Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys
-
摘要:
拉萨地块南缘广泛出露的岩浆岩是研究新特提斯洋沿该区域北向俯冲演化历史的良好对象。为研究新特提斯洋俯冲及演化机制, 对西藏山南地区啊扎侵入体进行了系统的岩石学、年代学和地球化学研究。结果表明,其为一套形成于晚白垩世(95.0±1.4 Ma、100.2±1.4 Ma)的石英二长闪长岩;地球化学组成显示其高硅、富钠(Na2O>K2O),属于高钾钙碱性岩;微量元素具有高Sr(588.47×10-6、649.65×10-6),低Y(8.66×10-6、9.03×10-6)和Yb(0.87×10-6、0.92×10-6)及高的Sr/Y值(65.17、75.02),显示典型的埃达克岩地球化学特征。同时富集Rb、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,稀土元素配分曲线呈右倾模式,具正Eu异常;显示低的(87Sr/86Sr)i(0.703825、0.703836),高的143Nd/144Nd(0.512790、0.512798)及正的εNd(t)值(4.08和4.25)。结合前人的研究成果,认为啊扎岩体是新特提斯洋洋脊俯冲消减背景下洋壳部分熔融的产物。
Abstract:A large number of magmatic rocks are exposed in the southern margin of the Lhasa Terrane, which provides great objects for studying the evolution history of the northward subduction of the Neo-Tethys along the southern margin of the Lhasa Terrane.In order to study mechanism of subduction evolution of Neo-Tethys, this paper conducts systematic petrological, geochronological and geochemical analyses of the Azha intrusions in the Shannan area of Tibet.Results show that the Azha intrusive rocks are mainly composed of quartz monzodiorite, formed during Late Cretaceous(95.0±1.4 Ma, 100.2±1.4 Ma).The samples are characterized by high silicon and sodium(Na2O>K2O), belonging to high-K calc-alkaline rocks.They have high Sr(588.47×10-6, 649.65×10-6), low Y(8.66×10-6, 9.03×10-6)and Yb(0.87×10-6, 0.92×10-6)and high Sr/Y ratio(65.17, 75.02), showing the geochemical characteristics of typical adakitic rocks.Their large-ion lithophile elements such as Rb and Sr are enriched, and their high field strength elements such as Nb, Ta and Ti are depleted, along with the enrichment of LREE and the positive anomaly of Eu.The samples show low(87Sr/86Sr)i(0.703825, 0.703836), high 143Nd/144Nd(0.512790, 0.512798)and positive values of εNd(t)(4.08 and 4.25).Combined with previous results, it is suggested that the Azha instrusion is the product of partial melting of oceanic crust due to ridge subduction of the Neo-Tethys.
-
Keywords:
- Azha intrusions /
- Late Cretaceous /
- adakitic rock /
- Neo-Tethys /
- Lhasa Terrane
-
致谢: 中国海洋大学博士研究生周桐在岩石地球化学实验和数据处理过程给予了帮助,桂林理工大学庞崇进副教授及审稿专家对本文提出了宝贵意见,在此一并致谢。
-
图 1 青藏高原板块划分示意图(a)[19]、拉萨地块区域地质图(b)[19]和啊扎侵入体采样位置(c)①
IYZSZ—印度河-雅鲁藏布江缝合带;SMLMF—沙莫勒-麦拉-洛巴堆-米拉山断裂;SNMZ—狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带;BNSZ—班公湖-怒江缝合带;JSSZ—金沙江缝合带;NL—北拉萨地块;CL—中拉萨地块;SL—南拉萨地块
Figure 1. Tectonic outline of the Tibetan Plateau(a), geological map of Lhasa Terrane(b) and sampling location map of Azha intrusions(c)
图 6 啊扎侵入体TAS(a)[25]、A/CNK-A/NK(b)[26]和SiO2-K2O图解(c)[27]
1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩; Ir为Irvine分界线,上方为碱性,下方为亚碱性
Figure 6. TAS(a), A/CNK-A/NK(b)and SiO2-K2O(c)diagrams of Azha intrusions
表 1 啊扎侵入体(18AZ-01和18AZ-03)锆石U-Th-Pb定年数据
Table 1 U-Th-Pb zircon analyzing results for sample 18AZ-01 and 18AZ-03 of Aza intrusion.
