Development and formation mechanism of landslides along Changdu section of Lancang River
-
摘要:
中国的山区和高原发育的滑坡地质灾害最严重,青藏高原东部横断山区的大江大河沿岸发育一系列严重和频繁的地质灾害。基于前期InSAR遥感解译的工作,通过现场的野外详细调查,最终确定了澜沧江昌都段的75处滑坡地质灾害,详细分析了滑坡的发育特征和主要影响因素,总结了砂泥岩软弱地层区滑坡、断裂控制型滑坡、堆积层滑坡共6类典型滑坡的形成机制。结果表明:①澜沧江干流岸坡的滑坡中,堆积层的土质蠕滑滑坡最发育,河流切坡是临江土质滑坡的主要触发因素。临江高位滑坡往往表现出高位但不远程的特征;②岩质滑坡中最发育的两类斜坡结构分别为反向斜坡和顺向斜坡,这与砂泥岩软弱岩体中发育的层理及垂直于层理的主控节理直接相关;③85%以上的滑坡发育在软-较软沉积岩岩组中,表明岩石强度一定程度上影响了滑坡的发育。区内斜坡表层的强风化带及古(老)滑坡的堆积体为堆积层滑坡提供物质基础,该类滑坡多存在蠕滑和多级滑动的特征;④卡贡-盐井活动断裂对滑坡灾害空间分布具有明显的控制作用,表现在断裂带控制滑坡边界和破碎带直接成为滑体。研究结果可为铁路修建过程的边坡灾害管控提供参考和支撑。
Abstract:The most serious geo-hazards always occur in mountainous areas and plateaus in China, and a series of serious geo-hazards have occurred along the major rivers in eastern Tibet Plateau. Based on the previous research of InSAR remote sensing interpretation, through detailed field investigation, 75 landslides were determined along the Changdu section of Lancang River. Based on the analysis of the development characteristics and main influencing factors of landslides in detail, the formation mechanism of 6 types of typical landslides was summarized. The result shows that among the landslides along the Lancang River, the creep landslide in the accumulation layer is the most developed, and the river-cut slope caused by the rise and fall of the water level is the main influencing factor of the soil landslides along the river.High-location landslides near the river often slip directly into the valley, showing the high location but not remote characteristics. The two most developed types of slope structures in rock landslides are reverse and dip slopes, which are directly related to the bedding developed in the weak rock mass of sand and mudstone and the main joints perpendicular to the bedding. More than 85% landslides occur in the soft-little soft sedimentary rock association, indicating that the rock strength affects the development of landslides to a certain extent. The strong weathering zone on the surface of the slope and the accumulation body of the ancient landslide provide the material foundation for the landslides in accumulation layer, and these landslides are mostly characterized by creep sliding and multi-stage sliding. The Kagong-Yanjing active fault controls the spatial distribution of landslides. The faults control the landslide boundary and the fracture zone directly becomes the slide body. The results can provide reference and support for slope hazard management during the railway construction.
