Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet
-
摘要:
全球气候变暖背景下,川西藏东地区冰湖库容增加且溃决事件频发,持续威胁着基础设施建设和区域经济发展,因此区内冰湖的分布规律及特征急需探明。聚焦川西藏东地区重大工程建设,通过目视遥感解译结合冰蚀湖、冰碛湖、槽谷湖3种主要成因类型冰湖,从成因类型角度分析探讨了研究区2010—2020年内冰湖空间分布特征及规律。结果显示:研究区面积大于50 m2的冰湖共计17737个,其中冰蚀湖11903个,冰碛湖5734个,槽谷湖100个,总面积达7.93×103 km2;行政区划上西藏林芝察隅县分布冰湖数量最多(2161个),占比12.18%;山系和流域中分布冰湖数量最多者分别为沙鲁里山脉(5161个,占比29.10%)和雅鲁藏布流域(5450个,占比30.73%);冰蚀湖与冰碛湖空间分布规律大致相同,集中于4500~5000 m高程范围内(占比50.57%),处于冰川活跃区;而槽谷湖分布海拔较低,且与后缘冰川作用较小,主要集中分布在4000~5000 m高程之间(占其总数的77.00%)。综合不同成因类型的冰湖特征及其与冰川相互关系,梳理出潜在危险冰湖9个,其中冰碛湖7个,槽谷湖2个。未来面向区内重大铁路、公路、水电站等工程建设运营,需重点关注冰湖风险并开展针对性详细调查、评估和监测预警。
Abstract:Global warming has caused dramatic glacial lake expansions and increasing of glacial lake outburst floods (GLOFs) in western Sichuan and eastern Tibet (WSET), indicating that the spatial distribution of glacial lakes in this region need to be ascertained imminently.The overall distribution of glacial lakes of WSET during 2010-2020 has been mapped on the basis of different genetic types by manual visual interpretation method, which mainly involves glacial erosion lakes (GELs), moraine lakes (MLs), and barrier lakes (BLs).The results show that there are total 17737 glacial lakes inventoried in WSET with each area of greater than 50 m2, including 11903 GELs, 5734 MLs and 100 BLs, covering a total area of 7.93×103 km2. Zayü County in Nyinchi, Tibet, as the most densely distributed county of glacial lakes, hosts 2161 glacial lakes, which account for 12.18% of the total number.Additionally, the glacial lakes in Shaluli Mountains and Yarlung Zangbo River basin are the most lake-concentrated ones, accounting for 29.10% (5161 lakes) and 30.73% (5450 lakes) of the total respectively.Meanwhile, GELs and MLs share the similar spatial distribution patterns, and are mostly concentrated at an altitude of 4500~5000 m (50.57% of the total), implying a glacier active area.Most of BLs (77% of the total BLs) are located at the altitude of 4000~5000 m, indicating a negative interaction with the glaciers.Combined with the comprehensive analysis of genetic types of glacial lakes and their relationships with the glaciers, 9 potential dangerous glacial lakes, including 7 MLs and 2 BLs, are preliminarily identified.Regarding the risk of GLOFs in the future, the focus researches, such as investigations, assessments, monitoring, and early warning, should be carried out in the construction and operation of the major infrastructures in WSET.
