矿脉-
    主巷道88川
    0.007 0.02 0.2 0.04 1 6 < 0.005 179 0.64 4 14 < 0.05 5 10
    3 LL120 钾化花岗岩 -570m50#脉88川 0.009 0.02 0.6 0.02 2 10 < 0.005 150 0.43 1 19 < 0.05 4 15
    LL121 灰黑色基性脉岩 -570m50#脉88川 0.006 0.07 < 0.1 0.02 32 42 < 0.005 972 1.09 190 5 < 0.05 167 86
    LL122 硅化硫化物(矿体) -570m50#脉88川 1.215 0.43 11.1 0.46 2 13 < 0.005 65 0.33 2 15 0.06 5 9
    LL123 含矿石英脉(矿体) -570m50#脉88川 1.500 11.80 5.7 0.09 2 3520 0.011 1310 0.46 2 18 < 0.05 3 56
    LL124 硅化花岗岩 -570m50#脉88川 0.068 0.87 2.2 0.09 2 366 < 0.005 468 0.41 2 24 < 0.05 5 14
    LL125 硅化钾化花岗岩 -570m50#脉88川 0.085 0.18 2.9 0.10 2 44 < 0.005 276 0.42 1 26 < 0.05 3 30
    LL126 含矿石英脉(矿体) -570m50#脉88川 8.60 7.81 19.0 0.96 43 97 0.005 1745 3.25 18 37 0.09 3 9
    LL127 硅化硫化物(矿体) -570m50#脉88川 13.60 8.07 41.6 2.15 22 889 0.005 1905 2.05 4 94 0.17 2 12
    LL128 钾化花岗岩 -570m50#脉88川 0.090 0.06 1.3 0.04 1 18 < 0.005 285 0.32 1 11 < 0.05 3 14
    4 LL234 钾化花岗岩 -620m50#脉的71川 0.072 0.15 4.6 0.14 2 23 < 0.005 267 0.33 1 18 < 0.05 3 13
    LL235 硅化硫化物(矿体) -620m50#脉的71川 4.38 4.11 20.3 0.87 8 58 < 0.005 108 0.46 2 15 0.05 5 9
    LL236 矿化石英脉 -620m50#脉的71川 0.407 0.29 5.5 0.19 2 10 < 0.005 102 0.69 1 7 0.05 4 9
    LL237 黄铁矿化硅化蚀变岩 -620m50#脉的71川 0.479 0.43 8.1 0.45 12 10 < 0.005 4160 0.42 121 9 0.12 90 37
    LL238 钾化硅化花岗岩 -620m50#脉的71川 0.098 0.21 0.7 0.13 2 9 < 0.005 169 0.34 1 13 < 0.05 4 9
    LL239 钾化花岗岩 -620m50#脉的71川 0.009 0.04 0.9 0.04 2 6 < 0.005 133 0.41 1 15 < 0.05 3 10
    5 LL240 硅化硫化物(矿体) -620m50#脉的70川 0.118 0.31 4.2 0.28 2 70 < 0.005 201 0.39 2 15 < 0.05 4 18
    LL241 钾化硅化花岗岩 -620m50#脉的70川 0.029 0.26 3.0 0.15 1 80 < 0.005 322 0.37 4 48 0.05 5 21
    LL242 黄铁矿化硅化蚀变岩 -620m50#脉的70川 0.084 0.38 3.8 0.33 2 71 < 0.005 246 0.37 1 85 0.07 4 29
    LL243 黄铁矿硅化蚀变岩矿体 -620m50#脉的70川 0.047 0.08 2.0 0.05 2 14 < 0.005 302 0.30 3 22 0.09 3 14
    LL244 硅化蚀变岩 -620m50#脉的70川 0.015 0.14 1.0 0.06 2 18 0.013 650 0.32 < 1 11 < 0.05 3 9
    LL245 钾化、硅化花岗岩 -620m50#脉的70川 0.051 0.06 0.6 0.06 1 7 < 0.005 234 0.36 1 14 < 0.05 3 9
    6 LL246 弱钾化花岗岩 -620m50#脉的69川 0.008 0.02 0.2 0.03 < 1 5 < 0.005 131 0.44 < 1 17 < 0.05 2 17
    LL247 钾化花岗岩 -620m50#脉的69川 0.120 0.28 1.3 0.17 1 38 < 0.005 130 0.37 < 1 16 < 0.05 3 13
    LL248 硅化硫化物(矿体) -620m50#脉的69川 2.96 2.99 27.8 0.85 3 70 < 0.005 363 0.41 2 18 < 0.05 3 17
    LL249 强硅化蚀变岩 -620m50#脉的69川 0.279 1.07 6.2 0.95 3 60 < 0.005 186 0.38 2 104 0.06 6 228
    LL250 钾化、硅化花岗岩 -620m50#脉的69川 0.346 0.37 4.3 0.46 2 28 < 0.005 129 0.38 1 24 < 0.05 2 10
    7 LL251 钾化花岗岩 -620m50#脉的67川 0.130 0.65 3.4 0.21 1 151 < 0.005 199 0.40 1 29 < 0.05 3 16
    LL252 硅化硫化物(矿体) -620m50#脉的67川 1.035 4.05 46.9 1.15 5 25 < 0.005 41 1.42 < 1 2330 0.37 2 2140
