• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

黑龙江多宝山地区中侏罗世火山岩的发现及其对蒙古-鄂霍茨克洋闭合范围的限定

郝士龙, 李成禄, 丁继双, 于援帮, 赵焕利, 李博文

郝士龙, 李成禄, 丁继双, 于援帮, 赵焕利, 李博文. 2021: 黑龙江多宝山地区中侏罗世火山岩的发现及其对蒙古-鄂霍茨克洋闭合范围的限定. 地质通报, 40(10): 1757-1772.
引用本文: 郝士龙, 李成禄, 丁继双, 于援帮, 赵焕利, 李博文. 2021: 黑龙江多宝山地区中侏罗世火山岩的发现及其对蒙古-鄂霍茨克洋闭合范围的限定. 地质通报, 40(10): 1757-1772.
HAO Shilong, LI Chenglu, DING Jishuang, YU Yuanbang, ZHAO Huanli, LI Bowen. 2021: Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure. Geological Bulletin of China, 40(10): 1757-1772.
Citation: HAO Shilong, LI Chenglu, DING Jishuang, YU Yuanbang, ZHAO Huanli, LI Bowen. 2021: Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure. Geological Bulletin of China, 40(10): 1757-1772.

黑龙江多宝山地区中侏罗世火山岩的发现及其对蒙古-鄂霍茨克洋闭合范围的限定

基金项目: 

黑龙江省国土资源厅项目《黑龙江省嫩江-黑河构造混杂岩地区成矿规律研究与找矿预测》 黑国土科研201603

黑龙江省地质勘查项目《黑龙江省1:5万高精度航空物探测量数据集成及找矿预测》 GY-2018001

详细信息
    作者简介:

    郝士龙(1988-), 男, 硕士, 工程师, 从事地质矿产勘查与研究工作。E-mail: haoshilong0219@163.com

    通讯作者:

    李成禄(1984-), 男, 博士, 高级工程师, 从事地质矿产勘查与研究工作。E-mail: lcl230881@163.com

  • 中图分类号: P534.52;P597+.3;P595

Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure

  • 摘要:

    黑龙江省多宝山地区位于中亚造山带东段、兴安地块东南缘,发育大面积早—中侏罗世侵入岩,但至今未发现同时代的火山岩。在多宝山地区首次发现了同时期的火山岩,并确定为一套英安岩、流纹岩和粗面岩组合。为进一步明确其形成时代及反映的构造意义,对出露的火山岩开展了锆石U-Pb测年和岩石地球化学分析。锆石U-Pb年龄显示,火山岩形成时代为167.1~169.3 Ma,为中侏罗世喷发成岩。火山岩具有富碱(Na2O+K2O=3.70%~7.66%)、富铝(Al2O3=11.42%~19.00%)的特征,属于高钾钙碱性、过铝质(A/CNK=1.08~3.73)岩石。稀土元素呈轻稀土元素富集、重稀土元素亏损的右倾特征,具负Eu异常(δEu=0.53~0.79)。微量元素显示富集Rb、Ba、K、Th、U、Pb,亏损Nb、Ta、Ti、P、Sr。总体显示,该中侏罗世火山岩起源于新生陆壳物质的部分熔融。根据Ta-Yb、Nb-Y构造环境判别图解,该期火山岩形成于挤压背景环境。结合区域构造背景及其演化特征,综合认为,中侏罗世火山岩应是蒙古-鄂霍茨克洋闭合过程导致的陆-陆碰撞作用的产物。闭合导致的陆陆碰撞作用已影响到兴安地块东南缘。

    Abstract:

    The Duobaoshan area of Heilongjiang Province is located in the eastern part of the Central Asian Orogenic Belt and the southeastern margin of the Xing'an Block, where large areas of Early-Middle Jurassic intrusive rocks are developed, but no contemporaneous volcanic rock has been reported there. During the exploration of gold deposits in the Duobaoshan area, volcanic rocks of the same period were discovered for the first time and they were identified as a suit of dacite, rhyolite, and trachyte. Zircon U-Pb dating and petrogeochemical analyses were carried out on these volcanic rocks to further clarify their formation age and tectonic significance. The U-Pb dating of zircons from the volcanic rocks yielded ages of 167.1~169.3 Ma, indicating that these rocks erupted during Middle Jurassic. The petrogeochemical analysis shows that the volcanic rocks are characterized by high alkali (Na2O+ K2O=3.70%~7.66%) and aluminum (Al2O3=11.42%~19.00%), and are peraluminous (A/CNK=1.08~3.73) with high potassium calcium alkali. The rare earth elements are characterized by the enrichment of light rare earth elements and right-leaning of heavy rare earth elements depletion, with slightly negative Eu anomalies (δEu=0.53~0.79).Trace elements are enriched in Rb, Ba, K, Th, U and Pb, and depleted in Nb, Ta, Ti, P and Sr.It is generally shown that the Mid-Jurassic volcanic rocks were derived from the partial melting of newly continental crust material. The discriminant diagrams of Ta-Yb and Nb-Y indicates that the Middle Jurassic volcanic rocks were formed in the compressional background. Combined with the regional tectonic setting and evolution characteristics, it is concluded that the Middle Jurassic volcanic rocks should be the product of the continent-continent collision caused by Mongolian-Okhotsk Ocean closure.Indicatively, the collision affected the southeastern margin of the Xing'an Block.