样品号 元素含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 18AZ-01-1 18.97 501.08 976.60 0.51 0.06205 0.00513 0.12410 0.00842 0.01501 0.00055 676 178 119 8 96 4 18AZ-01-2 9.28 570.31 394.37 1.45 0.11014 0.00888 0.20929 0.01412 0.01547 0.00065 1802 148 193 12 99 4 18AZ-01-3 7.56 440.05 353.97 1.24 0.15744 0.02265 0.26544 0.02855 0.01431 0.00063 2428 246 239 23 92 4 18AZ-01-4 8.90 447.10 429.67 1.04 0.17400 0.03603 0.23887 0.02323 0.01398 0.00059 2598 352 217 19 90 4 18AZ-01-5 5.80 327.44 263.81 1.24 0.13801 0.01641 0.25159 0.01873 0.01510 0.00066 2202 208 228 15 97 4 18AZ-01-6 6.13 357.32 269.66 1.33 0.15742 0.01450 0.27546 0.02320 0.01503 0.00070 2428 156 247 18 96 4 18AZ-01-7 11.90 474.86 580.73 0.82 0.07511 0.00568 0.14934 0.01079 0.01515 0.00058 1072 147 141 10 97 4 18AZ-01-8 88.69 2990.90 4247.78 0.70 0.04981 0.00228 0.10137 0.00458 0.01488 0.00048 187 112 98 4 95 3 18AZ-01-9 11.33 688.13 511.79 1.34 0.08702 0.00749 0.17032 0.01293 0.01474 0.00061 1361 166 160 11 94 4 18AZ-01-10 17.49 971.25 794.58 1.22 0.08879 0.00818 0.18961 0.02184 0.01510 0.00057 1400 177 176 19 97 4 18AZ-01-11 10.23 521.94 421.00 1.24 0.15263 0.01122 0.31189 0.02309 0.01517 0.00062 2376 120 276 18 97 4 18AZ-01-12 19.66 931.32 854.72 1.09 0.11204 0.00823 0.22126 0.01616 0.01506 0.00059 1833 133 203 13 96 4 18AZ-01-13 10.74 665.74 476.58 1.40 0.14161 0.01621 0.22457 0.02161 0.01460 0.00065 2247 199 206 18 93 4 18AZ-01-14 5.12 178.02 200.18 0.89 0.23632 0.02170 0.54951 0.06124 0.01683 0.00086 3095 146 445 40 108 5 18AZ-01-15 8.24 490.81 384.96 1.27 0.10589 0.00873 0.20266 0.01815 0.01536 0.00065 1731 151 187 15 98 4 18AZ-01-16 11.00 655.53 539.14 1.22 0.08283 0.00710 0.16322 0.01261 0.01485 0.00057 1265 173 154 11 95 4 18AZ-01-17 9.33 547.93 395.81 1.38 0.10855 0.01163 0.22129 0.02050 0.01616 0.00066 1776 197 203 17 103 4 18AZ-01-18 6.60 290.80 337.32 0.86 0.12332 0.01404 0.23500 0.02262 0.01507 0.00064 2006 203 214 19 96 4 18AZ-01-19 8.73 537.46 397.09 1.35 0.15771 0.02274 0.27172 0.02879 0.01493 0.00068 2431 246 244 23 96 4 18AZ-01-20 7.92 434.73 354.02 1.23 0.16033 0.01634 0.29914 0.03180 0.01484 0.00063 2459 173 266 25 95 4 18AZ-01-21 10.09 609.53 442.22 1.38 0.09072 0.00966 0.18737 0.01596 0.01478 0.00062 1443 199 174 14 95 4 18AZ-01-22 14.77 768.32 679.26 1.13 0.08645 0.00621 0.17225 0.01207 0.01500 0.00057 1350 139 161 10 96 4 18AZ-01-23 9.79 618.37 433.38 1.43 0.13394 0.02391 0.20332 0.02005 0.01487 0.00071 2150 317 188 17 95 5 18AZ-01-24 29.46 1030.18 1456.72 0.71 0.09075 0.01324 0.13772 0.01069 0.01350 0.00055 1443 277 131 10 86 4 18AZ-01-25 7.93 441.16 350.06 1.26 0.25759 0.06486 0.28936 0.03291 0.01428 0.00071 3232 409 258 26 91 5 18AZ-01-26 6.14 371.19 302.52 1.23 0.27695 0.05546 0.44545 0.05230 0.01409 0.00076 3346 318 374 37 90 5 18AZ-01-27 18.51 726.82 915.21 0.79 0.08594 0.00789 0.14550 0.01040 0.01451 0.00061 1337 179 138 9 93 4 18AZ-01-28 11.54 552.32 528.18 1.05 0.12474 0.01587 0.22857 0.01959 