-
致谢: 感谢国家冰川冻土沙漠科学数据中心(http://www.ncdc.ac.cn)提供的中国第二次冰川编目数据库。
-
表 1 川西藏东地区冰湖山系分布统计
Table 1 Distribution statistics of glacial lakes in WSET according to mountain systems
山系 数量 占比 冰湖面积/km2 占比 面密度/(m2· km-2) 沙鲁里山脉 5161 29.10% 227.50 2.87% 2097.35 念青唐古拉山脉 3990 22.50% 431.40 5.44% 2685.51 大雪山山脉 2235 12.60% 73.86 0.93% 989.01 祁灵公山脉 1031 5.81% 138.22 1.74% 5613.75 东喜马拉雅山脉 992 5.59% 1598.92 20.17% 15484.86 伯舒拉岭山脉 932 5.25% 54.87 0.69% 2267.31 唐古拉山脉 771 4.35% 5215.34 65.78% 51831.53 康藏山脉 612 3.45% 38.36 0.48% 7319.53 邛崃山山脉 521 2.94% 13.13 0.17% 493.09 米什米山脉 466 2.63% 48.36 0.61% 2933.67 他念他翁山脉 327 1.84% 32.42 0.41% 921.51 芒康山山脉 243 1.37% 33.73 0.43% 615.32 巴颜喀拉山脉 195 1.10% 10.55 0.13% 809.45 冈底斯山脉 194 1.09% 9.19 0.12% 1236.40 小相邻山脉 36 0.20% 1.89 0.02% 314.33 云岭山脉 30 0.17% 0.68 0.01% 102.50 怒山山脉 1 0.01% 0.27 0.003% 160.64 合计 17737 100% 7928.68 100% 表 2 川西藏东地区冰湖流域分布统计
Table 2 Distribution statistics of glacial lakes in WSET according to the river basins
流域 数量 占比 冰湖面积/km2 占比 面密度/(m2· km-2) 雅鲁藏布流域 5450 30.73% 2069.99 26.11% 9744.39 金沙江流域 3957 22.31% 198.41 2.50% 1852.66 雅砻江流域 2807 15.83% 111.93 1.41% 1096.78 怒江流域 1911 10.77% 1301.01 16.41% 9535.89 大渡河流域 1521 8.58% 46.84 0.59% 727.99 察隅河流域 1181 6.66% 86.59 1.09% 4462.03 布拉马普特拉流域 283 1.60% 71.33 0.90% 1475.57 澜沧江流域 192 1.08% 35.28 0.44% 556.31 扎加藏布流域 178 1.00% 3999.96 50.45% 172859.38 独龙江流域 142 0.80% 3.69 0.05% 718.39 岷江流域 115 0.65% 3.65 0.05% 247.24 合计 17737 100% 7928.68 100% 表 3 川西藏东地区潜在危险冰湖定性判识标准
Table 3 Qualitative standard for detecting potentially dangerous glacial lakes in WSET
冰湖种类 危险冰湖定性判识指标 与冰川距离 冰湖面积 N.Casagli堰塞坝模型 冰碛湖 ≤10m >1 km2 ~ 槽谷湖 ~ >1 km2 Is < 0 表 4 川西藏东地区潜在危险冰湖统计
Table 4 Statisticsof potential dangerous glacial lakes in WSET
序号 名称 冰湖类型 地理位置 高程/m 面积/km2 行政地 与冰川距离/m 1 无名湖 冰碛湖 31.76°N、94.65°E 4214 1.03 索县 0~10 2 叶优错 冰碛湖 28.35°N、91.08°E 4802 1.21 洛扎县 0~10 3 撒木错 冰碛湖 30.95°N、93.81°E 4754 1.26 比如县 0~10 4 无名湖 冰碛湖 30.60°N、95.18°E 4279 1.47 波密县 0~10 5 同错 冰碛湖 30.52°N、93.45°E 4784 1.50 嘉黎县 0~10 6 洞官拉错 冰碛湖 30.45°N、94.60°E 4001 2.15 波密县 0~10 7 色康错 槽谷湖 28.81°N、90.14°E 4457 2.92 浪卡子 >1000 8 炯普错 冰碛湖 30.66°N、94.48°E 3921 4.48 边坝县 0~10 9 哲古错 槽谷湖 28.67°N、91.68°E 4625 69.72 措美县 >1000 -
吕儒仁, 唐邦兴, 朱平一. 西藏泥石流与环境[M]. 成都: 成都科技大学出版社, 1999. Nie Y, Pritchard H D, Liu Q, et al. Glacial change and hydrological implications in the Himalaya and Karakoram[J]. Nature RevIews Earth & Environment, 2021, 2: 91-106. http://www.nature.com/articles/s43017-020-00124-w
蒋复初, 吴锡浩, 王书兵, 等. 中国气候雪线空间分布特征[J]. 地质力学学报, 2002, 8: 289-296. doi: 10.3969/j.issn.1006-6616.2002.04.001 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014. 王世金, 效存德. 全球冰冻圈灾害高风险区: 影响与态势[J]. 科学通报, 2019, 64(9): 890-900. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909005.htm Carrivick J L, Tweed F S. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-16. doi: 10.1016/j.gloplacha.2016.07.001
Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017, 189: 1-13. doi: 10.1016/j.rse.2016.11.008
刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(5): 1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm IPCC第五次评估报告第二、二工作组报告发布气候变化影响无处不在[J]. 中国环境科学, 2014, 34(5): 1292. 王世金, 秦大河, 任贾文. 冰湖溃决灾害风险研究进展及其展望[J]. 水科学进展, 2012, 23(5): 735-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201205023.htm Richardson S D, Reynolds J M. An overview of glacial hazards in the Himalayas[J]. Quaternary International, 2000, 65: 31-47. http://www.existencia.org/files/sd/floods/richardson.pdf