    LL253 钾化、硅化蚀变岩 -620m50#脉的67川 0.094 0.15 2.2 0.13 1 17 < 0.005 219 0.28 1 23 < 0.05 4 16
    LL254 硅化蚀变岩 -620m50#脉的67川 0.115 0.24 2.2 0.12 2 23 < 0.005 252 0.32 1 23 < 0.05 3 13
    LL255 强硅化蚀变岩 -620m50#脉的67川 0.076 0.07 0.6 0.06 1 6 < 0.005 169 0.35 1 17 < 0.05 4 19
    8 LL256 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.019 0.03 0.5 0.02 1 11 < 0.005 238 0.47 < 1 11 < 0.05 1 9
    LL257 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.053 0.06 1.9 0.06 2 7 < 0.005 570 0.49 1 < 2 < 0.05 4 9
    LL258 黄铁矿化硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.001 0.01 0.3 0.01 2 8 < 0.005 133 0.36 < 1 20 < 0.05 4 26
    LL259 硅化硫化物(矿体) -620m50#脉
    74-73线沿脉
    1.420 0.55 6.6 0.27 3 6 < 0.005 581 0.50 2 5 < 0.05 5 8
    LL260 硅化硫化物(矿体) -620m50#脉
    74-73线沿脉
    1.170 0.32 4.8 0.14 2 4 < 0.005 643 0.38 1 3 0.05 3 8
    LL261 硅化蚀变岩 -620m50#
    脉74-73线沿脉
    0.351 0.21 4.9 0.12 2 5 < 0.005 611 0.32 < 1 6 < 0.05 6 13
    LL262 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.041 0.10 0.9 0.05 1 6 < 0.005 144 0.41 1 21 < 0.05 3 11
    LL263 硅化硫化物(矿体) -620m50#脉
    74-73线沿脉
    1.550 0.56 6.0 0.40 2 7 < 0.005 633 0.43 3 11 0.05 4 10
    LL264 硅化硫化物(矿体) -620m50#脉
    74-73线沿脉
    1.105 0.51 4.9 0.20 5 4 < 0.005 242 0.84 < 1 8 < 0.05 3 10
    LL265 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.789 0.27 2.5 0.08 2 5 < 0.005 211 0.45 1 12 < 0.05 4 7
    LL266 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.157 0.13 3.0 0.11 4 5 < 0.005 444 0.51 1 7 < 0.05 4 9
    LL267 硅化蚀变岩 -620m50#脉
    74-73线沿脉
    0.023 0.03 0.3 0.02 2 9 < 0.005 222 0.59 1 2 < 0.05 2 8
    9 LL268 硅化、钾化蚀变岩 -620m50#脉的75川 0.043 0.09 0.9 0.04 3 5 < 0.005 105 0.31 1 10 < 0.05 2 6
    LL269 硅化、钾化蚀变岩 -620m50#脉的75川 0.017 0.02 0.7 0.02 3 4 < 0.005 182 0.37 1 15 < 0.05 3 9
    LL270 钾化花岗岩 -620m50#脉的75川 0.008 0.04 1.3 0.39 1 < 1 0.017 393 0.28 < 1 14 0.05 4 < 2
    LL271 黄铁矿化硅化蚀变岩 -620m50#脉的75川 0.300 0.68 23.0 1.07 3 < 1 < 0.005 1190 0.25 14 54 0.13 11 49
    10 LL323 硅质岩(矿体) -570m50#脉72线 0.103 0.12 2.5 0.08 2 < 1 < 0.005 346 0.40 8 < 2 < 0.05 17 13
    LL324 硅化硫化物(矿体) -570m50#脉72线 4.32 3.38 26.6 0.99 11 64 < 0.005 74 1.62 3 75 0.06 4 5
    LL325 硅化弱钾化花岗岩 -570m50#脉72线 0.117 0.28 10.7 0.12 2 18 < 0.005 401 0.28 3 4 < 0.05 4 5
    LL326 弱钾化花岗岩 -570m50#脉72线 0.052 0.08 2.4 0.04 < 1 16 < 0.005 199 0.31 3 16 < 0.05 3 2
    LL327 硅质岩 -570m50#脉72线 0.162 0.21 3.8 0.13 2 14 < 0.005 184 0.31 1 15 < 0.05 5 18
    LL328 钾化花岗岩 -570m50#脉72线 0.013 0.10 0.9 0.03 < 1 14 < 0.005 169 0.35 1 122 < 0.05 3 15
    11 LL329 硅质岩 -570m50#脉74线 0.009 0.02 0.2 0.03 1 1 < 0.005 119 0.35 < 1 15 < 0.05 4 5
    LL330 石英脉(矿体) -570m50#脉74线 1.245 0.42 5.7 0.40 2 1 < 0.005 51 0.82 4 14 0.30 8 10