  • 致谢: 感谢黑龙江省地质科学研究所李檬、赵洪强高级工程师对采样工作的支持;感谢黑龙江省自然资源调查院周兴福教授级高级工程师对野外调查工作的指导与帮助。
  • 图  1   伊洛特河地区地质简图

    Figure  1.   Simplified geological map of the Yiluote river area

    图版Ⅰ  

    a、b.英安岩,石英斑晶发生一定溶蚀;c.流纹岩;d.粗面岩;e、f.英安质熔结凝灰岩,显微镜下具明显的假流动构造。Qtz—石英;Pl—斜长石;Ser—绢云母;Bt—黑云母;Sa—透长石;Mc—微斜长石

    图版Ⅰ.  

    图  2   英安岩锆石阴极发光图像及年龄

    Figure  2.   Cathodoluminescence images of the zircons from the dacite samples

    图  3   英安岩样品(ZK0402U-Pb02)锆石U-Pb年龄谐和图

    Figure  3.   The zircon U-Pb age concordia diagram of the dacite sample (ZK0402U-Pb02)

    图  4   英安岩样品(ZK0803U-Pb04)锆石U-Pb年龄谐和图

    Figure  4.   The zircon U-Pb age concordia diagram of the dacite sample(ZK0803U-Pb04)

    图  5   流纹岩样品(ZK0402U-Pb01)锆石阴极发光图像及年龄

    Figure  5.   Cathodoluminescence (CL) images of the zircons from the rhyolite sample(ZK0402U-Pb01)

    图  6   流纹岩(ZK0402U-Pb01)锆石U-Pb年龄谐和图

    Figure  6.   Zircon U-Pb age concordia diagram of the rhyolite sample(ZK0402U-Pb01)

    图  7   中侏罗世火山岩TAS图解[34](a)及SiO2-K2O判别图解[35-36](b)

    Figure  7.   TAS (a) and SiO2-K2O (b) diagrams of the Middle Jurassic volcanic rocks

    图  8   中侏罗世火山岩稀土元素配分曲线(a,标准化值据参考文献[37])和微量元素蛛网图(b,标准化值据参考文献[38])

    Figure  8.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider (b) of the Middle Jurassic volcanic rocks

    图  9   中侏罗世火山岩Yb-Ta图解(a)和Y-Nb图解[44] (b)

    Figure  9.   Yb-Ta (a) and Y-Nb(b) diagrams of the Middle Jurassic volcanic rocks

    表  1   英安岩样品(ZK0402U-Pb-02)LA-ICP-MS锆石U-Th-Pb同位素测年数据

    Table  1   LA-ICP-MS U-Th-Pb isotopic dating results of the zircon samples from the dacite(ZK0402U-Pb-02)