0.01478 0.00066 2025 227 209 16 95 4 18AZ-01-29 10.45 524.47 475.56 1.10 0.14333 0.01897 0.25771 0.02255 0.01471 0.00062 2268 230 233 18 94 4 18AZ-01-30 10.23 509.86 456.02 1.12 0.16080 0.02931 0.28418 0.03402 0.01484 0.00068 2464 312 254 27 95 4 18AZ-01-31 9.95 607.38 439.21 1.38 0.20157 0.02803 0.30973 0.03585 0.01416 0.00067 2839 228 274 28 91 4 18AZ-01-32 9.41 364.89 435.67 0.84 0.27473 0.04214 0.48951 0.06464 0.01512 0.00075 3333 242 405 44 97 5 18AZ-03-1 2.46 144.99 106.33 1.36 0.19809 0.02715 0.36062 0.03387 0.01625 0.00078 2811 225 313 25 104 5 18AZ-03-2 3.67 224.29 157.25 1.43 0.15026 0.01833 0.28344 0.02865 0.01523 0.00059 2350 210 253 23 97 4 18AZ-03-3 2.17 97.31 106.26 0.92 0.16996 0.01835 0.31864 0.02801 0.01528 0.00066 2557 182 281 22 98 4 18AZ-03-4 2.28 108.87 101.53 1.07 0.12771 0.01132 0.26351 0.01833 0.01594 0.00064 2066 157 237 15 102 4 18AZ-03-5 2.21 107.05 102.78 1.04 0.14319 0.01575 0.31332 0.03195 0.01637 0.00071 2266 191 277 25 105 5 18AZ-03-6 2.47 140.83 113.31 1.24 0.14277 0.01589 0.28460 0.02198 0.01584 0.00067 2261 194 254 17 101 4 18AZ-03-7 4.92 301.00 214.20 1.41 0.07048 0.00678 0.14502 0.01205 0.01569 0.00045 943 198 138 11 100 3 18AZ-03-8 2.99 167.89 129.14 1.30 0.17399 0.03506 0.26787 0.02410 0.01592 0.00061 2598 342 241 19 102 4 18AZ-03-9 2.68 121.36 129.24 0.94 0.13684 0.02103 0.26335 0.02631 0.01611 0.00065 2187 270 237 21 103 4 18AZ-03-10 3.67 215.44 160.26 1.34 0.11402 0.01226 0.24547 0.02432 0.01619 0.00045 1865 195 223 20 104 3 18AZ-03-11 2.66 169.25 118.49 1.43 0.15134 0.01508 0.28723 0.02211 0.01536 0.00060 2361 171 256 17 98 4 18AZ-03-12 3.42 217.87 158.83 1.37 0.10829 0.01154 0.22697 0.02110 0.01576 0.00056 1772 196 208 17 101 4 18AZ-03-13 3.17 186.53 134.85 1.38 0.14414 0.01645 0.28835 0.02762 0.01576 0.00064 2277 198 257 22 101 4 18AZ-03-14 3.23 181.43 150.45 1.21 0.11880 0.01484 0.21914 0.02094 0.01502 0.00058 1939 225 201 17 96 4 18AZ-03-15 3.45 206.90 145.71 1.42 0.14385 0.01474 0.26265 0.02005 0.01588 0.00056 2274 177 237 16 102 4 18AZ-03-16 3.08 198.13 139.67 1.42 0.12236 0.01062 0.23132 0.01910 0.01551 0.00056 1991 155 211 16 99 4 18AZ-03-17 3.71 244.78 164.06 1.49 0.10763 0.01246 0.21451 0.01935 0.01607 0.00060 1761 213 197 16 103 4 18AZ-03-18 3.88 161.35 198.07 0.81 0.09409 0.01138 0.18790 0.01992 0.01538 0.00050 1510 231 175 17 98 3 18AZ-03-20 2.86 150.46 132.08 1.14 0.12851 0.02138 0.24425 0.02955 0.01582 0.00059 2077 298 222 24 101 4 18AZ-03-21 4.29 275.04 180.09 1.53 0.09635 0.00870 0.20648 0.01634 0.01635 0.00053 1555 170 191 14 105 3 18AZ-03-22 3.07 164.83 124.49 1.32 0.19289 0.03324 0.31190 0.03391 0.01672 0.00076 2769 286 276 26 107 5 18AZ-03-23 3.78 258.28 173.24 1.49 0.10128 0.00899 0.18698 0.01401 0.01449 0.00049 1648 166 174 12 93 3 18AZ-03-24 2.10 100.11 97.89 1.02 0.13010 0.02209 0.28094 0.03092 0.01673 0.00072 2099 303 251 25 107 5 18AZ-03-25 2.86 170.49 120.93 1.41 0.16090 0.01782 0.27880 0.02246 0.01558 0.00065 2465 189 250 18 100 4 18AZ-03-26 3.79 234.31 175.68 1.33 0.07923 0.00716 0.14551 0.01264 0.01469 0.00044 1189 180 138 11 94 3 18AZ-03-27 2.55 136.83 121.16 1.13 0.09823 0.01378 0.17768 0.01538 0.01380 0.00046 1591 265 166 13 88 3 注:测试单位为桂林理工大学广西隐伏金属矿产勘查重点实验室,2018 表 2 啊扎侵入体全岩主量、微量和稀土元素测试分析结果