    LL331 硅化硫化物(矿体) -570m50#脉74线 0.292 0.25 3.2 0.11 2 5 < 0.005 391 1.13 1 46 0.10 3 46
    LL332 石英脉(矿体) -570m50#脉74线 2.00 0.73 5.5 0.41 2 < 1 < 0.005 82 0.33 1 10 < 0.05 2 3
    12 LL337 钾化花岗岩 -470m50#脉94线 0.023 0.04 0.1 0.05 1 < 1 < 0.005 126 0.31 1 25 < 0.05 3 26
    LL338 硅化硫化物(矿体) -470m50#脉94线 0.110 0.18 2.0 0.21 < 1 3 < 0.005 220 0.25 1 23 0.08 3 16
    LL339 弱钾化花岗岩 -470m50#脉94线 0.012 0.05 0.6 0.03 1 3 < 0.005 348 2.54 1 18 0.08 3 9
    LL340 钾化花岗岩 -470m50#脉94线 0.002 0.01 < 0.1 0.02 < 1 < 1 0.006 139 0.26 1 21 < 0.05 3 20
    LL341 钾化花岗岩 -470m50#脉94线 0.001 0.01 < 0.1 0.01 < 1 1 0.010 199 0.40 1 24 < 0.05 2 26
    13 LL342 硅化弱钾化花岗岩 -470m50#脉87线 0.015 0.03 0.3 0.02 1 3 < 0.005 337 0.35 1 14 < 0.05 3 3
    LL343 硅化花岗岩 -470m50#脉87线 0.096 0.04 0.3 0.07 1 4 0.006 222 0.33 < 1 11 < 0.05 2 < 2
    LL344 硅化硫化物(矿体) -470m50#脉87线 0.140 0.24 3.1 0.18 11 9 0.012 567 0.75 70 13 0.48 53 27
    LL345 弱钾化花岗岩 -470m50#脉87线 0.007 0.04 0.8 0.02 1 3 < 0.005 119 0.35 1 22 < 0.05 3 12
    LL346 硅化弱钾化花岗岩 -470m50#脉87线 0.002 0.02 < 0.1 0.03 1 < 1 0.007 95 0.33 1 24 < 0.05 4 9
    14 LL347 硅化钾化花岗岩 -470m50#脉77线 0.040 0.04 < 0.1 0.02 1 2 0.007 98 0.32 < 1 22 < 0.05 2 6
    LL348 硅化弱钾化花岗岩 -470m50#脉77线 0.013 0.04 0.5 0.07 2 < 1 0.008 166 0.30 2 16 < 0.05 3 11
    LL349 硅化钾化花岗岩 -470m50#脉77线 0.005 0.02 0.4 0.04 1 < 1 0.005 179 0.25 3 14 < 0.05 3 8
    LL350 硅化钾化花岗岩 -470m50#脉77线 0.006 0.01 < 0.1 0.02 < 1 1 < 0.005 123 0.29 1 14 < 0.05 3 3
    LL351 硅化弱钾化花岗岩 -470m50#脉77线 0.018 0.03 0.1 0.04 2 4 < 0.005 104 0.42 1 15 < 0.05 3 3
    15 LL393 钾化花岗岩 -420m50#脉76线 0.058 0.11 0.8 0.06 < 1 4 0.007 210 0.33 1 17 < 0.05 4 8
    LL394 硅化硫化物(矿体) -420m50#脉76线 0.152 1.14 7.0 0.80 1 6 0.005 59 1.97 1 84 0.06 3 15
    LL395 硅化硫化物(矿体) -420m50#脉76线 0.149 0.58 3.0 0.51 3 2 < 0.005 568 2.96 1 89 0.08 4 9
    LL396 钾化花岗岩 -420m50#脉76线 0.008 0.04 0.4 0.02 < 1 3 < 0.005 410 0.26 1 24 < 0.05 1 6
    16 LL404 花岗岩 -570m50#脉92线 0.010 0.07 0.5 0.04 1 2 < 0.005 118 0.28 1 19 < 0.05 4 6
    LL405 硅化花岗岩 -570m50#脉92线 0.054 0.23 2.4 0.13 1 12 0.007 354 0.42 4 7 0.13 4 12
    LL406 硅化硫化物(矿体) -570m50#脉92线 0.785 1.91 18.5 1.11 12 55 0.009 128 0.74 7 7 0.05 3 14
    平均值 0.593 0.67 4.64 0.25 3.79 68.52 0.006 356.25 0.57 8.05 47.51 0.07 8.87 40.73
    硅化硫化物(矿体) 1.749 1.53 12.5 0.61 6 65 0.008 365 0.91 6 144 0.12 6 120
    石英脉(矿体) 2.300 3.52 7.0 0.39 9 727 0.008 565 1.08 5 17 0.15 4 16
    玲珑矿区背景值 0.001 0.01 0.1 0.01 1 3 0.007 148 0.40 2 25 < 0.05 3 22
    元素富集系数 590.00 67.00 46.40 25.00 3.79 22.84 0.86 2.41 1.43 4.03 1.90 1.40 2.96 1.85
    注:澳大利亚澳实分析检测(广州)有限公司澳实矿物实验室测试; Au和Ag测试采用DZG 93—09方法,其他元素测试采用DZG 20.03—1987
    下载: 导出CSV