    测点 含量/10-6 232Th/238U 207Pb/206Pb年龄/Ma 207Pb/235U年龄/Ma 206Pb/238U年龄/Ma 208Pb/232Th年龄/Ma 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
    Pb Th U
    ZK0402U-Pb-02-01 9.91 252 303 0.8317 58 119 155 7.3 162 2.2 145 3.8 0.0072 0.0002 0.0472 0.0024 0.1652 0.0084 0.0255 0.0003
    ZK0402U-Pb-02-02 4.45 92 130 0.7062 250 148 178 9.3 173 2.5 151 4.9 0.0075 0.0002 0.0512 0.0033 0.1912 0.0109 0.0273 0.0004
    ZK0402U-Pb-02-03 3.14 52 98 0.5337 13 185 156 10.1 170 2.9 153 6.9 0.0076 0.0003 0.0463 0.0037 0.1658 0.0116 0.0267 0.0005
    ZK0402U-Pb-02-04 4.25 87 130 0.6669 187 170 166 10.2 167 2.7 154 5.4 0.0076 0.0003 0.0498 0.0036 0.1775 0.0118 0.0262 0.0004
    ZK0402U-Pb-02-05 3.07 49 95 0.5132 232 191 177 11.8 176 3.2 144 7.1 0.0071 0.0004 0.0508 0.0042 0.1907 0.0138 0.0276 0.0005
    ZK0402U-Pb-02-06 2.99 95 83 1.1393 217 191 169 11.7 166 2.9 150 4.9 0.0074 0.0002 0.0505 0.0041 0.1813 0.0136 0.0261 0.0005
    ZK0402U-Pb-02-07 3.52 77 111 0.6928 239 178 166 10.3 163 3.0 150 6.1 0.0074 0.0003 0.0509 0.0039 0.1773 0.0119 0.0256 0.0005
    ZK0402U-Pb-02-08 3.78 72 122 0.5861 198 200 163 13.0 161 3.0 153 6.6 0.0076 0.0003 0.0501 0.0046 0.1742 0.0151 0.0254 0.0005
    ZK0402U-Pb-02-09 5.33 110 161 0.6832 189 146 173 9.7 175 2.8 150 5.3 0.0075 0.0003 0.0497 0.0031 0.1858 0.0113 0.0275 0.0004
    ZK0402U-Pb-02-10 3.92 73 121 0.6000 143 178 166 10.6 173 2.9 149 6.2 0.0074 0.0003 0.0489 0.0039 0.1779 0.0123 0.0273 0.0005
    ZK0402U-Pb-02-11 3.29 61 105 0.5771 361 168 175 11.9 166 3.3 153 6.3 0.0076 0.0003 0.0537 0.0041 0.1879 0.0139 0.0261 0.0005
    ZK0402U-Pb-02-12 1.65 43 48 0.8965 506 256 176 14.5 169 4.6 155 8.2 0.0077 0.0004 0.0574 0.0066 0.1892 0.017 0.0265 0.0007
    ZK0402U-Pb-02-13 3.40 64 108 0.5917 439 157 186 11.2 168 3.1 151 6.8 0.0075 0.0003 0.0557 0.0039 0.2007 0.0133 0.0264 0.0005
    ZK0402U-Pb-02-14 1.97 49 59 0.8288 450 227 180 13.8 164 3.6 159 7.6 0.0079 0.0004 0.0559 0.0058 0.1938 0.0163 0.0257 0.0006
    ZK0402U-Pb-02-15 4.43 102 133 0.7669 109 163 163 9.9 170 2.4 151 5.2 0.0075 0.0003 0.0482 0.0035 0.1737 0.0114 0.0267 0.0004
    ZK0402U-Pb-02-16 3.91 91 116 0.7810 361 146 182 10.2 169 2.7 149 5.0 0.0074 0.0002 0.0537 0.0035 0.1963 0.0121 0.0266 0.0004
    ZK0402U-Pb-02-17 3.87 103 112 0.9196 72 185 160 10.1 170 3.0 145 4.9 0.0072 0.0002 0.0475 0.0039 0.1705 0.0116 0.0267 0.0005
    ZK0402U-Pb-02-18 5.25 145 152 0.9539 354 142 181 10.2 166 2.8 153 4.7 0.0076 0.0002 0.0536 0.0035 0.195 0.012 0.0262 0.0004
    ZK0402U-Pb-02-19 4.55 73 144 0.5090 211 157 170 9.8 169 2.7 154 5.9 0.0077 0.0003 0.0501 0.0034 0.1826 0.0114 0.0265 0.0004
    ZK0402U-Pb-02-20 10.94 288 314 0.9172 387 104 185 7.8 170 2.2 153 3.7 0.0076 0.0002 0.0544 0.0025 0.2001 0.0092 0.0267 0.0003
