• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示

欧新锋, 杨锋, 康志强, 穆洎仲, 崔世伟, 宁立东

欧新锋, 杨锋, 康志强, 穆洎仲, 崔世伟, 宁立东. 2022: 西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示. 地质通报, 41(5): 774-787. DOI: 10.12097/j.issn.1671-2552.2022.05.005
引用本文: 欧新锋, 杨锋, 康志强, 穆洎仲, 崔世伟, 宁立东. 2022: 西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示. 地质通报, 41(5): 774-787. DOI: 10.12097/j.issn.1671-2552.2022.05.005
OU Xinfeng, YANG Feng, KANG Zhiqiang, MU Jizhong, CUI Shiwei, NING Lidong. 2022: Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys. Geological Bulletin of China, 41(5): 774-787. DOI: 10.12097/j.issn.1671-2552.2022.05.005
Citation: OU Xinfeng, YANG Feng, KANG Zhiqiang, MU Jizhong, CUI Shiwei, NING Lidong. 2022: Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys. Geological Bulletin of China, 41(5): 774-787. DOI: 10.12097/j.issn.1671-2552.2022.05.005

西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示

基金项目: 

国家自然科学基金项目《特提斯喜马拉雅带中、东段镁铁质岩石成因及其对新特提斯洋早期演化历史的约束》 42173048

《早白垩世末“捷嘎组”火山岩研究:对拉萨地块中北部中生代构造演化的指示》 41863005

国家重点研发计划项目《难熔元素和同位素分析技术的综合应用研究》 2020YFA0714804

第二次青藏高原综合科学考察项目《青藏高原南部中生代岩浆岩研究》 2019QZKK0703

广西博士研究生创新项目《西藏山南地区基性侵入岩成因机制及深部动力学研究》 YCBZ2022119

详细信息
    作者简介:

    欧新锋(1999-),男,资源勘查工程专业。E-mail:newfrontou@outlook.com

    通讯作者:

    杨锋(1981-),男,博士研究生,高级实验师,从事分析地球化学研究。E-mail:yangfeng@glut.edu.cn

  • 中图分类号: P534.53;P588.12;P597+.3

Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys

  • 摘要:

    拉萨地块南缘广泛出露的岩浆岩是研究新特提斯洋沿该区域北向俯冲演化历史的良好对象。为研究新特提斯洋俯冲及演化机制, 对西藏山南地区啊扎侵入体进行了系统的岩石学、年代学和地球化学研究。结果表明,其为一套形成于晚白垩世(95.0±1.4 Ma、100.2±1.4 Ma)的石英二长闪长岩;地球化学组成显示其高硅、富钠(Na2O>K2O),属于高钾钙碱性岩;微量元素具有高Sr(588.47×10-6、649.65×10-6),低Y(8.66×10-6、9.03×10-6)和Yb(0.87×10-6、0.92×10-6)及高的Sr/Y值(65.17、75.02),显示典型的埃达克岩地球化学特征。同时富集Rb、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,稀土元素配分曲线呈右倾模式,具正Eu异常;显示低的(87Sr/86Sr)i(0.703825、0.703836),高的143Nd/144Nd(0.512790、0.512798)及正的εNd(t)值(4.08和4.25)。结合前人的研究成果,认为啊扎岩体是新特提斯洋洋脊俯冲消减背景下洋壳部分熔融的产物。

    Abstract:

    A large number of magmatic rocks are exposed in the southern margin of the Lhasa Terrane, which provides great objects for studying the evolution history of the northward subduction of the Neo-Tethys along the southern margin of the Lhasa Terrane.In order to study mechanism of subduction evolution of Neo-Tethys, this paper conducts systematic petrological, geochronological and geochemical analyses of the Azha intrusions in the Shannan area of Tibet.Results show that the Azha intrusive rocks are mainly composed of quartz monzodiorite, formed during Late Cretaceous(95.0±1.4 Ma, 100.2±1.4 Ma).The samples are characterized by high silicon and sodium(Na2O>K2O), belonging to high-K calc-alkaline rocks.They have high Sr(588.47×10-6, 649.65×10-6), low Y(8.66×10-6, 9.03×10-6)and Yb(0.87×10-6, 0.92×10-6)and high Sr/Y ratio(65.17, 75.02), showing the geochemical characteristics of typical adakitic rocks.Their large-ion lithophile elements such as Rb and Sr are enriched, and their high field strength elements such as Nb, Ta and Ti are depleted, along with the enrichment of LREE and the positive anomaly of Eu.The samples show low(87Sr/86Sr)i(0.703825, 0.703836), high 143Nd/144Nd(0.512790, 0.512798)and positive values of εNd(t)(4.08 and 4.25).Combined with previous results, it is suggested that the Azha instrusion is the product of partial melting of oceanic crust due to ridge subduction of the Neo-Tethys.

  • 致谢: 中国海洋大学博士研究生周桐在岩石地球化学实验和数据处理过程给予了帮助,桂林理工大学庞崇进副教授及审稿专家对本文提出了宝贵意见,在此一并致谢。
  • 图  1   青藏高原板块划分示意图(a)[19]、拉萨地块区域地质图(b)[19]和啊扎侵入体采样位置(c)

    IYZSZ—印度河-雅鲁藏布江缝合带;SMLMF—沙莫勒-麦拉-洛巴堆-米拉山断裂;SNMZ—狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带;BNSZ—班公湖-怒江缝合带;JSSZ—金沙江缝合带;NL—北拉萨地块;CL—中拉萨地块;SL—南拉萨地块

    Figure  1.   Tectonic outline of the Tibetan Plateau(a), geological map of Lhasa Terrane(b) and sampling location map of Azha intrusions(c)

    图  2   啊扎侵入体野外露头(a)及手标本照片(b)

    Figure  2.   Field(a)and hand specimen(b)photos of Azha intrusions

    图  3   啊扎侵入体样品显微镜下特征

    (a、c单偏光,b、d正交偏光)
    Am—角闪石;Bi—黑云母;Kf—钾长石;Pl—斜长石;Qz—石英

    Figure  3.   Microscopic features of Azha intrusions samples

    图  4   啊扎侵入体锆石阴极发光(CL)图像

    Figure  4.   Zircon CL images of Azha intrusions

    图  5   啊扎侵入体样品18AZ-01(a)和18AZ-03(b)锆石U-Pb年龄谐和图

    Figure  5.   Zircon U-Pb concordant diagrams of 18AZ-01(a)and 18AZ-03(b)of Azha intrusions

    图  6   啊扎侵入体TAS(a)[25]、A/CNK-A/NK(b)[26]和SiO2-K2O图解(c)[27]

    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩; Ir为Irvine分界线,上方为碱性,下方为亚碱性

    Figure  6.   TAS(a), A/CNK-A/NK(b)and SiO2-K2O(c)diagrams of Azha intrusions

    图  7   啊扎侵入体稀土元素配分模式(a)[29]和微量元素蛛网图(b)[30]

    Figure  7.   Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spider diagrams(b) for Azha intrusions

    图  8   啊扎侵入体Y-Sr/Y(a)[32]、La-La/Yb(b)[28]、SiO2-MgO(c)[35]、(87Sr/86Sr)i-εNd(t)(d)[40]、SiO2-Mg#(e)[40]和Cr-Ni(f)[40]图解

    Figure  8.   Diagrams of Y-Sr/Y(a), La-La/Yb(b), SiO2-MgO(c), (87Sr/86Sr)i-εNd(t)(d), SiO2-Mg#(e)and Cr-Ni(f)for Azha intrusions

    图  9   啊扎侵入体Th-Hf/3-Ta(a)[43]、(Y+Nb)-Rb(b)[44]、(Yb+Ta)-Rb(c)[44]和Ta/Yb-Th/Yb(d)[45]图解

    Figure  9.   Diagrams of Th-Hf/3-Ta(a), (Y+Nb)-Rb(b), (Yb+Ta)-Rb(c)and Ta/Yb-Th/Yb(d)of Azha intrusions

    表  1   啊扎侵入体(18AZ-01和18AZ-03)锆石U-Th-Pb定年数据

    Table  1   U-Th-Pb zircon analyzing results for sample 18AZ-01 and 18AZ-03 of Aza intrusion.