Table 2 Major, trace elements and REE results of Azha intrusions
样品号 18AZ-01 18AZ-03 样品号 18AZ-01 18AZ-03 样品号 18AZ-01 18AZ-03 Al2O3 17.11 16.86 Cu 13.77 8.99 Yb 0.87 0.92 CaO 4.13 4.25 Zn 58.39 55.01 Lu 0.16 0.15 TFe2O3 4.72 4.87 Ga 29.35 28.17 Hf 2.95 2.04 K2O 2.85 2.53 Rb 53.24 42.96 Ta 0.70 0.38 MgO 2.00 2.05 Sr 649.65 588.47 Tl 0.28 0.22 MnO 0.10 0.10 Y 8.66 9.03 Pb 11.19 9.88 Na2O 4.52 4.49 Zr 105.32 77.50 Th 4.78 3.27 P2O5 0.07 0.07 Nb 5.60 5.02 U 0.88 0.59 SiO2 63.41 63.45 Mo 0.18 0.12 δEu 1.24 1.21 TiO2 0.60 0.60 Cs 1.85 1.27 ∑REE 87.57 85.26 烧失量 0.43 0.28 Ba 463.38 470.91 LREE 81.20 78.69 总计 99.94 99.54 La 20.76 19.55 HREE 6.37 6.57 Mg# 49.75 49.45 Ce 37.37 36.28 LREE/HREE 12.74 11.98 Na2O/K2O 1.58 1.77 Pr 4.31 4.25 (La/Yb)N 17.13 15.20 K2O+Na2O 7.41 7.07 Nd 15.13 15.03 La/Yb 23.87 21.18 A/CNK 0.95 0.94 Sm 2.62 2.59 Sr/Y 75.02 65.17 A/NK 1.63 1.66 Eu 1.01 0.99 Y/Yb 9.96 9.79 Li 12.93 8.21 Gd 2.24 2.29 Th/La 0.23 0.17 Be 0.84 1.04 Tb 0.30 0.31 Th/Yb 5.49 3.54 V 88.48 88.04 Dy 1.45 1.55 Ta/Yb 0.81 0.41 Cr 16.69 16.33 Ho 0.29 0.31 Y+Nb 14.26 14.05 Co 18.32 15.99 Er 0.90 0.90 Yb+Ta 1.57 1.30 Ni 13.78 11.83 Tm 0.16 0.14 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6。Mg#=100×Mg2+/(Mg2++TFe2+);A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O);δEu=2Eus/(Sms·Gds),其中N表示球粒陨石标准化 表 3 啊扎侵入体Sr-Nd同位素测试分析结果
Table 3 Sr and Nd isotopic compositions of Azha intrusions
样品编号 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd εNd(t) tDM/Ma 18AZ-01 53.24 649.65 0.237018 0.704145 0.703825 2.62 15.13 0.104753 0.512790 4.08 506 18AZ-03 42.96 588.47 0.211174 0.704124 0.703836 2.59 15.03 0.104310 0.512798 4.25 493 注:测试单位为桂林理工大学广西隐伏金属矿产勘查重点实验,2018 -
曾令森, 高利娥, 侯可军, 等. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义[J]. 岩石学报, 2012, 28(6): 1731-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206004.htm 潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1): 92-101. doi: 10.3969/j.issn.0563-5020.2010.01.009 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2003, 28(1): 211-280.
莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 莫宣学, 赵志丹, 朱弟成, 等. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束[J]. 地球科学——中国地质大学学报, 2009, 34(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901004.htm 莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学, 2020, 45(7): 2245-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007004.htm 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm 侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6): 20-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806004.htm 莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001 董彦辉, 许继峰, 曾庆高, 等. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J]. 岩石学报, 2006, 22(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603015.htm Kang Z Q, Xu J F, Wilde S A, et al. Geochronology and geochemistry of theSangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos, 2014, 200/201: 157-168. doi: 10.1016/j.lithos.2014.04.019