    ZK0402U-Pb-02-21 1.73 41 51 0.7953 146 241 163 15.2 165 3.9 162 8.1 0.008 0.0004 0.049 0.0054 0.174 0.0176 0.026 0.0006
    ZK0402U-Pb-02-22 3.18 68 93 0.7292 98 189 165 11.7 172 3.1 161 5.6 0.008 0.0003 0.048 0.004 0.1769 0.0136 0.027 0.0005
    ZK0402U-Pb-02-23 12.59 289 367 0.7875 272 93 182 6.9 175 2.9 162 4.0 0.008 0.0002 0.0517 0.0021 0.1959 0.0081 0.0275 0.0005
    ZK0402U-Pb-02-24 14.96 353 435 0.8115 200 97 168 5.7 170 1.3 153 3.0 0.0076 0.0001 0.0487 0.0019 0.1796 0.0066 0.0267 0.0002
    ZK0402U-Pb-02-25 3.62 84 104 0.8087 272 170 178 11.1 173 2.9 157 5.6 0.0078 0.0003 0.0517 0.0038 0.1913 0.0131 0.0272 0.0005
    ZK0803U-Pb-04-01 6.69 119 203 0.5862 56 135 164 8.9 174 2.4 156 4.9 0.0078 0.0002 0.047 0.0029 0.1752 0.0103 0.0273 0.0004
    ZK0803U-Pb-04-02 6.99 87 219 0.3954 195 135 178 9.5 178 2.3 161 5.6 0.008 0.0003 0.05 0.0029 0.1915 0.0112 0.028 0.0004
    ZK0803U-Pb-04-04 6.26 189 168 1.1250 239 135 176 8.9 173 2.3 152 3.5 0.0076 0.0002 0.051 0.003 0.1895 0.0105 0.0273 0.0004
    ZK0803U-Pb-04-05 3.12 91 89 1.0316 483 176 182 11.1 167 3.3 149 5.1 0.0074 0.0003 0.0568 0.0045 0.1963 0.0131 0.0262 0.0005
    ZK0803U-Pb-04-06 8.19 127 257 0.4942 367 118 187 8.7 174 2.3 150 5.1 0.0074 0.0003 0.0537 0.0027 0.2025 0.0103 0.0274 0.0004
    ZK0803U-Pb-04-07 9.36 176 285 0.6175 387 122 184 8.4 170 2.3 158 4.3 0.0078 0.0002 0.0544 0.003 0.1983 0.0099 0.0267 0.0004
    ZK0803U-Pb-04-08 6.46 68 206 0.3277 300 135 181 9.0 176 2.4 160 5.9 0.008 0.0003 0.0521 0.0031 0.1947 0.0106 0.0277 0.0004
    ZK0803U-Pb-04-09 15.60 316 455 0.6945 256 94 179 6.6 175 1.4 157 3.5 0.0078 0.0002 0.0512 0.0021 0.1931 0.0078 0.0275 0.0002
    ZK0803U-Pb-04-10 21.22 438 640 0.6844 83 93 165 6.2 171 1.5 151 2.7 0.0075 0.0001 0.0477 0.0019 0.1768 0.0072 0.0269 0.0002
    ZK0803U-Pb-04-11 17.16 273 530 0.5151 243 79 179 6.1 174 1.6 152 3.4 0.0076 0.0002 0.0511 0.0019 0.1926 0.0071 0.0274 0.0003
    ZK0803U-Pb-04-12 8.22 160 247 0.6478 346 100 184 7.0 173 1.9 147 3.8 0.0073 0.0002 0.0534 0.0024 0.1983 0.0082 0.0272 0.0003
    ZK0803U-Pb-04-14 4.75 131 136 0.9632 389 145 181 9.7 166 2.5 145 4.6 0.0072 0.0002 0.0542 0.0034 0.1956 0.0114 0.0261 0.0004
    ZK0803U-Pb-04-15 2.65 77 76 1.0211 232 216 166 10.1 165 3.1 148 5.2 0.0074 0.0003 0.0508 0.004 0.1774 0.0117 0.026 0.0005
    ZK0803U-Pb-04-16 5.96 154 168 0.9167 195 122 171 8.1 172 2.6 160 4.4 0.008 0.0002 0.05 0.0026 0.1836 0.0094 0.027 0.0004
    ZK0803U-Pb-04-17 14.43 217 456 0.4759 143 90 168 6.4 170 1.9 154 4.0 0.0076 0.0002 0.0489 0.0019 0.1801 0.0074 0.0267 0.0003
    ZK0803U-Pb-04-18 7.39 128 211 0.6066 298 117 187 8.9 179 2.3 171 4.9 0.0085 0.0002 0.0523 0.0027 0.2028 0.0105 0.0282 0.0004
