• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古塔尔气地区花岗斑岩的形成时代与岩石成因

陈飞, 和钟铧, 张春蕾, 隋振民, 王阳, 张菁

陈飞, 和钟铧, 张春蕾, 隋振民, 王阳, 张菁. 2016: 内蒙古塔尔气地区花岗斑岩的形成时代与岩石成因. 地质通报, 35(5): 776-789. DOI: 10.12097/gbc.dztb-35-05-776
引用本文: 陈飞, 和钟铧, 张春蕾, 隋振民, 王阳, 张菁. 2016: 内蒙古塔尔气地区花岗斑岩的形成时代与岩石成因. 地质通报, 35(5): 776-789. DOI: 10.12097/gbc.dztb-35-05-776
CHEN Fei, HE Zhonghua, ZHANG Chunlei, SUI Zhenmin, WANG Yang, ZHANG Jing. 2016: The ages and petrogenesis of granite porphyry in Tarqi area, Inner Mongolia. Geological Bulletin of China, 35(5): 776-789. DOI: 10.12097/gbc.dztb-35-05-776
Citation: CHEN Fei, HE Zhonghua, ZHANG Chunlei, SUI Zhenmin, WANG Yang, ZHANG Jing. 2016: The ages and petrogenesis of granite porphyry in Tarqi area, Inner Mongolia. Geological Bulletin of China, 35(5): 776-789. DOI: 10.12097/gbc.dztb-35-05-776

内蒙古塔尔气地区花岗斑岩的形成时代与岩石成因

基金项目: 

中国地质调查局项目 编号:1212011120672

详细信息
    作者简介:

    陈飞(1989-),男,在读硕士生,岩石学、矿物学、矿床学专业。E-mail:cf2013612009@163.com

    通讯作者:

    和钟铧(1968-),男,博士,教授,从事构造地质学方面的研究。E-mail:hezhonghua@126.com

  • 中图分类号: P534.53;P597+.3

The ages and petrogenesis of granite porphyry in Tarqi area, Inner Mongolia

  • 摘要:

    通过对内蒙古塔尔气地区花岗斑岩的野外地质特征、LA-ICP-MS锆石U-Pb年龄及地球化学特征的研究,讨论了该地区花岗斑岩的形成时代和成因机制。锆石U-Pb年龄及地球化学结果表明,塔尔气地区花岗斑岩形成于早白垩世136.5~126.4Ma;花岗斑岩具有高硅、富碱,弱过铝质(A/CNK=1.0~1.29),分异程度高的特点,属于高钾钙碱性系列,相对富集轻稀土元素和部分大离子亲石元素(Rb、Th、U、K),亏损高场强元素(Nb、Ta、Ti、P)。锆石Hf同位素组成表明,花岗斑岩具有较高的εHf(t)值(+7.19~+7.29),二阶段模式年龄为851~569Ma,暗示其可能起源于新元古代-早古生代期间从亏损地幔增生的地壳物质的部分熔融。结合区域地质资料分析,塔尔气花岗斑岩与研究区白音高老组火山岩可能为同期岩浆活动的产物,形成于伸展的构造环境。

    Abstract:

    Based on geological characteristics, zircon U-Pb ages and geochemical features, the authors studied the ages and petrogenesis of granite porphyry in Tarqi area. The zircon U-Pb ages (136.5~126.4Ma) indicate that the granite porphyry was formed in Early Cretaceous. An analysis of geochemical data shows that the granite porphyry is characterized by high silica, rich alkali, weakly peraluminous attribute (A/CNK=1.0~1.29) and high differential degree, suggesting high-kcalc-alkaline series. It is also enriched in LILE (Rb, Th, U, K) and LREE, and depleted in HFSE (Nb, Ta, Ti, P). The zircon Hf isotope data indicate that the granite porphyry has εHf(t) values of +7.19~+7.29, and the model ages (TDM2) of two stages are from 851Ma to 569Ma, which implies that the granite porphyry might be derived from the partial melting of the crustal substance from depleted mantle during Neoproterozoic-Early Palaeozoic. According to the regional geological data, Taerqi granite porphyry and Baiyingaolao volcanic rocks in the study area may be the products of contemporaneous magmatism, and were probably formed in an extensional environment.

  • 硒(Se)是一种对植物、动物和人类健康至关重要的营养物质(Heath et al., 2010),在调节土壤−植物−动物生态系统功能中起着关键作用,是人体许多生理过程正常运转所必需的微量元素(Kieliszek et al., 2016Ozaltun et al., 2018Pappas et al., 2019Ryant et al., 2020)。硒对人体的重要性通常归因于它的抗氧化特性及甲状腺激素的合成及其支持的代谢功能,这些特性和功能构成了人类战胜疾病及保持健康的基础,如抗癌、抗炎、抗微生物、抗衰老等(Reich et al., 2016Sakr et al., 2016Dinh et al., 2018)。人类通过土壤−植物−动物食物链从自然环境中获取有机硒,当人体硒摄入不足或过量时会导致身体发生各种病理变化(Michalke et al., 2018Wesselink et al., 2019)。硒缺乏通常是由食物中的硒低浓度引起的,而毒性问题通常是由生物体组织中硒的积累和食物链中的生物放大作用引起的。

    植物源有机硒被认为是人体摄入硒更安全有效的途径,硒生物地球化学行为及其在土壤−植物−人类系统中的迁移转化过程受到广泛关注(Haug et al., 2007Fan et al., 2011Favorito et al., 2017梁帅等,20212022)。兴凯湖平原传统上被划分为中国缺硒或严重缺硒区,是克山病、大骨节病等地方病的高风险区(邵国璋等,1993谭见安,1996)。2019—2020年,中国地质调查局沈阳地质调查中心在兴凯湖平原开展1∶25万土地质量地球化学调查时发现,密山市二人班乡一带分布高质量的富硒耕地(杨泽等,2021)。开展硒在土壤−植物系统中的迁移转化及生态效应研究,是科学开发富硒土地、提高作物Se含量及地方病预防的重要抓手。本文依托“典型地区1∶5万土地质量调查及成果转化应用研究”课题获取的表层土壤、根系土、作物籽实、岩石等样品的调查数据,查明土壤、植物等介质中Se的含量特征及成因来源,揭示硒在土壤−作物系统中迁移转化的影响主控因素。

    研究区位于穆棱河−兴凯湖平原西部,鸡西市东部,行政区划属于密山市二人班乡和鸡东县向阳镇(图1)。区域属于中温带大陆性季风气候,年均气温在3.5~4.2℃之间,区域≥10℃的积温在2450~2720℃,年均降水量介于520~550 mm之间,夏季降水占全年降水量的60%以上。土壤类型主要为白浆土、水稻土、草甸土、沼泽土等,土地利用类型主要为旱田、水田等,其中,旱田种植作物主要为玉米及少量大豆,水田种植作物主要为水稻。

    图  1  研究区地理位置及地质简图(国境线据国家基础地理信息中心1∶5万地形数据库(2019版))
    Figure  1.  Geographic location and geological map of the study area