-
Keywords:
- development characteristics /
- formation mechanism /
- landslides /
- Lancang River
-
致谢: 成文过程中,得到昌都市自然资源局、察雅县自然资源局、卡若区俄洛镇约达村委会的帮助,中国地质科学院探矿工艺研究所硕士研究生李宝幸,成都理工大学硕士研究生张伟、汪久钦,西南科技大学硕士研究生张浩韦参与了部分野外工作,在此一并表示感谢。
-
表 1 卫星SAR影像数据基本参数信息
Table 1 Basic parameters of the satellite SAR image datasets
参数 SAR传感器 RADARSAT-2 Sentinel-1 轨道方向 降轨 升轨 所处波段 C C 雷达波长/cm 5.6 5.6 空间分辨率/m 5 5×20 重访周期/d 24 12 入射角/° 35.6 33.9 影像时间(年-月) 2018-08—2020-02 2018-08—2020-02 影像数量/景 10 45 表 2 研究区工程地质岩组分区
Table 2 Partition of engineering geological rock association in study area
工程地质岩组 地层 岩性、分布特征 软-较软沉积沉岩组 古近系贡觉组(Eg),侏罗系汪布组(J1w)、东大桥组(J2d)、小索卡组(J3x),白垩系景星组(K1j)、南新组(K2n),新近系拉屋拉组(Nl),二叠系妥坝组(P3t),三叠系阿堵拉组(T3a)、盖拉组(T3d)、东达村组(T3ddc)、甲丕拉组(T3j) 岩性以层理发育的砾岩、砂岩、泥岩为主 较软-较硬浅变质岩、碳酸盐岩岩组 石炭系卡贡岩组(C1k),泥盆系卓戈洞组(D3z),二叠系里查组(P1l)、交嘎组(P2j),三叠系波里拉组(T3b) 岩性以板岩夹千枚岩、厚层灰岩、白云岩、大理岩为主 较坚硬块状深变质岩组 元古宇吉塘岩群(Pt1-2j)、卡穷岩群(Pt1-2k)、酉西群(Pt3Y) 岩性以片麻岩、变粒岩、石英片岩等为主 坚硬-较坚硬块状火成岩组 二叠系夏牙村组(P3x),三叠系马拉松多组(T1-2m)、竹卡群(T2-3z) 零星分布,主要分布在澜沧江沿岸,主要为块状结构花岗岩、闪长岩及岩浆岩岩脉 松散-稍密堆积物岩组 第四系(Q) 物质组成主要为冲积卵石土,崩滑堆积碎石土、块石土,主要分布在研究区内澜沧江及其支流河谷两岸 -
Glade T. Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand[J]. Environ. Geol., 1998, 35(2/3): 160-174. http://www.onacademic.com/detail/journal_1000034448555210_1aed.html
Wallemacq P, Below R, McLean D. Economic losses, poverty and disasters 1998-2017[M]. United Nations Office for disaster risk reduction (UNDRR) and Centre for Research on the Epidemiology of Disasters (CRED) publications, 2018.
Turner A K. Social and environmental impacts of landslides[J]. Innov. Infrastruct. Solut., 2018, 3(1). http://www.onacademic.com/detail/journal_1000040841920110_84d3.html
Liu W, Yan S X, He S M. Landslide damage incurred to buildings: A case study of Shenzhen landslide[J]. Engineering Geology, 2018, 247: 69-83. doi: 10.1016/j.enggeo.2018.10.025
Çelik S, Ozyazıcıoglu M, Sahin R, et al. The destruction of Erzurum ski-jumping complex by a landslide: evaluation of an engineering design failure[J]. Nat Hazards, 2021, 107: 475-496. doi: 10.1007/s11069-021-04591-2
Shi P. Natural Disasters in China[M]. Springer, Berlin, Heidelberg, 2016.
Tomáš P. Landslides and Quaternary climate changes-The state of the art[J]. Earth-Science Reviews, 2019, 196: 102871. doi: 10.1016/j.earscirev.2019.05.015
Zhang Y, Zhao X, Lan H, et al. A pleistocene landslidedammed lake, Jinsha River, Yunnan, China[J]. Quaternary International, 2011, 233(1): 72-80. doi: 10.1016/j.quaint.2010.10.020
Chen J, Dai F, Lv T, et al. Holocene landslide-dammed lake deposits in the upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, 298: 107-123. doi: 10.1016/j.quaint.2012.09.018
Wang P, Chen J, Dai F, et al. Chronology of relict lake deposits around the Suwalong paleo landslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 2017, 217: 193-203. http://www.onacademic.com/detail/journal_1000036137282010_e211.html
Dai F C, Deng J H. Development characteristics of landslide hazards in Three-rivers basin of southeast Tibetan Plateau[J]. Advanced Engineering Sciences, 2020, 52(5): 3-15.