    ZK0803U-Pb-04-19 22.94 401 696 0.5761 154 79 175 5.5 176 2.2 164 3.6 0.0082 0.0002 0.0491 0.0016 0.1878 0.0065 0.0276 0.0003
    ZK0803U-Pb-04-20 25.87 449 792 0.5669 143 81 170 5.4 172 1.5 158 3.1 0.0079 0.0002 0.0489 0.0017 0.1824 0.0063 0.0271 0.0002
    ZK0803U-Pb-04-21 8.55 133 267 0.4981 146 112 169 7.4 172 2.1 164 4.3 0.0081 0.0002 0.0489 0.0024 0.1814 0.0086 0.0271 0.0003
    ZK0803U-Pb-04-22 11.45 208 329 0.6322 209 122 178 7.1 176 2.0 201 6.7 0.01 0.0003 0.0503 0.0027 0.1912 0.0083 0.0276 0.0003
    ZK0803U-Pb-04-23 8.19 175 238 0.7353 394 126 194 9.5 176 2.9 178 5.1 0.0089 0.0003 0.0546 0.003 0.2101 0.0113 0.0277 0.0005
    ZK0803U-Pb-04-24 12.64 293 378 0.7751 198 93 176 6.5 174 1.9 148 3.5 0.0073 0.0002 0.0501 0.002 0.1892 0.0076 0.0274 0.0003
    ZK0803U-Pb-04-25 6.46 111 190 0.5842 256 131 187 9.7 182 2.5 172 5.6 0.0086 0.0003 0.0511 0.0029 0.2017 0.0115 0.0286 0.0004
    ZK0803U-Pb-04-26 23.42 464 706 0.6572 165 89 178 6.5 178 1.8 159 3.1 0.0079 0.0002 0.0493 0.0019 0.1912 0.0076 0.028 0.0003
    ZK0803U-Pb-04-27 5.71 202 152 1.3289 317 122 178 8.5 169 2.7 156 3.9 0.0077 0.0002 0.0527 0.0028 0.1916 0.0099 0.0266 0.0004
    ZK0803U-Pb-04-28 7.19 105 220 0.4773 100 117 172 8.5 179 2.2 166 5.1 0.0082 0.0003 0.0478 0.0027 0.1846 0.01 0.0282 0.0003
    ZK0803U-Pb-04-29 15.37 234 449 0.5212 409 81 197 6.2 181 1.7 185 4.1 0.0092 0.0002 0.0549 0.002 0.2144 0.0074 0.0285 0.0003
    ZK0803U-Pb-04-30 7.42 134 234 0.5726 280 113 172 7.4 166 2.2 157 4.6 0.0078 0.0002 0.0519 0.0026 0.1842 0.0086 0.026 0.0004
    ZK0803U-Pb-04-31 9.87 241 272 0.8860 372 116 188 7.8 174 2.0 173 4.7 0.0086 0.0002 0.054 0.0028 0.2029 0.0093 0.0274 0.0003
    ZK0803U-Pb-04-33 6.48 251 174 1.4425 33 133 154 7.7 163 2.5 145 3.5 0.0072 0.0002 0.0465 0.0027 0.1633 0.0088 0.0257 0.0004
    ZK0803U-Pb-04-34 2.06 53 60 0.8837 232 198 161 9.1 163 4.0 168 6.5 0.0084 0.0003 0.0508 0.0043 0.1722 0.0105 0.0256 0.0006
    ZK0803U-Pb-04-36 17.30 363 519 0.6994 154 85 168 5.5 170 1.7 150 3.2 0.0074 0.0002 0.0491 0.0018 0.1801 0.0064 0.0266 0.0003
    ZK0803U-Pb-04-37 4.25 109 121 0.9008 367 156 182 10.1 172 2.6 149 5.0 0.0074 0.0002 0.0537 0.0037 0.1966 0.0119 0.0271 0.0004
    ZK0803U-Pb-04-38 21.23 439 618 0.7104 172 81 175 5.3 174 1.5 157 2.6 0.0078 0.0001 0.0495 0.0016 0.1877 0.0062 0.0273 0.0002
    ZK0803U-Pb-04-39 10.07 153 309 0.4951 302 156 193 12.7 182 3.5 161 5.1 0.008 0.0003 0.0524 0.0035 0.2092 0.0151 0.0287 0.0006
    ZK0803U-Pb-04-32 21.88 139 253 0.5494 309 77 427 10.6 449 4.3 409 8.2 0.0204 0.0004 0.0526 0.0017 0.5224 0.0159 0.0721 0.0007
    ZK0803U-Pb-04-13 39.90 288 214 1.3458 854 -147 805 13.5 788 6.0 704 11.5 0.0354 0.0006 0.0675 0.0017 1.2091 0.0294 0.13 0.001
    下载: 导出CSV