Byers A C, Rounce D R, Shugar D H, et al. A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal[J]. Landslides, 2019, 16(3): 533-549. doi: 10.1007/s10346-018-1079-9
Carey M. Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru[J]. Global and Planetary Change, 2004, 47(2/4): 122-134. http://repo.floodalliance.net/jspui/bitstream/44111/1909/1/2005_-__-_Livinganddyingwithglacierspeopleshistoricalvulnera[retrieved-2014-04-28].pdf
刘建康, 周路旭. 国内外冰碛湖溃决研究进展[J]. 探矿工程(岩土钻掘工程), 2018, 45(8): 44-50. doi: 10.3969/j.issn.1672-7428.2018.08.010 李德基, 游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究, 1992, (4): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA199204003.htm 刘显波. 忠玉乡冰碛湖溃决引发的思考[J]. 中国农业信息, 2014, (7): 178. https://www.cnki.com.cn/Article/CJFDTOTAL-NXTS201407138.htm 崔鹏, 马东涛, 陈宁生, 等. 冰湖溃决泥石流的形成、演化与减灾对策[J]. 第四纪研究, 2003, (6): 621-628. doi: 10.3321/j.issn:1001-7410.2003.06.005 刘娟, 姚晓军, 高永鹏, 等. 帕隆藏布流域冰湖变化及危险性评估[J]. 湖泊科学, 2019, 31(4): 1132-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201904023.htm 王欣, 刘时银, 姚晓军, 等. 我国喜马拉雅山区冰湖遥感调查与编目[J]. 地理学报, 2010, 65(1): 29-36. Wang S J, Che Y J, Ma X G. Integrated risk assessment of glacier lake outburst flood(GLOF) disaster over the Qinghai-Tibetan Plateau(QTP)[J]. Landslides, 2020, 17(12): 2849-2863. doi: 10.1007/s10346-020-01443-1
杨成德, 王欣, 魏俊峰, 等. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903012.htm 张小刚, 杨天军, 田金昌. 川藏公路特殊碎屑流灾害综合防治技术[J]. 地质通报, 2013, 32(12): 2031-2037. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20131219&flag=1 张永双, 杜国梁, 郭长宝, 等. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 2021, 95(3): 605-617. doi: 10.3969/j.issn.0001-5717.2021.03.001 王培清, 黎普明. 藏东南地区地质灾害浅析[J]. 水利水电科技进展, 2002, (4): 21-22, 62. doi: 10.3880/j.issn.1006-7647.2002.04.008 程尊兰, 时亮, 刘建康, 等. 帕隆藏布江上游冰湖分布及其变化[J]. 水土保持通报, 2012, 32(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201205003.htm 柳金峰, 程尊兰, 陈晓清. 帕隆藏布流域然乌-培龙段冰湖溃决危险性评估[J]. 山地学报, 2012, 30(3): 369-377. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201203019.htm 刘时银, 郭万钦, 许君利. 中国第二次冰川编目数据集(V1.0)[DB/OL]. 国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn), 2019. Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes[J]. Earth Surface Dynamics, 2015, 3(4): 559-575. doi: 10.5194/esurf-3-559-2015
O'connor J E, Iii J, Costa J E. Debris flows from failures of Neoglacial-Age Moraine dams in the Three Sisters and Mount Jefferson Wilderness Areas, Oregon[J]. Economic Theory, 2001, 4(1606): 11-40. http://pubs.usgs.gov/pp/1606/report.pdf
常鸣, 唐川, 窦向阳. 藏东南典型冰湖溃决机制及危险性研究[J]. 南水北调与水利科技, 2017, 15(6): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201706017.htm 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报, 2014, 29(8): 1377-1390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201408010.htm Shan Y, Chen S, Zhong Q. Rapid prediction of landslide dam stability using the logistic regression method[J]. Landslides, 2020, 17(12): 2931-2956. doi: 10.1007/s10346-020-01414-6