    样品号 元素含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    18AZ-01-1 18.97 501.08 976.60 0.51 0.06205 0.00513 0.12410 0.00842 0.01501 0.00055 676 178 119 8 96 4
    18AZ-01-2 9.28 570.31 394.37 1.45 0.11014 0.00888 0.20929 0.01412 0.01547 0.00065 1802 148 193 12 99 4
    18AZ-01-3 7.56 440.05 353.97 1.24 0.15744 0.02265 0.26544 0.02855 0.01431 0.00063 2428 246 239 23 92 4
    18AZ-01-4 8.90 447.10 429.67 1.04 0.17400 0.03603 0.23887 0.02323 0.01398 0.00059 2598 352 217 19 90 4
    18AZ-01-5 5.80 327.44 263.81 1.24 0.13801 0.01641 0.25159 0.01873 0.01510 0.00066 2202 208 228 15 97 4
    18AZ-01-6 6.13 357.32 269.66 1.33 0.15742 0.01450 0.27546 0.02320 0.01503 0.00070 2428 156 247 18 96 4
    18AZ-01-7 11.90 474.86 580.73 0.82 0.07511 0.00568 0.14934 0.01079 0.01515 0.00058 1072 147 141 10 97 4
    18AZ-01-8 88.69 2990.90 4247.78 0.70 0.04981 0.00228 0.10137 0.00458 0.01488 0.00048 187 112 98 4 95 3
    18AZ-01-9 11.33 688.13 511.79 1.34 0.08702 0.00749 0.17032 0.01293 0.01474 0.00061 1361 166 160 11 94 4
    18AZ-01-10 17.49 971.25 794.58 1.22 0.08879 0.00818 0.18961 0.02184 0.01510 0.00057 1400 177 176 19 97 4
    18AZ-01-11 10.23 521.94 421.00 1.24 0.15263 0.01122 0.31189 0.02309 0.01517 0.00062 2376 120 276 18 97 4
    18AZ-01-12 19.66 931.32 854.72 1.09 0.11204 0.00823 0.22126 0.01616 0.01506 0.00059 1833 133 203 13 96 4
    18AZ-01-13 10.74 665.74 476.58 1.40 0.14161 0.01621 0.22457 0.02161 0.01460 0.00065 2247 199 206 18 93 4
    18AZ-01-14 5.12 178.02 200.18 0.89 0.23632 0.02170 0.54951 0.06124 0.01683 0.00086 3095 146 445 40 108 5
    18AZ-01-15 8.24 490.81 384.96 1.27 0.10589 0.00873 0.20266 0.01815 0.01536 0.00065 1731 151 187 15 98 4
    18AZ-01-16 11.00 655.53 539.14 1.22 0.08283 0.00710 0.16322 0.01261 0.01485 0.00057 1265 173 154 11 95 4
    18AZ-01-17 9.33 547.93 395.81 1.38 0.10855 0.01163 0.22129 0.02050 0.01616 0.00066 1776 197 203 17 103 4
    18AZ-01-18 6.60 290.80 337.32 0.86 0.12332 0.01404 0.23500 0.02262 0.01507 0.00064 2006 203 214 19 96 4
    18AZ-01-19 8.73 537.46 397.09 1.35 0.15771 0.02274 0.27172 0.02879 0.01493 0.00068 2431 246 244 23 96 4
    18AZ-01-20 7.92 434.73 354.02 1.23 0.16033 0.01634 0.29914 0.03180 0.01484 0.00063 2459 173 266 25 95 4
    18AZ-01-21 10.09 609.53 442.22 1.38 0.09072 0.00966 0.18737 0.01596 0.01478 0.00062 1443 199 174 14 95 4
    18AZ-01-22 14.77 768.32 679.26 1.13 0.08645 0.00621 0.17225 0.01207 0.01500 0.00057 1350 139 161 10 96 4
    18AZ-01-23 9.79 618.37 433.38 1.43 0.13394 0.02391 0.20332 0.02005 0.01487 0.00071 2150 317 188 17 95 5
    18AZ-01-24 29.46 1030.18 1456.72 0.71 0.09075 0.01324 0.13772 0.01069 0.01350 0.00055 1443 277 131 10 86 4
    18AZ-01-25 7.93 441.16 350.06 1.26 0.25759 0.06486 0.28936 0.03291 0.01428 0.00071 3232 409 258 26 91 5
    18AZ-01-26 6.14 371.19 302.52 1.23 0.27695 0.05546 0.44545 0.05230 0.01409 0.00076 3346 318 374 37 90 5
    18AZ-01-27 18.51 726.82 915.21 0.79 0.08594 0.00789 0.14550 0.01040 0.01451 0.00061 1337 179 138 9 93 4
    18AZ-01-28 11.54 552.32 528.18 1.05 0.12474 0.01587 0.22857 0.01959 0.01478 0.00066 2025 227 209 16 95 4
    18AZ-01-29 10.45 524.47 475.56 1.10 0.14333 0.01897 0.25771 0.02255 0.01471 0.00062 2268 230 233 18 94 4