    出露地层由老至新主要为下二叠统平阳镇组、洞子沟组、中—上二叠统杨岗组、下白垩统东山组、新近系富锦组和全新统坡积裙、高河漫滩和河漫滩等(图1),其中富锦组岩性主要为砂岩、砂砾岩、粉砂岩、玄武岩及黑色岩系(泥岩、页岩、褐煤等)(梁树能等,2009)。岩浆活动以晚古生代—早中生代为主,岩性主要为黑云母二长花岗岩、花岗闪长岩、闪长岩等(曲关生,2008)。研究区位于敦密断裂东侧(黑龙江省地质调查研究总院,2004),新构造运动较强烈,尤其是古—新近纪敦密断裂带的再次活动,使断裂带内出现了裂陷沉积物,并伴随了微弱的基性火山活动;在新近纪,裂陷作用的进一步扩张,引起了碱性裂谷型基性火山岩的喷发,沿敦密断裂带NE向展布。西南部10 km处分布有五星铂钯(硒)多金属矿床。

    样品采集分3个阶段。第一阶段(土地质量面积调查):按照《土地质量地球化学评价规范(DZ/T 0295—2016)》(中华人民共和国国土资源部,2016),表层土壤样品采集选用网格法,密度为4 点/km2,深度0~20 cm,样品原始重量大于1500 g;每个土壤样品由3个子样组合而成,且每2个子坑间距30 m,子样坑呈三角形分布。第二阶段(查明硒异常成因及植物富硒效应):依据表层土壤样品测试分析结果,在硒地球化学高值(异常)区采集配套的土壤垂向剖面样品(深度为1.6~2.0 m,每20 cm采集1 个样品)、岩石样品、水稻、玉米作物籽实样品、作物同点位根系土样品。第三阶段(评估五星铂钯(硒)多金属矿床与研究区硒异常的关系):在矿区与研究区之间采集土壤垂向剖面和水平剖面样品、岩石样品。

    土壤样品风干后,人工木棒敲碎,过 20 目尼龙筛,混合均匀后取200 g送实验室;植物籽实自然风干后,人工脱皮或脱壳,取200 g送实验室。研究区共采集表层土壤样品836件、农作物及根系土53套、土壤水平剖面样品15件、土壤垂向剖面样品76件、岩石样品20件,样品类型及采集点位信息见图2

    图  2  样品类型及点位分布图(国境线据国家基础地理信息中心1∶5万地形数据库,2019版)
    Figure  2.  Sample type and point distribution map

    土壤、作物籽实及岩石样品分析测试均由自然资源部东北矿产资源监督检测中心完成,各元素的测试方法及检出限见表1。测试以XRF、ICP-MS、ICP-OES方法为主,辅以其他分析方法;各项元素分析方法的检出限、报出率、准确度、精密度等质量指标均达到《土地质量地球化学评价规范(DZ/T 0295—2016)》(中华人民共和国国土资源部,2016)要求。

    表  1  元素分析方法及检出限
    Table  1.  Elemental analysis methods and detection limits mg/kg
    元素 检出限 分析方法 元素 检出限 分析方法
    Se 0.01 AFS S 26 VOL
    SiO2* 0.05 XRF Cu 0.29 ICP-MS
    Al2O3* 0.02 ICP-OES Pb 0.3 ICP-MS
    TFe2O3* 0.02 XRF Zn 0.6 XRF
    CaO* 0.03 XRF Mn 4 XRF
    MgO* 0.03 XRF Mo 0.06 ICP-MS
    Na2O* 0.03 XRF Co 0.12 XRF
    K2O* 0.02 ICP-OES Ni 0.80 XRF
    pH 0.10 ISE Ge 0.059 ICP-MS
    Corg* 0.03 VOL
      注:标注*的元素计量单位为%。AFS—原子荧光光谱法;XRF—X射线荧光光谱法;ICP-OES—电感耦合等离子体发射光谱法;ISE—离子选择性电极法;VOL—容量法; ICP-MS—电感耦合等离子体质谱法
    下载: 导出CSV 
    | 显示表格

    描述性统计分析、正态分布检验及Pearson相关分析运用 SPSS 22.0 和 Excel 2010 软件完成。区域地质图运用Mapgis 6.7绘制完成。土壤硒地球化等级图运用ArcGIS 10.4软件绘制。土壤剖面图运用Origin 2019完成。

    硒生物富集系数(Bioconcentration Factor,简写为BCF)是表征Se元素被植物浓缩或富集在体内程度的指标,即Se元素在植物体内的含量与该元素在土壤环境中含量的比值, BCF=植物籽实中的Se元素含量/土壤中的Se元素含量(方如康,2003)。

    土壤样品硒等指标含量统计结果见表2。Se含量为 0.11~0.70 mg/kg,变异系数为0.22,达中等变异强度,说明土壤Se含量差异较大,可能是受成土母质、土壤质地(粘土、壤土、砂土)、土壤理化参数(pH、Corg、Eh)、人类活动等多因素综合作用所致(蒋梅茵等,1982Wasserman et al., 2021刘凯等,2022安永龙等,2023)。土壤Se含量平均值为 0.37 mg/kg,高于黑龙江土壤背景值0.195 mg/kg(中国环境监测总站,1990),是其1.9 倍,无作物硒中毒风险(林克惠等,2002)。Crog值为1.16%~4.43%,均值为2.05%。

    表  2  土壤硒地球化学参数
    Table  2.  Statistics on soil selenium geochemical parameters mg/kg
    项目样本数平均值最小值25%
    分位数
    中位值75%
    分位数
    最大值标准差变异
    系数
    Se8360.370.110.310.370.420.700.080.22
    pH5.824.095.635.815.937.780.320.06
    Corg2.091.161.832.052.324.430.400.19
    下载: 导出CSV 
    | 显示表格

    土壤硒地球化学空间分布(图3)显示,硒高值区主要分布于爱国村—忠信村一带南部,呈近EW向带状展布。土壤pH值为4.09~7.78,中位值为5.81(表2),整体呈弱酸性。依据《天然富硒土地划定与标识(DZ/T 0380—2021)》(自然资源部中国地质调查局,2021), pH≤7.5时,Se≥0.4 mg/kg为富硒标准,pH>7.5时,Se≥0.3 mg/kg为富硒标准,共划定富硒耕地6550.68 hm2

    图  3  研究区硒地球化学空间分布图(国境线据国家基础地理信息中心1∶5万地形数据库,2019版)
    Figure  3.  Spatial distribution of selenium geochemistry in the study area

    表层土壤硒易受人为活动的影响,而深层土壤硒不易受人为活动的扰动,因此深层土壤Se含量特征对土壤成土母质的原始特征具有重要指示意义(Fan et al., 2011Favorito et al., 2017)。研究区土壤垂向剖面所在位置的成土母质类型、土壤类型、土地利用类型等基础信息见表3