Lv L Q, Xu M Z, Wang Z Y, et al. Impact of densely distributed debris flow dams on river morphology of the Grand Canyon of the Nu River (upper Salween River) at the east margin of the Tibetan Plateau[J]. Landslides, 2021, 18(5): 979-991. http://www.researchgate.net/publication/345416446_Impact_of_densely_distributed_debris_flow_dams_on_river_morphology_of_the_Grand_Canyon_of_the_Nu_River_upper_Salween_River_at_the_east_margin_of_the_Tibetan_Plateau
Hu M M, Wu Z H, Reicherter K, et al. A Historical Earthquake-Induced Landslide Damming Event at the Qiaojia Reach of the Jinsha River, SE Tibetan Plateau: Implication for the Seismic Hazard of the Xiaojiang Fault[J]. Frontiers in Earth Science, 2021, (9): 1-25. http://www.researchgate.net/publication/349138539_A_historical_earthquake-induced_landslide_damming_event_at_the_Qiaojia_reach_of_the_Jinsha_River_SE_Tibetan_Plateau_implication_for_the_seismic_hazard_of_the_Xiaojiang_Fault
Xiong Z Q, Feng G C, Feng Z X, et al. Pre-and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images[J]. Engineering Geology, 2020, 279(11): 105880. http://www.sciencedirect.com/science/article/pii/S0013795220317774
An H C, Ouyang C J, Zhou S. Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves[J]. Landslides, 2021, 3: 1625-1639. doi: 10.1007/s10346-020-01595-0
Lu C F, Cai C X. Challenges and Countermeasures for Construction Safety during the Sichuan-Tibet Railway Project[J]. Engineering, 2019, 5(5): 833-838. doi: 10.1016/j.eng.2019.06.007
郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质, 2021, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm 汤明高, 许强, 马和平, 等. 西藏昌都镇地质灾害发育特征及防治对策[J]. 中国地质灾害与防治学报, 2006, 17(4): 11-16. doi: 10.3969/j.issn.1003-8035.2006.04.003 苏鹏程, 韦方强. 澜沧江流域滑坡泥石流空间分布及危险性分区[J]. 资源科学, 2014, 36(2): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201402008.htm 刘欢, 朱谷昌, 刘海利, 等. 基于RS和GIS的西藏昌都县地质灾害危险性评价[J]. 地质找矿论丛, 2011, 26(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201101020.htm 张佳佳, 高波, 刘建康, 等. 基于SBAS-InSAR技术的川藏铁路澜沧江段滑坡隐患早期识别[J]. 现代地质, 2021, 35(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101008.htm 彭勇民. 昌都地区三叠纪层序地层与沉积盆地演化[D]. 成都理工学院博士学位论文, 1999. Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514/517: 1-13. doi: 10.1016/j.tecto.2011.10.013
蓝康文. 川藏铁路高山峡谷边坡卸荷带变形破坏模式及稳定性研究[D]. 西南交通大学硕士学位论文, 2018. 邹俊. 高寒山区深切峡谷碎裂松动岩体发育特征及稳定性研究[D]. 成都理工大学硕士学位论文, 2016. 程强, 寇小兵, 黄绍槟, 等. 中国红层的分布及地质环境特征[J]. 工程地质学报, 2004, 12(1): 34-41. doi: 10.3969/j.issn.1004-9665.2004.01.007 殷跃平, 胡瑞林. 三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J]. 工程地质学报, 2004, 12(2): 124-136. doi: 10.3969/j.issn.1004-9665.2004.02.003 易劲松. 川东红层滑坡的形成条件与早期识别研究[D]. 成都理工大学硕士学位论文, 2015. 胡泽铭. 四川红层地区缓倾角滑坡成因机理研究[D]. 成都理工大学硕士学位论文, 2015. 李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(A2): 4053-4062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm 张涛, 谢忠胜, 石胜伟, 等. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 2017, 25(2): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702029.htm 张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 28(z2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm 张佳佳, 陈龙, 王军朝, 等. 藏东南鲁朗-通麦崩塌滑坡孕灾地质背景特征研究[J]. 地质力学学报, 2018, 24(4): 474-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201804012.htm 戴福初, 邓建辉. 青藏高原东南三江流域滑坡灾害发育特征[J]. 工程科学与技术, 2020, 52(5): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005002.htm 西藏自治区水利电力规划勘测设计研究院. 西藏昌都澜沧江河道治理工程(西藏)水文报告. 西藏自治区水利电力规划勘测设计研究院, 2014.