    表  2   流纹岩样品(ZK0402U-Pb-01)LA-ICP-MS锆石U-Th-Pb同位素测年数据

    Table  2   LA-ICP-MS U-Th-Pb isotopic dating results of the zircon samples from the rhyolite(ZK0402U-Pb-01)

    测点 含量/10-6 232Th/238U 207Pb/206Pb年龄/Ma 207Pb/235U年龄/Ma 206Pb/238U年龄/Ma 208Pb/232Th年龄/Ma 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
    Pb Th U
    ZK0402U-Pb-01-01 8.12 119 274 0.4348 302 119 171 8.4 161 2.0 162 4.7 0.0081 0.0002 0.0523 0.0027 0.1840 0.0098 0.0254 0.0003
    ZK0402U-Pb-01-02 8.09 140 254 0.5491 300 147 178 8.0 171 2.3 164 4.6 0.0082 0.0002 0.0522 0.0026 0.1914 0.0094 0.0268 0.0004
    ZK0402U-Pb-01-03 5.07 100 155 0.6421 417 126 184 9.3 166 2.9 175 6.7 0.0087 0.0003 0.0551 0.0031 0.1985 0.0110 0.0262 0.0005
    ZK0402U-Pb-01-04 9.83 193 301 0.6417 346 106 180 6.9 169 2.3 160 3.7 0.0080 0.0002 0.0534 0.0024 0.1941 0.0081 0.0266 0.0004
    ZK0402U-Pb-01-05 10.86 147 353 0.4153 132 101 165 6.7 168 1.9 162 4.6 0.0081 0.0002 0.0487 0.0022 0.1770 0.0077 0.0264 0.0003
    ZK0402U-Pb-01-06 6.00 87 191 0.4571 261 131 174 8.5 169 2.4 165 5.7 0.0082 0.0003 0.0515 0.0029 0.1866 0.0099 0.0266 0.0004
    ZK0402U-Pb-01-07 8.64 132 292 0.4513 42.7 119 154 7.1 161 2.1 151 4.5 0.0075 0.0002 0.0469 0.0024 0.1634 0.0081 0.0253 0.0003
    ZK0402U-Pb-01-08 10.00 133 333 0.4000 176 115 166 7.4 166 2.3 159 4.7 0.0079 0.0002 0.0496 0.0024 0.1775 0.0086 0.0261 0.0004
    ZK0402U-Pb-01-09 9.67 153 321 0.4754 64.9 100 156 5.6 163 2.1 167 4.8 0.0083 0.0002 0.0473 0.0020 0.1659 0.0065 0.0256 0.0003
    ZK0402U-Pb-01-10 8.49 225 241 0.9337 261 122 172 8.2 166 2.2 162 4.0 0.0080 0.0002 0.0514 0.0027 0.1850 0.0096 0.0262 0.0003
    ZK0402U-Pb-01-11 27.57 222 926 0.2400 200 67 170 4.4 172 1.7 159 4.0 0.0079 0.0002 0.0488 0.0014 0.1819 0.0051 0.0270 0.0003
    ZK0402U-Pb-01-12 8.17 170 251 0.6775 122 106 165 7.9 168 2.6 159 4.8 0.0079 0.0002 0.0483 0.0025 0.1760 0.0091 0.0264 0.0004
    ZK0402U-Pb-01-13 15.46 291 473 0.6155 211 103 173 7.4 171 1.9 173 4.5 0.0086 0.0002 0.0502 0.0023 0.1859 0.0087 0.0268 0.0003
    ZK0402U-Pb-01-14 9.54 179 297 0.6038 367 105 180 7.9 167 2.0 158 4.1 0.0078 0.0002 0.0537 0.0026 0.1939 0.0092 0.0262 0.0003
    ZK0402U-Pb-01-15 15.14 213 480 0.4429 332 80 185 6.2 174 2.0 164 5.3 0.0081 0.0003 0.0531 0.0019 0.2003 0.0073 0.0273 0.0003
    ZK0402U-Pb-01-16 8.63 136 264 0.5151 300 120 179 8.3 172 2.2 172 5.1 0.0085 0.0003 0.0522 0.0027 0.1933 0.0097 0.0271 0.0004
    ZK0402U-Pb-01-17 9.53 112 302 0.3713 354 115 184 8.1 172 1.9 175 4.7 0.0087 0.0002 0.0536 0.0027 0.1990 0.0096 0.0270 0.0003
    ZK0402U-Pb-01-18 6.80 155 208 0.7467 78 139 156 8.0 163 2.4 158 4.5 0.0078 0.0002 0.0474 0.0031 0.1665 0.0091 0.0256 0.0004
    ZK0402U-Pb-01-19 10.75 129 355 0.3638 394 93 185 7.0 168 2.2 169 4.5 0.0084 0.0002 0.0546 0.0022 0.1993 0.0083 0.0263 0.0004
    ZK0402U-Pb-01-20 10.62 240 321 0.7460 345 94 179 7.1 166 2.2 153 3.9 0.0076 0.0002 0.0532 0.0022 0.1926 0.0083 0.0261 0.0003
    ZK0402U-Pb-01-21 12.45 192 395 0.4878 233 98 172 6.4 168 1.8 165 4.5 0.0082 0.0002 0.0507 0.0021 0.1841 0.0075 0.0264 0.0003
    ZK0402U-Pb-01-22 15.07 165 481 0.3434 169 91 173 6.2 173 1.8 170 4.3 0.0084 0.0002 0.0494 0.0019 0.1858 0.0072 0.0271 0.0003
    ZK0402U-Pb-01-23 7.82 104 256 0.4044 139 98 163 5.8 165 1.9 167 4.9 0.0083 0.0002 0.0488 0.0021 0.1743 0.0067 0.0259 0.0003
    ZK0402U-Pb-01-24 11.14 152 351 0.4323 209 112 172 7.3 170 2.0 180 13.3 0.0089 0.0007 0.0503 0.0023 0.1847 0.0085 0.0267 0.0003
    ZK0402U-Pb-01-25 9.08 134 301 0.4456 150 150 161 7.4 162 2.3 173 6.3 0.0086 0.0003 0.0491 0.0025 0.1716 0.0085 0.0255 0.0004
    下载: 导出CSV