    表  3  土壤垂向剖面基础信息
    Table  3.  Basic information of soil vertical profile
    编号 地层单位 成土母质类型 土壤类型 土地利用类型 种植作物类型
    PM01 坡积裙(Qhp) 残积母质 白浆土 旱地 玉米
    PM02 坡积裙(Qhp) 残积母质 白浆土 旱地 玉米
    PM03 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM04 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM05 坡积裙(Qhp) 残积母质 沼泽土 水田 水稻
    PM06 坡积裙(Qhp) 残积母质 白浆土 旱地 玉米
    PM07 坡积裙(Qhp) 残积母质 沼泽土 水田 水稻
    PM08 杨岗组(P2-3y 残积母质 草甸土 旱地 玉米
    PM09 坡积裙(Qhp) 残积母质 水稻土 水田 水稻
    PM10 富锦组(Nf 残积母质 白浆土 旱地 玉米
    PM11 富锦组(Nf 残积母质 白浆土 旱地 玉米
    PM12 富锦组(Nf 残积母质 白浆土 旱地 玉米
    PM13 富锦组(Nf 残积母质 白浆土 旱地 玉米
    PM14 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM15 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM16 坡积裙(Qhp) 残积母质 白浆土 旱地 玉米
    PM17 富锦组(Nf 残积母质 草甸土 旱地 玉米
    PM18 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM19 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    PM20 坡积裙(Qhp) 残积母质 草甸土 旱地 玉米
    下载: 导出CSV 
    | 显示表格

    剖面样品测试结果投图(图4)显示,PM02自上而下Se含量呈递减趋势,表层含量相对较高可能是由于人类活动引起的局部富集,深部低值主要受成土母质(坡积裙)硒本底值低制约;PM09 Se含量总体偏低,主要受其成土母质(坡积裙)硒本底值低和多年水稻种植带出有关,其余剖面样品Se含量多处于0.15~0.25 mg/kg之间,上下波动不大,指示表层土壤硒主要是继承成土母质而得,即成土母质是土壤Se元素的最初来源(杨泽等,2021)。

    图  4  土壤垂直剖面样品Se含量变化图
    Figure  4.  Changes of selenium content in soil vertical profile samples

    硒异常分布区出露地层岩性(图2图5)及其Se含量测试结果见表4。富锦组黑色页岩Se含量为0.25~0.35 mg/kg,均值为0.30 mg/kg,黑色黑云母片岩Se含量为0.08~0.15 mg/kg,均值为0.10 mg/kg,黑色岩系Se含量是地壳硒背景值的1.1~4.8倍(梁帅等,2022);黑色岩系Se含量高主要是由于其有机碳、硫化物、粘土矿物含量较高而决定的,与硒亲生物、亲硫、易被粘土矿物吸附等特性一致。五星铂钯(硒)多金属矿石Se含量为4.67~8.50 mg/kg(均值为6.47 mg/kg),围岩(辉绿岩)Se含量为0.52 mg/kg,二者Se含量是地壳硒背景值的7~116倍(表4)(梁帅等,2022)。矿石及围岩高硒的地球化学特征是否与研究区硒异常有关?由五星铂钯(硒)多金属矿区至研究区NE向土壤垂向剖面(图2)样品Se含量投图(表3图6−a)显示,Se含量为0.13~0.33 mg/kg,均值为0.21 mg/kg,呈先降后升的趋势;SN向土壤水平剖面(图2)样品Se含量投图(表3图6−b)显示,Se含量为0.20~0.37 mg/kg,均值为0.26 mg/kg,呈先升后降的趋势,硒最高值出现在PM17,因其成土母质为富锦组岩石风化物残积;NE向和SN向土壤剖面Se含量特征及其分配规律均指示,五星铂钯(硒)多金属矿区对研究区Se含量分布特征影响较小。区域地质背景、岩石Se含量特征及土壤剖面样品Se含量分布规律揭示,富锦组黑色岩系风化物(成土母质)为土壤硒的主要物质来源(吴健等,2009杨泽等,2021)。另外,富锦组含有一定厚度的褐煤层,可能也提供了一定量的硒源(黑龙江省地质矿产局,1993张莹,2007陈健等,2008田贺忠等,2009)。

    图  5  研究区出露主要地层岩性照片
    a—气孔状玄武岩;b—铂钯(硒)稀土矿;c—层状黑色岩系;d—风化黑色岩系
    Figure  5.  Photographs of the lithology of the main strata exposed in the study area
    表  4  研究区出露主要地层岩性及Se含量
    Table  4.  Selenium content of the main stratigraphic lithologies exposed in the study area
    样品岩性 数量 含量/
    (mg·kg−1)
    平均值/
    (mg·kg−1)
    含量/(mg·kg−1)
    灰绿色铂钯(硒)
    稀土矿
    6 4.67~8.50 6.47 0.073(谭见安,1996)
    灰绿色粗粒辉绿岩 1 0.52 0.52
    黑色层状泥页岩 2 0.25~0.35 0.30
    黑色黑云母片岩 7 0.08~0.15 0.10
    黑色气孔状玄武岩 4 0.05~0.06 0.057
    下载: 导出CSV 
    | 显示表格
    图  6  土壤剖面样品Se含量变化图
    Figure  6.  Variation of selenium content in soil profile samples

    土壤的pH、质地等理化性质影响硒在土壤中的分布形态及各形态之间的相互转化,硒在有机质、粘土矿物等土壤组分中不断发生各种变化,而这些过程又受到土壤pH等多方面的共同作用。土壤Se含量与土壤理化指标相关性统计见表5。硒与Al2O3、TFe2O3、K2O、MgO、Corg、S、Cu、Pb、Mu、Mo、Co、Ni和Ge指标呈显著正相关。Al、Fe、Mn氧化物粘粒或结核对各种形态的硒具有较强的吸附和固定作用,Corg对硒具有较强的吸附作用,其他元素与硒具有亲硫、亲生物等特性有关或呈伴生关系。硒与SiO2、Na2O、CaO和pH指标呈显著负相关。SiO2、Na2O、CaO指示呈砂质土壤硒易淋滤,不利于Se的富集。pH值越大Se含量越低,酸性和中性土壤中的硒主要以亚硒酸盐形式存在(Masscheleyn et al., 1990Johnsson et al., 1991),迁移淋溶作用较弱,易被环境中金属氧化物和有机质吸附或络合;碱性土壤中硒主要以硒酸盐形式存在(Johnsson et al., 1991),溶解性好,易迁移淋失和被植物吸收,随着土壤pH值的升高,加速了亚硒酸盐向硒酸盐的转化,降低土壤中Se含量。

    表  5  土壤Se含量与土壤理化指标相关性分析
    Table  5.  Correlation analysis between soil selenium content and soil physicochemical indexes
    元素 样本数 SiO2 Al2O3 TFe2O3 K2O Na2O CaO MgO Corg pH
    Se 836 −0.112** 0.155** 0.183** 0.163** −0.113** −0.077* 0.221** 0.090** −0.017
    元素 样本数 S Cu Pb Zn Mn Mo Co Ni Ge
    Se 836 0.158** 0.122** 0.340** −0.011 0.248** 0.201** 0.328** 0.134** 0.180**
      注:*表示在0.05 水平(双侧)上显著相关;**表示在0.01 水平(双侧)上显著相关
    下载: 导出CSV 
    | 显示表格