    表  5   玲珑金矿大开头区原生晕中各元素相关性

    Table  5   The analyses of correlation about zoning of the Dakaitou mining area in the Linglong gold deposit

    Au Ag As Bi Co Cu Hg Mn Mo Ni Pb Sb V Zn
    Au 1
    Ag 0.730 1
    As 0.700 0.600 1
    Bi 0.700 0.600 0.900 1
    Co 0.553 0.427 0.300 0.390 1
    Cu 0.251 0.764 0.100 0.108 0.060 1
    Hg -0.061 0.148 -0.100 -0.021 -0.019 0.274 1
    Mn 0.387 0.380 0.300 0.296 0.501 0.270 0.067 1
    Mo 0.520 0.440 0.400 0.476 0.524 0.057 -0.089 0.250 1
    Ni -0.019 -0.028 0.000 -0.022 0.684 -0.022 0.027 0.520 0.107 1
    Pb 0.055 0.222 0.600 0.308 0.025 -0.005 -0.043 -0.060 0.199 -0.037 1
    Sb 0.180 0.180 0.400 0.318 0.172 0.007 0.199 0.160 0.255 0.181 0.510 1
    V -0.059 -0.065 -0.100 -0.060 0.662 -0.028 0.008 0.440 0.072 0.985 -0.040 0.100 1
    Zn 0.020 0.210 0.500 0.280 0.040 0.000 -0.030 -0.00 0.160 0.019 0.990 0.050 0.010 1
    下载: 导出CSV