    表  3   中侏罗世火山岩主量、稀土及微量元素分析结果

    Table  3   Major, trace and rare earth elements compositions of the Middle Jurassic volcanic rocks

    样号 YTZK01 YTZK02 YTZK03 YTZK04 YTZK05 YTZK06 YTZK07
    岩石名称 英安岩 粗面岩 流纹岩 流纹岩 英安岩 英安岩 英安岩
    SiO2 66.14 60.2 77.88 73.95 64.03 61.23 66.78
    TiO2 0.98 0.7 0.11 0.27 0.86 1.10 0.72
    Al2O3 15.37 19.00 11.42 13.18 16.89 18.77 14.54
    Fe2O3 2.15 2.12 1.19 0.64 2.72 2.15 1.27
    FeO 2.57 1.82 0.06 0.99 1.36 5.75 2.28
    MnO 0.11 0.08 0.02 0.08 0.05 0.15 0.16
    MgO 1.12 1.3 0.25 1.01 0.92 1.60 1.20
    CaO 1.84 2.92 0.57 1.68 0.46 0.29 2.61
    Na2O 4.32 3.88 1.93 0.10 0.23 0.26 3.27
    K2O 2.88 3.78 3.97 3.60 4.41 3.79 3.13
    P2O5 0.35 0.33 0.04 0.08 0.23 0.17 0.21
    烧失量 1.46 3.14 2.04 4.41 4.24 3.81 3.48
    总量 99.29 99.27 99.48 100.01 96.40 99.06 99.64
    分异指数(DI) 69.77 65.65 85.6 79.49 71.24 63.43 70.50
    Na2O+ K2O 7.20 7.66 5.90 3.70 4.64 4.05 6.40
    A/NK 1.50 1.81 1.53 3.25 3.28 4.15 1.66
    A/CNK 1.13 1.20 1.34 1.85 2.82 3.73 1.08
    SI 8.59 10.09 3.40 15.98 9.67 11.83 10.74
    AR 2.44 2.07 1.95 1.66 1.73 1.54 2.19
    σ43 2.24 3.41 1.00 0.44 1.02 0.9 1.72
    Rb 127.11 154.74 127.15 78.81
    Ba 412.84 566.55 401.77 814.69
    Th 8.54 11.14 10.52 13.17 7.69 7.40 7.89
    U 4.36 2.47 1.68 2.42
    Nb 13.4 13.99 12.56 10.67 13.41 15.11 12.12
    Ta 0.91 1.31 2.05 1.07 0.81 0.97 0.77
    Pb 11.6 19.1 26.6 30.09 17.81 2.19 24.87
    Sr 276 372 91 65.51 77.39 77.04 388.49
    Zr 321 308 133 101.35 302.37 226.51 251.32
    Hf 3.37 7.53 5.81 6.62
    Y 40.07 36.33 12.79 18.06 37.53 24.04 33.76
    La 41.03 49.09 29.31 30.0 37.3 28.7 34.4
    Ce 86.85 82.47 57.48 59.4 80.70 61.80 75.00
    Pr 11.61 12.19 6.53 6.50 9.83 7.31 9.03
    Nd 47.52 47.79 22.30 21.6 40.0 28.6 36.2
    Sm 9.65 9.40 3.45 3.86 7.91 5.85 7.66
    Eu 2.29 2.33 0.55 0.66 1.92 1.24 1.75
    Gd 8.93 8.42 2.75 2.79 7.49 4.94 6.67
    岩石名称 英安岩 粗面岩 流纹岩 流纹岩 英安岩 英安岩 英安岩
    Tb 1.42 1.35 0.41 0.47 1.13 0.80 1.02
    Dy 7.94 7.42 2.20 2.83 6.37 4.26 5.75
    Ho 1.56 1.38 0.43 0.59 1.31 0.92 1.18
    Er 4.26 3.9 1.37 1.73 3.55 2.49 3.28
    Tm 0.62 0.55 0.23 0.28 0.52 0.35 0.50
    Yb 3.81 3.57 1.62 2.00 3.34 2.50 3.22
    Lu 0.55 0.54 0.27 0.33 0.52 0.40 0.48
    ∑REE 228.04 230.40 128.90 132.96 201.93 150.07 186.20
    ∑LREE 198.95 203.27 119.62 121.95 177.69 133.42 164.09
    ∑HREE 29.09 27.13 9.28 11.01 24.24 16.65 22.10
    δEu 0.74 0.79 0.53 0.59 0.75 0.69 0.73
    δCe 0.92 0.77 0.94 0.96 0.97 0.98 0.98
    (La/Yb)N 7.28 9.29 12.23 10.14 7.55 7.74 7.23
    (La/Sm)N 2.68 3.29 5.35 4.89 2.97 3.08 2.83
    (Gd/Yb)N 1.90 1.91 1.38 1.13 1.82 1.60 1.68
    ∑LREE/∑HREE 6.84 7.49 12.89 11.07 7.33 8.02 7.42
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