    综上分析,富锦组黑色岩系是形成富硒土壤的物质基础和Se元素的最初来源,后期有利的古气候环境演化促进了黑色岩系的持续风化(吴健等,2009),不断为土壤提供丰富硒源。成土母质是土壤中Se元素含量分布特征的主要控制因素。

    硒以无机和有机形式存在于土壤中,无机硒包括元素硒(Se0)、硒酸盐(SeO42−)、亚硒酸盐(SeO32−)和硒化物(Se2−),有机硒包括甲基硒化物、含硒氨基酸等,其中硒酸盐易被植物吸收,亚硒酸盐次之(梁帅等,2022冯爱平等,2023赵辰等,2023)。研究区植物籽实及根系土Se含量统计结果见表6。水稻根系土Se含量为0.22~0.40 mg/kg,均值为0.29 mg/kg;水稻籽实Se含量为0.01~0.09 mg/kg,均值为0.03 mg/kg,富硒样品率为3.1%。玉米根系土Se含量为0.29~0.41 mg/kg,均值为0.35 mg/kg;玉米籽实Se含量为0.01~0.04 mg/kg,均值为0.02 mg/kg,富硒样品率为4.8%。作物籽实Se平均含量Se水稻>Se玉米,硒富集能力BCF水稻/土壤>BCF玉米/土壤

    表  6  根系土Se含量及玉米、水稻籽实Se含量统计
    Table  6.  Statistics of selenium content in root soil and selenium content in corn and rice seeds mg/kg
    植物 项目 样本 平均
    最小值 25%
    分位数
    中值 75%
    分位数
    最大值 标准差 CV/%
    水稻 根系土 32 0.29 0.22 0.25 0.03 0.32 0.40 0.05 17.24
    籽实 0.03 0.01 0.02 0.03 0.04 0.09 0.02 66.67
    玉米 根系土 21 0.35 0.29 0.32 0.36 0.37 0.41 0.04 11.42
    籽实 0.02 0.01 0.01 0.02 0.03 0.04 0.01 50.00
    下载: 导出CSV 
    | 显示表格

    硒在土壤−植物环境中的迁移是从一种化学形式转化为另一种化学形式,硒表现出来的复杂化学性质、行为受诸多土壤理化指标的制约。研究区植物籽实Se含量与土壤理化指标相关性统计见表7,籽实Se含量与土壤SiO2、K2O、Na2O含量呈正相关或显著正相关、与Se含量呈正相关、与TFe2O3、Al2O3、CaO、MgO、Crog含量呈负相关、与pH呈正相关或弱负相关,指示植物从土壤中吸收的硒有效量主要与粘土矿物(主要为伊利石、蒙脱石)、长石类矿物有关(蒋梅茵等,1982刘凯等,2022)。根据土壤理化指标与植物籽实Se含量相关性特征,综合判定影响Se元素在土壤−植物系统中的迁移化主要控制因素为粘土矿物,其次是Se总量、pH、有机质含量。土壤粘土矿物通过吸附/解析作用固定/释放大量Se元素,较大程度上制约硒的生物有效量。酸性土壤中硒通常以亚硒酸盐的形式存在,有更多的正电荷来吸附带负电荷的硒氧阴离子,降低硒的生物有效量。有机质通过生物和非生物机制固定硒,影响硒生物有效性。大量科学实验研究表明,植物对土壤中硒的吸收、转化与富集特征,除受粘土矿物、Se总量、pH、有机质外,还受Eh、硒的化学形式或形态、土壤质地、竞争离子浓度、微生物活动等因素影响(Layton-Matthews et al., 2013Etteieb et al., 2020Anamika et al., 2021)。

    表  7  植物Se含量与土壤理化指标相关性统计
    Table  7.  Statistics of correlation between plant selenium content and soil physicochemical indexes
    作物类型 样本数 SiO2 TFe2O3 Al2O3 K2O Na2O CaO MgO Se Corg pH
    水稻 32 0.122 −0.102 −0.059 0.164 0.239 0.043 −0.209 0.139 −0.051 0.275
    玉米 21 0.385* −0.279 −0.372* 0.353* 0.451** −0.225 −0.243 0.235 −0.273 −0.087
      注:*表示在0.05 水平(双侧)上显著相关;**表示在0.01 水平(双侧)上显著相关
    下载: 导出CSV 
    | 显示表格

    (1)表层土壤Se含量为 0.11~0.70 mg/kg,均值为 0.37 mg/kg,明显高于黑龙江土壤背景值0.195 mg/kg,是其1.9 倍;无硒中毒风险,高值区主要分布在爱国村—忠信村一带南部,呈近EW向带状展布。土壤pH中位值为5.81,依据《天然富硒土地划定与标识 (DZ/T 0380—2021)》,划定富硒耕地6550.68 hm2,为天然富硒土地科学利用和富硒功能产品开发提供了地学依据,有效支撑服务地方经济发展和疾病预防。

    (2)土壤剖面、地表岩石、表层土壤等样品Se含量与土壤理化指标相关性特征及地质条件均指示成土母质是土壤中Se元素含量特征及分布规律的主要控制因素;富锦组黑色岩系是形成富硒土壤的物质基础和Se元素的最初来源,后期有利的古气候环境演化促进了黑色岩系的持续风化,不断为土壤提供丰富硒源。

    (3)籽实Se平均含量显示Se水稻>Se玉米,硒富集能力显示BCF水稻/土壤>BCF玉米/土壤。(水稻)玉米籽实Se含量与土壤SiO2、K2O、Na2O含量呈(显著)正相关、与Se含量呈正相关、与TFe2O3、Al2O3、CaO、MgO、Crog含量呈负相关、与pH弱(负)正相关。依据相关性分析和已有研究成果,综合判定影响Se元素在土壤−植物系统中的迁移转化主要控制因素为粘土矿物,其次是硒总量、 pH、有机质。

    致谢: 成文过程中得到吉林大学杨德明和马瑞教授的帮助,修改过程中得到吉林大学葛文春教授、 王建国副教授的指导,吉林大学杨浩博士、李兴奎硕士提出宝贵的意见,在此一并致以衷心的感谢。
  • 图  1   研究区地质略图

    F1—塔源-喜桂图断裂;F2—贺根山-黑河断裂

    Figure  1.   Geological sketch map of the study area

    图  2   巴升河花岗斑岩与满克头鄂博组接触关系示意图

    Figure  2.   The contact relationship between the granite porphyry and the Manketou`ebo Formation

    图  3   济沁顶火山机构剖面

    Figure  3.   Volcanic apparatus profile in Jiqinding

    图  4   花岗斑岩手标本及镜下照片

    a、b、d—花岗斑岩镜下照片(正交偏光);c—花岗斑岩手标本晶洞构造;Q-石英;Af-碱性长石

    Figure  4.   Field and petrographic photos of the granite porphyry in Taerqi area