    表  6   玲珑金矿50号脉各种岩性中元素特征

    Table  6   The characteristics of elements in various rocks of No. 50 vein in the Linglong gold deposit  10-6

    富矿体 硅化花岗岩 硅化硫化物 硅化蚀变岩 弱蚀变花岗岩 黄铁矿化花岗岩 基性岩 钾化花岗岩 石英脉
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    平均
    标准
    浓度
    克拉
    克值
    Au 2.03 3.69 0.58 0.31 0.93 0.09 0.22 0.09 0.06 0.7 0.75 0.2 0.04 0.03 0.01 0.66 0.54 0.19 0 0 0 0.14 0.54 0.04 0.2 0.19 0.06
    Ag 2.26 3.55 28.24 0.33 0.72 4.18 0.6 0.66 7.5 0.3 0.27 3.75 0.07 0.03 0.91 0.96 1.37 12 0.05 0.03 0.63 0.19 0.55 2.34 0.18 0.13 2.25
    As 9.17 10.53 4.17 3.55 5.92 1.61 4.6 2.26 2.09 3.35 2.52 1.52 1.05 0.79 0.48 13.91 16.01 6.32 0.1 0 0.05 1.88 5.03 0.86 3.3 2.49 1.5
    Bi 0.52 0.54 129.85 0.15 0.21 36.9 0.53 0.59 132.5 0.18 0.16 45 0.27 0.47 68.13 0.527 0.41 131.79 0.04 0.02 8.75 0.1 0.18 25.92 0.21 0.09 52.5
    Co 7.24 10.76 0.29 2.24 2.21 0.09 3.5 0.71 0.14 2.5 1.73 0.1 2.25 1.26 0.09 4.143 3.63 0.17 33.5 2.12 1.34 1.467 0.68 0.06 2.667 1.15 0.11
    Cu 274.88 862.86 4.36 33.47 79.01 0.53 32.5 38.89 0.52 6 1.41 0.1 8.25 4.92 0.13 26.71 30.89 0.42 31 15.56 0.49 15.06 29.38 0.24 11 2.65 0.17
    Mn 475.64 594.34 0.37 286 196.86 0.22 315 182.43 0.24 403.5 231.99 0.31 183 97.56 0.14 1008 1440.5 0.78 939 46.67 0.72 193.9 93.21 0.15 128 48.54 0.1
    Mo 1.012 0.95 253.09 0.44 0.28 110.24 0.45 0.09 111.25 0.53 0.22 131.88 0.428 0.16 106.88 0.533 0.4 133.21 0.9 0.27 225 0.44 0.4 110.08 0.64 0.31 160
    Ni 9 17.05 0.1 1.71 1.06 0.02 1.5 0.71 0.02 1.5 1 0.02 2.25 1.5 0.03 20.29 44.66 0.23 170 28.28 1.91 1.27 0.69 0.01 1.667 1.15 0.02
    Pb 29.77 30.26 2.48 19.19 15.97 1.6 55.5 68.59 4.63 9.5 6.24 0.79 13.5 8.96 1.13 357.3 870.42 29.77 6.5 2.12 0.54 21.87 19.46 1.82 8 6.56 0.67
    Sb 0.11 0.11 0.18 0.06 0.02 0.09 0.06 0.01 0.09 0.05 0 0.08 0.06 0.02 0.1 0.12 0.12 0.2 0.05 0 0.08 0.05 0.01 0.09 0.05 0 0.08
    V 7.94 12.4 0.06 3.62 1.07 0.03 5 1.41 0.04 3.75 0.5 0.03 3.5 1.29 0.03 17 32.32 0.12 165 2.83 1.18 3.07 0.87 0.02 4 1 0.03
    Zn 16.94 14.28 0.18 11.19 7.43 0.12 118.5 154.86 1.26 12 4.69 0.13 9.5 3.42 0.1 327 799.6 3.48 84 2.83 0.89 12.06 5.98 0.13 11.36 5.86 0.12
    下载: 导出CSV