    18AZ-01-30 10.23 509.86 456.02 1.12 0.16080 0.02931 0.28418 0.03402 0.01484 0.00068 2464 312 254 27 95 4
    18AZ-01-31 9.95 607.38 439.21 1.38 0.20157 0.02803 0.30973 0.03585 0.01416 0.00067 2839 228 274 28 91 4
    18AZ-01-32 9.41 364.89 435.67 0.84 0.27473 0.04214 0.48951 0.06464 0.01512 0.00075 3333 242 405 44 97 5
    18AZ-03-1 2.46 144.99 106.33 1.36 0.19809 0.02715 0.36062 0.03387 0.01625 0.00078 2811 225 313 25 104 5
    18AZ-03-2 3.67 224.29 157.25 1.43 0.15026 0.01833 0.28344 0.02865 0.01523 0.00059 2350 210 253 23 97 4
    18AZ-03-3 2.17 97.31 106.26 0.92 0.16996 0.01835 0.31864 0.02801 0.01528 0.00066 2557 182 281 22 98 4
    18AZ-03-4 2.28 108.87 101.53 1.07 0.12771 0.01132 0.26351 0.01833 0.01594 0.00064 2066 157 237 15 102 4
    18AZ-03-5 2.21 107.05 102.78 1.04 0.14319 0.01575 0.31332 0.03195 0.01637 0.00071 2266 191 277 25 105 5
    18AZ-03-6 2.47 140.83 113.31 1.24 0.14277 0.01589 0.28460 0.02198 0.01584 0.00067 2261 194 254 17 101 4
    18AZ-03-7 4.92 301.00 214.20 1.41 0.07048 0.00678 0.14502 0.01205 0.01569 0.00045 943 198 138 11 100 3
    18AZ-03-8 2.99 167.89 129.14 1.30 0.17399 0.03506 0.26787 0.02410 0.01592 0.00061 2598 342 241 19 102 4
    18AZ-03-9 2.68 121.36 129.24 0.94 0.13684 0.02103 0.26335 0.02631 0.01611 0.00065 2187 270 237 21 103 4
    18AZ-03-10 3.67 215.44 160.26 1.34 0.11402 0.01226 0.24547 0.02432 0.01619 0.00045 1865 195 223 20 104 3
    18AZ-03-11 2.66 169.25 118.49 1.43 0.15134 0.01508 0.28723 0.02211 0.01536 0.00060 2361 171 256 17 98 4
    18AZ-03-12 3.42 217.87 158.83 1.37 0.10829 0.01154 0.22697 0.02110 0.01576 0.00056 1772 196 208 17 101 4
    18AZ-03-13 3.17 186.53 134.85 1.38 0.14414 0.01645 0.28835 0.02762 0.01576 0.00064 2277 198 257 22 101 4
    18AZ-03-14 3.23 181.43 150.45 1.21 0.11880 0.01484 0.21914 0.02094 0.01502 0.00058 1939 225 201 17 96 4
    18AZ-03-15 3.45 206.90 145.71 1.42 0.14385 0.01474 0.26265 0.02005 0.01588 0.00056 2274 177 237 16 102 4
    18AZ-03-16 3.08 198.13 139.67 1.42 0.12236 0.01062 0.23132 0.01910 0.01551 0.00056 1991 155 211 16 99 4
    18AZ-03-17 3.71 244.78 164.06 1.49 0.10763 0.01246 0.21451 0.01935 0.01607 0.00060 1761 213 197 16 103 4
    18AZ-03-18 3.88 161.35 198.07 0.81 0.09409 0.01138 0.18790 0.01992 0.01538 0.00050 1510 231 175 17 98 3
    18AZ-03-20 2.86 150.46 132.08 1.14 0.12851 0.02138 0.24425 0.02955 0.01582 0.00059 2077 298 222 24 101 4
    18AZ-03-21 4.29 275.04 180.09 1.53 0.09635 0.00870 0.20648 0.01634 0.01635 0.00053 1555 170 191 14 105 3
    18AZ-03-22 3.07 164.83 124.49 1.32 0.19289 0.03324 0.31190 0.03391 0.01672 0.00076 2769 286 276 26 107 5
    18AZ-03-23 3.78 258.28 173.24 1.49 0.10128 0.00899 0.18698 0.01401 0.01449 0.00049 1648 166 174 12 93 3
    18AZ-03-24 2.10 100.11 97.89 1.02 0.13010 0.02209 0.28094 0.03092 0.01673 0.00072 2099 303 251 25 107 5
    18AZ-03-25 2.86 170.49 120.93 1.41 0.16090 0.01782 0.27880 0.02246 0.01558 0.00065 2465 189 250 18 100 4
    18AZ-03-26 3.79 234.31 175.68 1.33 0.07923 0.00716 0.14551 0.01264 0.01469 0.00044 1189 180 138 11 94 3
    18AZ-03-27 2.55 136.83 121.16 1.13 0.09823 0.01378 0.17768 0.01538 0.01380 0.00046 1591 265 166 13 88 3
    注:测试单位为桂林理工大学广西隐伏金属矿产勘查重点实验室,2018
    下载: 导出CSV