    图  5   样品PM001-39-1 锆石阴极发光图像(a)及U-Pb 谐和图(b)

    Figure  5.   CL images of the selected zircons (a) and U-Pb concordia diagrams of LA-ICP-MS zircon data (b) from sample PM001-39-1

    图  6   样品PM006-9-1 锆石阴极发光图像(a)及U-Pb 谐和图(b)

    Figure  6.   CL images of the selected zircons (a) and U-Pb concordia diagrams of LA-ICP-MS zircon data (b) from sample PM006-9-1

    图  7   样品PM006-5-1 锆石阴极发光图像(a)及U-Pb 谐和图(b)

    Figure  7.   CL images of the selected zircons (a) and U-Pb concordia diagrams of LA-ICP-MS zircon data (b) from Sample PM006-5-1

    图  8   花岗斑岩含铝指数(a)和SiO2-K2O(b)图解

    Figure  8.   Aluminous index diagrams (a) and SiO2 versus K2O diagram (b) for the granite porphyry in Taerqi area

    图  9   花岗斑岩球粒陨石稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (球粒陨石标准化据参考文献[17];原始地幔标准化值据据参考文献[18]

    Figure  9.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the granite porphyry in Taerqi area

    图  10   大兴安岭地区花岗斑岩及白音高 老组火山岩年龄统计

    Figure  10.   Age statistical graph of the Baiyingaolao Formation and granite porphyry in the Da Hinggan Mountains

    图  11   花岗斑岩成因类型判别图解

    Figure  11.   Various chemical discrimination diagrams for the granite porphyry in Taerqi area

    图  12   花岗斑岩(Y+Nb)- Rb 图解(a)和R1-R2 图解(b)[33-34]

    Figure  12.   Y+Nb versus Rb plot (a) and R1-R2 diagram (b) for the granite porphyry in Taerqi area

    表  1   塔尔气地区花岗斑岩LA-ICP-MS 锆石U-Th-Pb 分析结果

    Table  1   LA-ICP-MS zircon U-Th-Pb dating results for the granite porphyry from Taerqi area

    样品号及 分析点号含量/10-6Th/U同位素比值年龄/Ma
    ThUPb207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    PM001-39-1-0176161316.41.240.0487±0.00380.1385±0.01080.02062±0.00036134±141132±10132±2
    PM001-39-1-0244439310.41.130.0489±0.00500.1419±0.01440.02106±0.00040141±192135±13134±3
    PM001-39-1-033377283274.31.190.0487±0.00250.1389±0.00710.02069±0.00033132±87132±6132±2
    PM001-39-1-042469209659.01.180.0488±0.00260.1476±0.00780.02193±0.00035139±91140±7140±2
    PM001-39-1-051911231761.50.820.0488±0.00250.1520±0.00780.02257±0.00036139±88144±7144±2
    PM001-39-1-062262243563.10.930.0487±0.00250.1430±0.00730.02127±0.00034135±86136±6136±2
    PM001-39-1-0840053313.10.750.0487±0.00390.1426±0.01130.02122±0.00037134±145135±10135±2
    PM001-39-1-091738189849.00.920.0487±0.00280.1441±0.00810.02146±0.00035133±97137±7137±2
    PM001-39-1-101319136235.50.970.0487±0.00290.1434±0.00840.02138±0.00036131±100136±7136±2
    PM001-39-1-112188217858.41.000.0488±0.00260.1469±0.00790.02185±0.00036136±92139±7139±2
    PM001-39-1-124072988.21.360.0488±0.00580.1411±0.01670.02096±0.00043137±224134±15134±3
    PM001-39-1-1387245814.21.900.0486±0.00420.1393±0.01180.02077±0.00039130±155132±11133±2
    PM001-39-1-151821180247.01.010.0488±0.00290.1443±0.00840.02143±0.00036139±101137±7137±2
    PM001-39-1-161624140037.91.160.0487±0.00280.1457±0.00820.02168±0.00037135±96138±7138±2
    PM001-39-1-181730164743.81.050.0487±0.00290.1439±0.00850.02142±0.00036133±101137±8137±2
    PM001-39-1-192151234660.50.920.0525±0.00300.1528±0.00880.02111±0.00035306±100144±8135±2
    PM001-39-1-20453940261101.130.0487±0.00270.1458±0.00790.02171±0.00036133±92138±7138±2
    PM001-39-1-212945254369.81.160.0488±0.00300.1446±0.00880.02149±0.00036137±106137±8137±2
    PM001-39-1-22102279922.31.280.0487±0.00450.1419±0.01310.02113±0.00039132±172135±12135±2
    PM001-39-1-232215282471.30.780.0487±0.00280.1433±0.00830.02132±0.00036135±99136±7136±2
    PM001-39-1-252289283172.60.810.0488±0.00280.1458±0.00840.02167±0.00037136±99138±7138±2
    PM006-9-1-011551453.71.070.0487±0.00380.1323±0.01020.01970±0.00033132±141126±9126±3
    PM006-9-1-021631353.61.200.0486±0.00480.1341±0.01310.02002±0.00034127±186128±12128±3
    PM006-9-1-0362961915.71.020.0511±0.00220.1374±0.00580.01950±0.00027244±71131±5124±3
    PM006-9-1-0461671.70.910.0486±0.00820.1343±0.02240.02004±0.00041129±294128±20128±5
    PM006-9-1-05127872.61.460.0497±0.00600.1415±0.01680.02063±0.00047183±224134±15132±5
    PM006-9-1-063713278.51.130.0486±0.00350.1331±0.00960.01986±0.00030129±134127±9127±3
    PM006-9-1-071551153.11.340.0487±0.00480.1330±0.01310.01981±0.00034132±188127±12126±3
    PM006-9-1-081731373.71.260.0484±0.00470.1313±0.01270.01965±0.00032121±187125±11125±3
    PM006-9-1-09117932.51.260.0487±0.00780.1352±0.02150.02012±0.00039135±284129±19128±3
    PM006-9-1-1071771.90.920.0485±0.00750.1377±0.02130.02057±0.00047126±271131±19131±5
    PM006-9-1-111551173.21.320.0485±0.00530.1314±0.01440.01965±0.00038124±209125±13125±3
    PM006-9-1-12134882.51.530.0490±0.00680.1372±0.01890.02033±0.00040145±255131±17130±5
    PM006-9-1-1368351913.81.320.0514±0.00210.1381±0.00560.01949±0.00027258±68131±5124±3
    PM006-9-1-1437391.00.950.0483±0.01620.1315±0.04390.01972±0.00059115±516125±39126±6
    PM006-9-1-1638431.00.900.0494±0.01220.1360±0.03350.01995±0.00053168±399129±30127±5
    PM006-9-1-17114902.41.270.0485±0.00520.1339±0.01440.02003±0.00038122±205128±13128±3
    PM006-9-1-1856581.50.970.0484±0.00860.1324±0.02350.01982±0.00043121±299126±21127±5
    PM006-9-1-1986751.91.150.0483±0.00900.1350±0.02500.02025±0.00042115±309129±22129±5
    PM006-9-1-203182085.91.530.0489±0.00320.1367±0.00880.02029±0.00032141±116130±8129±3
    PM006-9-1-2198822.21.180.0489±0.00720.1360±0.01980.02016±0.00039144±265130±18129±3
    PM006-9-1-22132972.61.370.0485±0.00660.1313±0.01770.01962±0.00040125±246125±16125±5
    PM006-9-1-232181604.41.360.0487±0.00410.1351±0.01130.02013±0.00034131±155129±10128±3
    PM006-9-1-241891494.01.270.0485±0.00440.1344±0.01210.02009±0.00034123±170128±11128±3
    PM006-9-1-2571501.41.410.0485±0.00960.1370±0.02680.02046±0.00047126±324130±24131±5
    PM006-5-1-0168348413.51.410.0486±0.00210.1316±0.00560.01963±0.00026128±74126±5125±3
    PM006-5-1-0260688020.90.690.0485±0.00160.1304±0.00420.01950±0.00025123±51124±4124±3
    PM006-5-1-03742116327.00.640.0488±0.00120.1307±0.00320.01943±0.00024136±34125±3124±3
    PM006-5-1-043373699.30.910.0485±0.00230.1327±0.00630.01985±0.00027122±83127±6127±4
    PM006-5-1-051030121730.60.850.0498±0.00130.1375±0.00360.02002±0.00025186±37131±3128±3
    PM006-5-1-0641268316.10.600.0487±0.00140.1334±0.00390.01986±0.00025133±45127±3127±3
    PM006-5-1-071129148736.00.760.0486±0.00110.1324±0.00310.01974±0.00025129±32126±3126±3
    PM006-5-1-082643478.40.760.0486±0.00230.1322±0.00630.01974±0.00027126±83126±6126±3
    PM006-5-1-091752155.30.810.0485±0.00290.1340±0.00810.02002±0.00029125±109128±7128±4
    PM006-5-1-1027748711.50.570.0486±0.00190.1345±0.00510.02005±0.00026130±64128±5128±3
    PM006-5-1-1146765316.00.720.0485±0.00180.1341±0.00500.02004±0.00026124±63128±4128±3
    PM006-5-1-122953077.90.960.0487±0.00280.1332±0.00750.01985±0.00027131±102127±7127±4
    PM006-5-1-1339942310.90.940.0488±0.00230.1359±0.00640.02019±0.00028139±83129±6129±3
    PM006-5-1-1556090221.10.620.0485±0.00150.1322±0.00400.01975±0.00025125±48126±4126±3
    PM006-5-1-1624444510.30.550.0486±0.00200.1339±0.00550.01997±0.00028129±70128±5127±3
    PM006-5-1-1733242410.60.780.0516±0.00290.1438±0.00790.02021±0.00028267±102136±7129±4
    PM006-5-1-1852842111.21.260.0486±0.00200.1313±0.00530.01958±0.00026130±69125±5125±3
    PM006-5-1-191184134033.00.880.0488±0.00130.1314±0.00350.01954±0.00025136±38125±3125±3
    PM006-5-1-20908122829.80.740.0485±0.00140.1338±0.00380.02000±0.00026124±43128±3128±3
    PM006-5-1-2198299225.00.990.0486±0.00130.1329±0.00370.01981±0.00026131±40127±3126±3
    PM006-5-1-2250462814.90.800.0487±0.00180.1285±0.00480.01914±0.00026131±62123±4122±3
    PM006-5-1-233293639.20.910.0486±0.00220.1356±0.00600.02025±0.00029126±75129±5129±3
    PM006-5-1-2437664314.80.580.0486±0.00170.1321±0.00470.01971±0.00027128±58126±4126±3
    PM006-5-1-2551444511.61.160.0485±0.00260.1315±0.00720.01968±0.00027122±97125±6126±3
    下载: 导出CSV