    表  7   玲珑金矿大开头50号矿脉原生晕元素分带浓集系数

    Table  7   The concentration ratio about rock geochemical trace of No. 50 vein in the Linglong gold deposit

    中段 Au Ag As Bi Co Cu Mn Mo Ni Pb Sb V Zn
    -420 2.24 8.20 8.60 16.30 5.18 0.89 14.10 26.30 1.75 15.60 12.30 4.64 3.58
    -470 1.03 0.20 2.20 3.53 7.16 0.76 11.50 12.80 8.94 7.96 19.90 10.20 6.82
    -570 74.50 68.30 47.20 31.80 47.50 84.80 36.00 27.20 41.80 15.40 25.90 37.50 12.90
    -620 21.30 22.00 39.70 28.70 27.50 11.10 31.90 18.50 32.40 56.70 28.30 35.80 70.80
    -670 0.840 1.29 2.22 19.50 12.60 2.42 6.28 14.90 15.00 4.16 13.40 11.60 5.85
    ΔH 13.40 299.00 4.46 8.23 10.30 164.00 -1.21 -0.14 24.50 0.80 2.71 7.47 23.50
    注:有下标线的数据为该元素在各中段中的最大值
    下载: 导出CSV

    表  8   原生晕异常浓度分带值

    Table  8   Zonation of concentration values about geochemistry primary halo  10-6

    分带 Au Ag As Bi Co Cu Hg Mn Mo Ni Pb Sb V Zn
    内带(≥) 1 2 4 1.2 20 40 900 300 1 60 160 40 160
    中带(≥) 0.1 1 2 0.8 10 20 600 250 0.7 30 80 1 20 80
    外带(≥) 0.01 0.5 1 0.4 5 5 300 150 0.4 15 40 0.5 10 40
    下载: 导出CSV
  • 冯景兰.山东招远金矿纪略[J].地质评论, 1936, 1(4):385-394.
    郭文魁.段承敬.山东招远玲珑金矿[J].地质评论, 1951, 16(1):112-143. http://d.wanfangdata.com.cn/Periodical_OA000006454.aspx
    邓军.山东招掖金矿带断裂构造分带与蚀变矿化分带关系研究[J].矿床地质, 1994, 13(增刊):17-19. http://www.cqvip.com/QK/93610X/1994S1/4001440728.html
    孙景贵, 胡受奚, 沈昆, 等.胶东金矿区矿田体系中基性-中酸性脉岩的碳-氧同位素地球化学研究[J].岩石矿物学杂志, 2001, 20(1):47-56. http://www.cnki.com.cn/Article/CJFDTotal-YSKW200101007.htm
    刘石年.山东玲珑式金矿床矿体空间定位形式及其形成机制的探讨[J].地球科学, 1984, 4(1):47-56. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198404004.htm
    陈衍景, Franco P, 赖勇, 等.胶东矿集区大规模成矿时间和构造环境[J].岩石学报, 2004, 20(4):907-923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200404013

    Chen Y J, Pirajno F, Qi J P.Origin of gold metallogeny and sources of ore-forming fluids, Jiaodong Province, eastern China[J].International Geology Review, 2005, 47(5):530-549. doi: 10.2747/0020-6814.47.5.530