Mo, X X, Pan G T, Wu F Y, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography[J]. Tectonophysics, 2009, 469(1/4): 48-60. https://www.sciencedirect.com/science/article/pii/S0040195109000249
Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. https://www.sciencedirect.com/science/article/pii/S0012821X10007004
Jiang Z Q, Wang Q, Wyman D A, et al. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene(similar to 91-30 Ma)intrusive rocks in the Chanang-Zedong area, southern Gangdese[J]. Lithos, 2014, 196/197: 213-231. doi: 10.1016/j.lithos.2014.03.001
康志强, 许继峰, 陈建林, 等. 西藏南部桑日群火山岩的时代: 来自晚期马门侵入体的约束[J]. 地球化学, 2010, 39(6): 520-530. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201006003.htm 纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, 39(7): 849-871. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm Wen D R, Liu D, Chung S L, et al. Zircon SHRIMP U-Pb ages of theGangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4): 191-201. https://www.sciencedirect.com/science/article/pii/S0009254108001058
康志强, 付文春, 田光昊. 西藏桑日县地区中生代火山岩地层层序——基于锆石U-Pb年龄及地球化学数据[J]. 地质通报, 2015, 34(2/3): 318-327. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2015020308&flag=1 Steiger R H, Jger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth & Planetary Science Letters, 1977, 36(3): 359-362. https://www.sciencedirect.com/science/article/pii/0012821X77900607
Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 梁细荣, 韦刚健, 李献华, 等. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值[J]. 地球化学, 2003, 32(1): 91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 Middlemost E. Naming materials in the magma/igneous rocksystem[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. https://www.sciencedirect.com/science/article/abs/pii/0012825294900299
Maniar P D, Piccoli P M. Tectonic discrimination ofgranitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Peccerillo A, Taylor S R. Geochemistry ofeocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81. https://ui.adsabs.harvard.edu/abs/1976CoMP...58...63P/abstract
代作文, 李光明, 丁俊等. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物[J]. 地球科学, 2018, 43(8): 2727-2741. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808015.htm McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. https://www.sciencedirect.com/science/article/pii/0009254194001404
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in theGangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349/350: 54-70. doi: 10.1016/j.chemgeo.2013.04.005
Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0