    表  2   塔尔气地区花岗斑岩主量、微量和稀土元素分析结果

    Table  2   Major, trace and rare earth elements compositions for the granite porphyry from Taerqi area

    样号P006-3-1P006-5-1P006-7-1P006-8-1P006-9-1P006-11-1P006-12-1P006-15-1JB5157-3P001-39-1
    SiO276.6077.2876.1075.6975.3375.6775.8573.7977.1074.20
    TiO20.170.170.150.150.160.160.170.220.150.24
    Al2O312.7412.5212.8813.1713.3513.2313.1113.8212.5813.57
    Fe2O30.860.830.860.830.850.920.860.890.781.17
    FeO0.170.260.120.120.140.070.120.430.100.43
    TFeO0.940.800.890.870.900.900.891.230.801.48
    TFe2O31.050.890.990.961.011.000.991.370.891.65
    MnO0.050.030.100.050.080.070.090.080.060.05
    MgO0.290.280.100.100.110.100.110.260.110.29
    CaO0.290.250.230.210.230.180.310.610.210.34
    Na2O2.682.434.264.194.154.104.354.643.964.30
    K2O4.714.864.694.884.924.954.774.674.304.61
    P2O50.030.020.020.020.020.020.020.060.040.06
    LOI1.330.970.430.510.600.460.170.390.560.66
    Total98.5798.9299.4999.4199.3399.4799.7599.4799.3999.25
    Ba353.00365.8093.30143.90156.00145.60155.90597.60222.30372.30
    Rb192.30209.70187.30179.60170.10186.90170.90140.80174.50208.80
    Sr113.3098.9014.4018.5028.2023.9019.90125.8060.60108.90
    Y12.179.3921.8416.0014.7113.0125.0418.8712.6213.02
    Zr103.00102.80173.00165.50177.20163.30192.80188.10122.60168.80
    Nb17.5514.5828.0423.4623.8725.6128.8720.7617.9620.52
    Th16.6817.6624.3322.6914.7820.9522.5818.9026.7236.89
    Pb19.5021.1028.3029.8024.3035.8027.0025.8016.8023.80
    Ga18.6017.7019.5019.1020.0018.9019.1019.0019.0620.10
    Zn33.6036.8049.4061.8061.8089.6047.7052.1029.3043.70
    Cu6.906.106.105.405.105.608.207.203.836.50
    Ni8.839.289.298.919.629.309.189.001.909.50
    V9.2011.508.608.206.9010.208.4015.7016.1018.50
    Cr13.9012.9014.4014.1010.7013.8012.9013.004.3014.20
    Hf6.045.899.609.149.869.6011.5011.205.549.11
    Sc2.102.202.502.202.702.502.602.602.462.60
    Ta1.381.171.841.611.531.621.911.331.671.41
    Co1.180.960.510.440.420.570.491.150.691.26
    U4.254.283.754.103.792.953.732.065.704.64
    La32.0827.3431.5822.5326.2818.9435.1640.918.4023.27
    Ce48.7040.0770.4160.2572.7760.0076.4070.0549.7453.83
    Pr5.975.107.635.556.124.148.449.062.084.38
    Nd18.5115.5225.3718.6119.5413.2928.9030.946.5113.59
    Sm3.022.465.083.553.642.445.875.441.412.32
    Eu0.450.420.390.360.370.290.450.820.210.42
    Gd2.402.063.982.742.912.104.584.241.482.07
    Tb0.380.310.700.490.490.360.800.660.270.34
    Dy2.231.824.303.213.222.555.013.861.932.35
    Ho0.430.360.850.640.620.610.980.730.440.49
    Er1.281.132.381.831.851.642.681.971.341.53
    Tm0.260.230.460.360.370.330.500.350.280.34
    Yb1.861.633.072.552.572.393.252.381.962.45
    Lu0.310.270.530.420.480.440.620.340.460.39
    ΣREE117.8898.72156.73123.09141.23109.52173.64171.7576.51107.77
    注:主量元素含量单位为%,微量和稀土元素单位为10-6
    下载: 导出CSV