    表  2   啊扎侵入体全岩主量、微量和稀土元素测试分析结果

    Table  2   Major, trace elements and REE results of Azha intrusions

    样品号 18AZ-01 18AZ-03 样品号 18AZ-01 18AZ-03 样品号 18AZ-01 18AZ-03
    Al2O3 17.11 16.86 Cu 13.77 8.99 Yb 0.87 0.92
    CaO 4.13 4.25 Zn 58.39 55.01 Lu 0.16 0.15
    TFe2O3 4.72 4.87 Ga 29.35 28.17 Hf 2.95 2.04
    K2O 2.85 2.53 Rb 53.24 42.96 Ta 0.70 0.38
    MgO 2.00 2.05 Sr 649.65 588.47 Tl 0.28 0.22
    MnO 0.10 0.10 Y 8.66 9.03 Pb 11.19 9.88
    Na2O 4.52 4.49 Zr 105.32 77.50 Th 4.78 3.27
    P2O5 0.07 0.07 Nb 5.60 5.02 U 0.88 0.59
    SiO2 63.41 63.45 Mo 0.18 0.12 δEu 1.24 1.21
    TiO2 0.60 0.60 Cs 1.85 1.27 ∑REE 87.57 85.26
    烧失量 0.43 0.28 Ba 463.38 470.91 LREE 81.20 78.69
    总计 99.94 99.54 La 20.76 19.55 HREE 6.37 6.57
    Mg# 49.75 49.45 Ce 37.37 36.28 LREE/HREE 12.74 11.98
    Na2O/K2O 1.58 1.77 Pr 4.31 4.25 (La/Yb)N 17.13 15.20
    K2O+Na2O 7.41 7.07 Nd 15.13 15.03 La/Yb 23.87 21.18
    A/CNK 0.95 0.94 Sm 2.62 2.59 Sr/Y 75.02 65.17
    A/NK 1.63 1.66 Eu 1.01 0.99 Y/Yb 9.96 9.79
    Li 12.93 8.21 Gd 2.24 2.29 Th/La 0.23 0.17
    Be 0.84 1.04 Tb 0.30 0.31 Th/Yb 5.49 3.54
    V 88.48 88.04 Dy 1.45 1.55 Ta/Yb 0.81 0.41
    Cr 16.69 16.33 Ho 0.29 0.31 Y+Nb 14.26 14.05
    Co 18.32 15.99 Er 0.90 0.90 Yb+Ta 1.57 1.30
    Ni 13.78 11.83 Tm 0.16 0.14
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6。Mg#=100×Mg2+/(Mg2++TFe2+);A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O);δEu=2Eus/(Sms·Gds),其中N表示球粒陨石标准化
    下载: 导出CSV