    邓军, 王庆飞, 杨立强.胶东西北部金热液成矿系统内部结构解析[J].地球科学进展.2005, 30(1):102-8. http://www.cqvip.com/Main/Detail.aspx?id=11523738
    杨敏之.金矿床围岩蚀变带地球化学——以胶东金矿床为例[M].北京:地质出版社, 1998:1-120.
    刘星.玲珑金矿床的矿化垂直分带[J].矿床地质, 1990, 9(3):243-256. http://www.cqvip.com/Main/Detail.aspx?id=314559
    孙国胜, 李绪俊, 姚凤良.玲珑金矿田矿物组合与地球化学分带及矿体定位预测意义[J].地质与勘探, 2002, 38(4):28-32. http://d.wanfangdata.com.cn/Periodical/dzykt200204006
    张德宏, 张庆禧.玲珑金矿田岩石地球化学测量及其找矿效果[J].山东地质, 1998, 14(1):47-52. http://www.cnki.com.cn/Article/CJFDTotal-SDDI801.007.htm
    吕古贤, 孔庆存, 邓军.山东玲珑和焦家金矿成矿深度研究与测算[J].地质论评, 1996, 42(6):550-559. http://www.cqvip.com/Main/Detail.aspx?id=2246281
    吕古贤.山东玲珑金矿田和焦家金矿田成矿深度的测算与研究方法[J].中国科学(D辑), 1997, 27(4):337-342. http://qikan.cqvip.com/Qikan/Article/Detail?id=2635542
    陈柏林.韧性剪切带型脉状金矿床成矿深度研究的思考[J].矿物岩石地球化学通报, 2000, 19(4):373-374. http://www.cnki.com.cn/Article/CJFDTotal-KYDH200004060.htm
    李惠, 张国义, 禹斌, 等.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘, 2010, 17(1):287-293. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201001028.htm
    李惠, 张国义, 禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社, 2006:1-48.
    李惠, 张文华, 刘宝林, 等.中国主要类型金矿产的原生晕轴向分带序列研究及其应用准则[J].地质与勘探, 1999, 35(1):32-35. http://d.wanfangdata.com.cn/Periodical/dzykt199901009
    高海东, 胡宝群, 吕古贤, 等.玲珑金矿大开头矿区47号脉微量元素特征[J].地质力学学报, 2013, 19(1):53-62. http://qikan.cqvip.com/Qikan/Article/Detail?id=45880551
    吕承训, Norbert H M, Kenneth J B, 等.胶东区域成矿断裂带蚀变年龄研究及其矿床学意义[J].地学前缘, 2017, 24(2):140-150. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201702020.htm
    胡宝群, 高海东, 申玉科, 等.玲珑金矿大开头矿区金的赋存特征及其成因意义[J].东华理工大学学报(自然科学版), 2013, 36(4):357-363. http://www.cnki.com.cn/Article/CJFDTotal-HDDZ201304002.htm
    黎彤.化学元素的地球元素丰度[J].地球化学, 1976, (3):167-174. http://www.cnki.com.cn/Article/CJFDTotal-DQHX197603002.htm
    蒋敬业, 程建萍, 祁士华, 等.应用地球化学[M].武汉:中国地质大学出版社, 2006:29-241.
    李惠, 张国义, 禹斌, 等.构造叠加晕法是危机金矿山寻找接替资源的有效新方法[J].矿产与地质, 2005, 19(6):683-687. http://www.cqvip.com/qk/96866X/200506/20730700.html

    Bruno N E, Thompson T B.Gualcamayo mining District, Argentina:An example of Carlin-like Au deposits[J].Ore Geology Reviews, 2019, 111:95-103. http://www.sciencedirect.com/science/article/pii/S0169136818306309

    胡宝群, 白丽红, 李满根, 等.内蒙古赤峰地区金矿床中砷、锑、锰和锌的特征[J].物探与化探, 2009, 33(4):389-394. http://www.cqvip.com/qk/95670X/200904/31185671.html

    Guiraud J, Tremblay A, Jébrak T, et al.Stratigraphic setting and timing of the Montagne d'Or deposit, a unique Rhyacian Au-rich VMS deposit of the Guiana Shield, French Guiana[J].Science Advances, 2020, 337:95-103. http://www.sciencedirect.com/science/article/pii/S030192681930258X

    Kusebauch C, Gleeson S A, Oelze M.Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits[J].Science Advances, 2019, 24(2):95-103. http://www.ncbi.nlm.nih.gov/pubmed/31049396