赵珍, 胡道功, 陆露, 等. 西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义[J]. 地质力学学报, 2013, 19(1): 45-52. doi: 10.3969/j.issn.1006-6616.2013.01.005 Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 1999, 134(1): 33-51. doi: 10.1007/s004100050467
管琪, 朱弟成, 赵志丹, 等. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 2010, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-898. doi: 10.1038/nature03162
Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. Journal of the Geological Society, 1995, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689
Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-144. doi: 10.1038/362144a0
姜子琦, 王强, Wyman D A, 等. 西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因: 向北俯冲的印度陆壳的熔融?[J]. 地球化学, 2011, 40(2): 126-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102002.htm 康志强, 许继峰, 陈建林, 等. 藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因[J]. 地球化学, 2009, 38(4): 334-344. doi: 10.3321/j.issn:0379-1726.2009.04.003 张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 2001, 17(2): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology: Isotope Geoscience Section, 1999, 160(4): 335-356. https://www.sciencedirect.com/science/article/abs/pii/S0009254199001060
Wood D A. The application of aTh-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province - ScienceDirect[J]. Earth & Planetary Science Letters, 1980, 50(1): 11-30. https://www.sciencedirect.com/science/article/pii/0012821X80901168
Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Pearce J. Trace Element Characteristics of Lavas from Destructive PlateBoundaries[M]. Andesites, 1982: 528-548.
Defant M J, 许继峰, Kepezhinskas P, 等. 埃达克岩: 关于其成因的一些不同观点[J]. 岩石学报, 2002, 18(2): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200202000.htm 张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9): 959-965. doi: 10.3969/j.issn.1671-2552.2004.09.020 Ma L, Wang Q, Wyman D A, et al. Late Cretaceous(100~89 Ma)magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet[J]. Lithos, 2013, 175/176: 315-332. doi: 10.1016/j.lithos.2013.04.006
Yu S M, Ma X D, Hu Y C, et al. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry[J]. China Geology, 2022, 5(1): 84-95.
黄丰, 许继峰, 陈建林, 等. 早侏罗世叶巴组与桑日群火山岩: 特提斯洋俯冲过程中的陆缘弧与洋内弧?[J]. 岩石学报, 2015, 31(7): 2089-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507022.htm Wang C, Ding L, Zhang L Y, et al. Petrogenesis of Middle-Late Triassic volcanic rocks from theGangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere[J]. Lithos, 2016, 262: 320-333. doi: 10.1016/j.lithos.2016.07.021
Zheng Y C, Hou Z Q, Gong Y L, et al. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth[J]. Lithos, 2014, 190/191: 240-263. doi: 10.1016/j.lithos.2013.12.013
闫国强, 丁俊, 等. 西藏山南比马组安山岩形成时代及意义[J]. 金属矿山, 2014, 43(8): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201408024.htm 沈晓明, 张海祥, 马林. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学, 2010, 34(2): 181-195. doi: 10.3969/j.issn.1001-1552.2010.02.004 西藏自治区地质矿产局区域地质调查大队.1:20万中华人民共和国拉萨幅[8-46-(20)]地质图.1991.