    表  3   啊扎侵入体Sr-Nd同位素测试分析结果

    Table  3   Sr and Nd isotopic compositions of Azha intrusions

    样品编号 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd εNd(t) tDM/Ma
    18AZ-01 53.24 649.65 0.237018 0.704145 0.703825 2.62 15.13 0.104753 0.512790 4.08 506
    18AZ-03 42.96 588.47 0.211174 0.704124 0.703836 2.59 15.03 0.104310 0.512798 4.25 493
    注:测试单位为桂林理工大学广西隐伏金属矿产勘查重点实验,2018
    下载: 导出CSV
  • 曾令森, 高利娥, 侯可军, 等. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义[J]. 岩石学报, 2012, 28(6): 1731-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206004.htm
    潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1): 92-101. doi: 10.3969/j.issn.0563-5020.2010.01.009
    莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007

    Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2003, 28(1): 211-280.

    莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
    莫宣学, 赵志丹, 朱弟成, 等. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束[J]. 地球科学——中国地质大学学报, 2009, 34(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901004.htm
    莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学, 2020, 45(7): 2245-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007004.htm
    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
    侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6): 20-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806004.htm
    莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
    董彦辉, 许继峰, 曾庆高, 等. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J]. 岩石学报, 2006, 22(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603015.htm

    Kang Z Q, Xu J F, Wilde S A, et al. Geochronology and geochemistry of theSangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos, 2014, 200/201: 157-168. doi: 10.1016/j.lithos.2014.04.019

    Mo, X X, Pan G T, Wu F Y, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography[J]. Tectonophysics, 2009, 469(1/4): 48-60. https://www.sciencedirect.com/science/article/pii/S0040195109000249

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. https://www.sciencedirect.com/science/article/pii/S0012821X10007004

    Jiang Z Q, Wang Q, Wyman D A, et al. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene(similar to 91-30 Ma)intrusive rocks in the Chanang-Zedong area, southern Gangdese[J]. Lithos, 2014, 196/197: 213-231. doi: 10.1016/j.lithos.2014.03.001

    康志强, 许继峰, 陈建林, 等. 西藏南部桑日群火山岩的时代: 来自晚期马门侵入体的约束[J]. 地球化学, 2010, 39(6): 520-530. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201006003.htm
    纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, 39(7): 849-871. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm

    Wen D R, Liu D, Chung S L, et al. Zircon SHRIMP U-Pb ages of theGangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4): 191-201. https://www.sciencedirect.com/science/article/pii/S0009254108001058

    康志强, 付文春, 田光昊. 西藏桑日县地区中生代火山岩地层层序——基于锆石U-Pb年龄及地球化学数据[J]. 地质通报, 2015, 34(2/3): 318-327. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2015020308&flag=1

    Steiger R H, Jger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth & Planetary Science Letters, 1977, 36(3): 359-362. https://www.sciencedirect.com/science/article/pii/0012821X77900607