    胡宝群, 高海东, 申玉科, 等.玲珑金矿大开头矿区Bi特征及指示意义[J].物探与化探, 2014, 38(6):1134-1139. http://d.wanfangdata.com.cn/Periodical/wtyht201406007
    宋明春, 李杰, 李世勇, 等.鲁东晚中生代热隆-伸展构造及其动力学背景[J].吉林大学学报(地球科学版), 2018, 48(4):941-964. http://www.cqvip.com/QK/91256B/20184/675767723.html
    吕古贤.构造动力成岩成矿和构造物理化学研究[J].地质力学学报, 2019, 25(5):962-980. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZLX201905025
    杜泽忠, 程志中, 姚晓峰, 等.胶东谢家沟金矿热液蚀变作用过程的元素迁移规律[J].地质通报, 2020, 39(8):1137-1152. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200802&flag=1

    Kalinin Y A, Palyanova G A, Naumov E A, et al.Supergene remobilization of Au in Au-bearing regolith related to orogenic deposits:A case study from Kazakhstan[J].Ore Geology Reviews, 2019, 109:358-369. http://www.sciencedirect.com/science/article/pii/S0169136818308564

    吕古贤, 李洪奎, 丁正江, 等.胶东地区"岩浆核杂岩"隆起-拆离带岩浆期后热液蚀变成矿[J].现代地质, 2016, 30(2):247-262. http://d.wanfangdata.com.cn/Periodical/xddz201602001
    李洪奎, 李逸凡, 梁太涛, 等.山东胶东型金矿的概念及其特征[J].黄金科学技术, 2017, 25(1):1-8. http://www.cnki.com.cn/Article/CJFDTotal-HJKJ201701001.htm
    宋明春, 宋英昕, 丁正江, 等.胶东金矿床:基本特征和主要争议[J].黄金科学技术, 2018, 26(4):405-422. http://www.cnki.com.cn/Article/CJFDTotal-HJKJ201804006.htm
    吕古贤, 霍庆龙, 袁月蕾, 等.胶东金矿陆内构造岩浆核杂岩隆起拆离带蚀变成矿[J].地学前缘, 2017, 24(2):95-103. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201702016.htm
    汤磊, 林成贵, 程志中, 等.甘肃省合作市早子沟金矿原生晕三维特征及深部找矿预测[J].地质通报, 2020, 39(8):1173-1181. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200805&flag=1
  • 期刊类型引用(11)

    1. 刘娟娟,林一杰,张新英. 农田土水稻系统中硒与镉的相互关系研究. 农业与技术. 2025(01): 1-5 . 百度学术
    2. 谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 . 百度学术
    3. 刘瑞,周卫军,彭素华,商贵铎,周雨舟,李敏. 湖南省石门县耕地土壤硒含量特征及影响因素解析. 土壤通报. 2023(04): 840-847 . 百度学术
    4. Xiu-jin Liu,Ke Yang,Fei Guo,Shi-qi Tang,Ying-han Liu,Li Zhang,Hang-xin Cheng,Fei Liu. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China. China Geology. 2022(01): 1-11 . 必应学术
    5. 王蕊,陈楠,张二喜. 基于总量与形态的矿区周边土壤重金属生态风险与健康风险评估. 环境科学. 2022(03): 1546-1557 . 百度学术
    6. 吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 . 本站查看
    7. 袁宏伟,陈江均,郭腾达,吴艳君,杨敏. 巴彦淖尔市临河区狼山镇和新华镇一带富硒土壤地球化学特征及影响因素. 地质与勘探. 2022(05): 1027-1041 . 百度学术
    8. 刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 . 百度学术
    9. 杨泽,刘国栋,戴慧敏,张一鹤,肖红叶,阴雨超. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力. 地质通报. 2021(10): 1773-1782 . 本站查看
    10. 郭军,刘明,汤恒佳,廖琦,邢新丽. 湖南汨罗市范家园地区富硒土壤特征及其影响因素研究. 华南地质. 2021(04): 387-397 . 百度学术
    11. 于炎炎. 安徽砀山县土壤锌地球化学特征及影响因素. 矿产与地质. 2021(06): 1147-1155+1170 . 百度学术

    其他类型引用(2)

图(5)  /  表(8)
计量
  • 文章访问数:  3072
  • HTML全文浏览量:  441
  • PDF下载量:  1696
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-04-22
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-10-31

目录

/

返回文章
返回