    表  3   塔尔气地区花岗斑岩锆石Hf 同位素分析结果

    Table  3   Zircon Hf isotopic data for the granite porphyry from Taerqi area

    测点号t/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf*2σmεHf(0)εHf(t)TDM1TDM2fLu/Hf
    PM006-9-1011270.0431050.0017680.2829690.0000266.979.60.9410569-0.95
    PM006-9-1021270.0442250.0017290.2829390.0000285.908.51.0453637-0.95
    PM006-9-1031270.0381880.0016050.2828440.0000182.555.20.6588851-0.95
    PM006-9-1041270.0295510.0012530.2828520.0000242.835.50.8571831-0.96
    PM006-9-1051270.0420520.0016390.2829310.0000315.648.31.1463653-0.95
    PM006-9-1061270.0406310.0015870.2828750.0000233.646.30.8543781-0.95
    PM006-9-1071270.0249270.0010970.2828490.0000232.725.40.8574838-0.97
    PM006-9-1081270.0269900.0011690.2828770.0000223.726.40.8534774-0.96
    PM006-9-1091270.0473310.0019640.2828530.0000262.885.50.9581832-0.94
    PM006-9-1101270.0243710.0010440.2828980.0000254.447.10.9503727-0.97
    PM006-9-1111270.0261640.0011200.2828400.0000222.425.10.8586857-0.97
    PM006-9-1121270.0417350.0017500.2828860.0000234.036.70.8530757-0.95
    PM006-9-1131270.1165500.0041730.2829440.0000266.088.50.9477639-0.87
    PM006-9-1141270.0247450.0009830.2828910.0000244.226.90.8512741-0.97
    PM006-9-1151270.0175230.0007660.2829370.0000225.848.60.8444636-0.98
    PM006-9-1161270.0254770.0010590.2829610.0000286.679.41.0414584-0.97
    PM006-9-1171270.0303420.0012730.2828960.0000264.377.10.9509733-0.96
    PM006-9-1181270.0282100.0011900.2829120.0000234.967.60.8484695-0.96
    PM006-9-1191270.0328380.0013750.2829340.0000255.748.40.9455646-0.96
    PM006-9-1201270.0240830.0010190.2828760.0000243.676.40.8534777-0.97
    PM006-9-1211270.0353020.0014610.2829290.0000235.558.20.8464658-0.96
    PM006-9-1221270.0216580.0009420.2829460.0000276.158.90.9433617-0.97
    PM006-9-1231270.0394380.0015530.2828840.0000253.956.60.9530761-0.95
    PM006-9-1241270.0404820.0016990.2829110.0000244.927.60.8493700-0.95
    PM006-9-1251270.0290870.0012060.2828830.0000233.926.60.8527761-0.96
    PM001-39-1011400.0402190.0015830.2828790.0000183.776.70.6538766-0.95
    PM001-39-1021400.0637130.0028110.2828850.0000154.006.80.5547758-0.92
    PM001-39-1031400.0480910.0019230.2828930.0000194.277.20.7523736-0.94
    PM001-39-1041400.0554310.0025820.2828860.0000164.036.90.6542755-0.92
    PM001-39-1051400.0702720.0030830.2829030.0000144.647.40.5524718-0.91
    PM001-39-1061400.0749410.0032370.2828870.0000154.066.80.5551757-0.90
    PM001-39-1071400.0346740.0014740.2822470.000015-18.58-15.60.514372184-0.96
    PM001-39-1081400.0462250.0022170.2828610.0000143.166.00.5573808-0.93
    PM001-39-1091400.0522950.0024860.2829200.0000155.228.10.5491678-0.93
    PM001-39-1101400.0540460.0025700.2829150.0000145.057.90.5499689-0.92
    PM001-39-1111400.0693950.0030720.2828710.0000143.526.30.5571791-0.91
    PM001-39-1121400.0513670.0020180.2828770.0000263.716.60.9547772-0.94
    PM001-39-1131400.0443060.0017630.2828760.0000193.676.60.7545773-0.95
    PM001-39-1141400.0285690.0011860.2822560.000017-18.25-15.30.614142162-0.96
    PM001-39-1151400.0728330.0031670.2828940.0000154.317.10.5539741-0.90
    PM001-39-1161400.0620510.0028620.2828450.0000152.575.40.5608850-0.91
    PM001-39-1171400.0691220.0029370.2828950.0000214.377.20.7533735-0.91
    PM001-39-1181400.0558610.0024300.2829200.0000185.248.10.6490676-0.93
    PM001-39-1191400.0857610.0035370.2828860.0000174.026.80.6557761-0.89
    PM001-39-1201400.0812980.0034250.2829440.0000206.108.90.7466627-0.90
    PM001-39-1211400.0668280.0028860.2828700.0000163.466.30.6571793-0.91
    PM001-39-1221400.0500830.0022470.2828980.0000164.447.30.6520727-0.93
    PM001-39-1231400.0525190.0024060.2829440.0000146.078.90.5454623-0.93
    PM001-39-1241400.0787360.0034230.2829070.0000194.767.50.7524713-0.90
    PM001-39-1251400.0704610.0030690.2829260.0000185.468.20.6489666-0.91
    下载: 导出CSV

    表  4   塔尔气白音高老组主量、微量和稀土元素分析结果

    Table  4   Major, trace and rare earth elements compositions of the Baiyingaolao Formation in Taerqi area

    样号SiO2Al2O3TiO2Fe2O3FeOCaOMgOK2ONa2OMnOP2O5lolTotal
    PM006-17-176.312.300.271.200.280.270.314.783.070.030.070.9298.88
    PM004-82-178.2111.660.220.820.500.210.284.202.730.0630.0410.9798.93
    PM004-91-179.3411.850.090.480.140.180.113.903.000.0560.0170.7999.16
    PM004-94-178.9611.820.110.540.050.120.055.142.390.0260.0130.7499.22
    样号BaRbSrYNbThHfScTaULaCePrNdSm
    PM006-17-183918017715.617.618.37.312.801.244.7728.359.06.3021.13.64
    PM004-82-150519483.622.418.321.37.123.740.894.0315.355.93.8114.13.05
    PM004-91-121416448.910.312.617.03.252.180.785.2110.926.02.837.021.06
    PM004-94-135521842.710.814.522.53.292.820.844.0313.225.42.847.581.23
    样号EuGdTbDyHoErTmYbLu
    PM006-17-10.593.060.483.090.601.790.342.300.47
    PM004-82-10.452.900.563.630.802.400.472.920.67
    PM004-91-10.170.890.151.080.301.220.292.190.41
    PM004-94-10.211.100.191.170.291.000.211.540.37
    下载: 导出CSV
  • Wu F Y, Sun D Y, Ge W C,et al.Geochronology of the Phanerozoic granites in northeastern China[J].Journal of Asian Earth Sciences, 2011,41:1-30.