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004
    梁细荣, 韦刚健, 李献华, 等. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值[J]. 地球化学, 2003, 32(1): 91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013
    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Middlemost E. Naming materials in the magma/igneous rocksystem[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. https://www.sciencedirect.com/science/article/abs/pii/0012825294900299

    Maniar P D, Piccoli P M. Tectonic discrimination ofgranitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Peccerillo A, Taylor S R. Geochemistry ofeocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81. https://ui.adsabs.harvard.edu/abs/1976CoMP...58...63P/abstract

    代作文, 李光明, 丁俊等. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物[J]. 地球科学, 2018, 43(8): 2727-2741. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808015.htm

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. https://www.sciencedirect.com/science/article/pii/0009254194001404

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in theGangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349/350: 54-70. doi: 10.1016/j.chemgeo.2013.04.005

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    赵珍, 胡道功, 陆露, 等. 西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义[J]. 地质力学学报, 2013, 19(1): 45-52. doi: 10.3969/j.issn.1006-6616.2013.01.005

    Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 1999, 134(1): 33-51. doi: 10.1007/s004100050467

    管琪, 朱弟成, 赵志丹, 等. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 2010, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm

    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-898. doi: 10.1038/nature03162

    Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. Journal of the Geological Society, 1995, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689

    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-144. doi: 10.1038/362144a0

    姜子琦, 王强, Wyman D A, 等. 西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因: 向北俯冲的印度陆壳的熔融?[J]. 地球化学, 2011, 40(2): 126-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102002.htm
    康志强, 许继峰, 陈建林, 等. 藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因[J]. 地球化学, 2009, 38(4): 334-344. doi: 10.3321/j.issn:0379-1726.2009.04.003
    张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 2001, 17(2): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm

    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology: Isotope Geoscience Section, 1999, 160(4): 335-356. https://www.sciencedirect.com/science/article/abs/pii/S0009254199001060

    Wood D A. The application of aTh-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province - ScienceDirect[J]. Earth & Planetary Science Letters, 1980, 50(1): 11-30. https://www.sciencedirect.com/science/article/pii/0012821X80901168

    Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    Pearce J. Trace Element Characteristics of Lavas from Destructive PlateBoundaries[M]. Andesites, 1982: 528-548.

    Defant M J, 许继峰, Kepezhinskas P, 等. 埃达克岩: 关于其成因的一些不同观点[J]. 岩石学报, 2002, 18(2): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200202000.htm
    张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9): 959-965. doi: 10.3969/j.issn.1671-2552.2004.09.020

    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous(100~89 Ma)magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet[J]. Lithos, 2013, 175/176: 315-332. doi: 10.1016/j.lithos.2013.04.006

    Yu S M, Ma X D, Hu Y C, et al. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry[J]. China Geology, 2022, 5(1): 84-95.

    黄丰, 许继峰, 陈建林, 等. 早侏罗世叶巴组与桑日群火山岩: 特提斯洋俯冲过程中的陆缘弧与洋内弧?[J]. 岩石学报, 2015, 31(7): 2089-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507022.htm

    Wang C, Ding L, Zhang L Y, et al. Petrogenesis of Middle-Late Triassic volcanic rocks from theGangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere[J]. Lithos, 2016, 262: 320-333. doi: 10.1016/j.lithos.2016.07.021

    Zheng Y C, Hou Z Q, Gong Y L, et al. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth[J]. Lithos, 2014, 190/191: 240-263. doi: 10.1016/j.lithos.2013.12.013

    闫国强, 丁俊, 等. 西藏山南比马组安山岩形成时代及意义[J]. 金属矿山, 2014, 43(8): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201408024.htm
    沈晓明, 张海祥, 马林. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学, 2010, 34(2): 181-195. doi: 10.3969/j.issn.1001-1552.2010.02.004
    西藏自治区地质矿产局区域地质调查大队.1:20万中华人民共和国拉萨幅[8-46-(20)]地质图.1991.
图(9)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-09-30
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2022-05-14

目录

    /

    返回文章
    返回