    Wu F Y, Sun D Y, Ge W C,et al.Geochronology of the Phanerozoic granites in northeastern China[J].Journal of Asian Earth Sciences, 2011,41:1-30.

    Wu F Y, Sun D Y, Li H M, et al. A-type grantites in northeastern:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143-173.

    Wu F Y, Sun D Y, Li H M, et al. A-type grantites in northeastern:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143-173.

    葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特特区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-760.
    佘宏全,李进文,向平安,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594.
    朱怀亮,陈跃军,吴国学,等.黑河新生地区早白垩世花岗质岩石的锆石U-Pb年龄、地球化学特征及地质意义[J]. 世界地质,2013,32(4):665-680.
    Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J].Lithos, 2008,102(1):138-157.

    Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J].Lithos, 2008,102(1):138-157.

    Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology,2010,276:144-165.

    Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology,2010,276:144-165.

    Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J].Earth Planet. Sci. Lett.,2006,251:179-198.

    Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J].Earth Planet. Sci. Lett.,2006,251:179-198.

    Dong Y, Ge W Ch, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J]. Lithos,2014,205:168-184.

    Dong Y, Ge W Ch, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J]. Lithos,2014,205:168-184.

    Xu W L, Pei F P, Wang F, et al.Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic systems[J]. Journal of Asian Earth Sciences,2013,74:167-193.

    Xu W L, Pei F P, Wang F, et al.Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic systems[J]. Journal of Asian Earth Sciences,2013,74:167-193.

    Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002, 192(1/2):59-79.

    Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002, 192(1/2):59-79.

    侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    Veevers J J,Saeed A, Belousova F A. U-Pb ages and source composition by Hf-isotope and trace element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J].Earth Science Reviews,2005,68:245-279

    Veevers J J,Saeed A, Belousova F A. U-Pb ages and source composition by Hf-isotope and trace element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J].Earth Science Reviews,2005,68:245-279

    Yuan H L,Gao S,Dai M N, et al. Simultaneous determinations of UPb age,Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008,247:100-118.

    Yuan H L,Gao S,Dai M N, et al. Simultaneous determinations of UPb age,Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008,247:100-118.

    刘颖,刘海臣,李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,1996,25:552-558.
    徐学纯,李雪菲,赵庆英,等. 内蒙古哈马尔乌拉花岗斑岩的锆石U-Pb定年及其岩石地球化学特征[J].地质与资源,2011,20(3):161-166.
    Boynton W V. Cosmochemistry of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.

    Boynton W V. Cosmochemistry of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    朱怀亮,陈跃军,吴国学,等.黑河新生地区早白垩世花岗质岩石的锆石U-Pb年龄、地球化学特征及地质意义[J]. 世界地质,2013,32(4):665-680.
    曾庆栋,刘建明. 西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义[J].吉林大学学报,2010,40(4):828-834.
    唐永举. 内蒙古乌兰浩特地区早白垩世侵入岩的岩石学、岩石地球化学特征及地质意义[D]. 中国地质大学(北京)硕士学位论文, 2014.
    吴庆.内蒙古科右中旗地区花岗斑岩岩石成因及构造背景[D].吉林大学硕士学位论文,2014.
    张成,李诺,陈衍景,等.内蒙古兴阿钼铜矿区侵入岩锆石U-Pb年龄及Hf同位素组成[J].岩石学报,2013,29(1):217-230.
    张超,杨伟红,和钟铧,等.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究[J].世界地质,2014,33(2):255-261.
    秦涛,郑长青,崔天日,等.内蒙古扎兰屯地区白音高老组火山岩地球化学、年代学及其地质意义[J].地质与资源, 2014,2(23):146-154.
    张亚明,杜玉春,崔天日,等.扎兰屯地区白音高老组火山岩特征及成因[J].金属矿山,2014,6:101-104.
    张乐彤,李世超,赵庆英,等.大兴安岭中段白音高老组火山岩的形成时代及地球化学特征[J].世界地质,2015, 34(1):44-54.
    吴福元,李献华,杨进辉,等.花岗岩研究的若干问题[J].岩石学报, 2007,23(6):1217-1238.
    Whalen J B,Currie K L, Chappell B W. A-type granites:Geochemical characteristics discrimination and petrogenesis[J]. Contrib. Miner. Petrol.,1987,95:407-419.

    Whalen J B,Currie K L, Chappell B W. A-type granites:Geochemical characteristics discrimination and petrogenesis[J]. Contrib. Miner. Petrol.,1987,95:407-419.

    隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    周漪,葛文春,王清海,大兴安岭中部乌兰浩特地区中生代花岗岩的成因-地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011,30(5):901-923.
    吴福元,孙德有,林强,等.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4):956-983.

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4):956-983.

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multionic parameters[J].Chemical Geology, 1985, 48(1):43-55.

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multionic parameters[J].Chemical Geology, 1985, 48(1):43-55.

    赵海滨,韩振哲,刘旭光.大兴安岭阿龙山地区花岗片麻岩的同位素年龄与超大陆[J].东华理工学院学报, 2005, 28(4):313-316.
    李培忠,于津生.黑龙汀碾子山品洞碱性花岗岩岩体年龄及其意义[J].地球化学,1993,4:389-398.
    Jahn B M,Wu F Y,Capdevila R,et al.Higlly evolved juvenile granites with tetrad REE pattems:the Wuduhe and Baerzhe granites from the Great Xing'an mountains in NE China[J]. Lithos, 2001,59(4):17l-198.

    Jahn B M,Wu F Y,Capdevila R,et al.Higlly evolved juvenile granites with tetrad REE pattems:the Wuduhe and Baerzhe granites from the Great Xing'an mountains in NE China[J]. Lithos, 2001,59(4):17l-198.

    孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报,2011,27(4):1209-1226.
    徐美君,许文良,孟恩,等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报,2011,30(9):1321-1338.
    王建国,和钟铧,许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报,2013, 29(3):0853-0863.
    葛文春,李献华,林强,等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-215.
    郭锋,范蔚茗,王岳军,等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报,2001,17(1):161-168.
    许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
图(12)  /  表(4)
计量
  • 文章访问数:  2049
  • HTML全文浏览量:  313
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-24
  • 修回日期:  2016-01-13
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2016-04-30

目录

/

返回文章
返回