    郝宇杰. 黑龙江省多宝山矿集区成矿作用与成矿规律研究[D]. 吉林大学博士学位论文, 2015.
    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007, 23(2): 279-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm
    赵院冬, 车继英, 吴大天, 等. 小兴安岭西北部早-中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报: 地球科学版, 2017, 47(4): 1119-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704014.htm
    徐文喜, 李成禄. 大兴安岭东北部霍龙门地区中侏罗世花岗岩——锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质与资源, 2018, 27(6): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201806004.htm
    苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 2003, 48(22): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200322004.htm
    赵海滨, 莫宣学, 徐受民, 等. 黑龙江新开岭变质核杂岩的组成及其演化[J]. 地质科学, 2007, 42(1): 176-188. doi: 10.3321/j.issn:0563-5020.2007.01.015
    曾涛, 王涛, 郭磊, 等. 东北新开岭地区晚中生代花岗岩类时代、成因及地质意义[J]. 吉林大学学报: 地球科学版, 2011, 41(6): 1881-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106019.htm
    李森林, 陈跃军, 李云峰, 等. 黑河新生地区中侏罗世花岗质岩石锆石U-Pb年龄、地球化学特征及岩石成因[J]. 世界地质, 2016, 35(2): 297-308. doi: 10.3969/j.issn.1004-5589.2016.02.002
    李仰春, 张克信, 吴淦国, 等. 大-小兴安岭接合部早-中侏罗世侵入岩SHRIMP锆石U-Pb定年及成因[J]. 地质通报, 2013, 32(5): 717-729. doi: 10.3969/j.issn.1671-2552.2013.05.004
    张渝金, 吴新伟, 张超, 等. 黑龙江龙江盆地中侏罗统万宝组时代确定新证据及其地质意义[J]. 地学前缘, 2018, 25(1): 182-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801016.htm
    李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm

    Zorin Y. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1): 33-56. doi: 10.1016/S0040-1951(99)00042-6

    Tomurtogoo O, Windley B F, Kröner A, et al. Zircon age and occurrence of the Adaatsag ophiolite and Muronshear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk Ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1): 125-134. doi: 10.1144/0016-764903-146

    Kelty T, Yin A, Dash B, et al. Detritalzircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J]. Tectonophysics, 2008, 451(1/4): 290-311.

    Feng Y Z, Chen H Y, Xiao B, et al. Late Mesozoic magmatism at Xiaokelehe Cu Mo deposit in Great Xing'an Range, NE China: Geodynamic and metallogenic implications[J]. Lithos, 2020, 374/375: 105713. doi: 10.1016/j.lithos.2020.105713

    葛文春, 林强, 李献华, 等. 大兴安岭北部伊列克得组玄武岩的地球化学特征[J]. 矿物岩石, 2000, 20(3): 14-18. doi: 10.3969/j.issn.1001-6872.2000.03.003
    葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学, 2000, 25(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
    林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calcalkaline volcanism of post-orogenic extension in the northern DaHinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121(1): 151-135.

    张玉涛, 张连昌, 英基丰, 等. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 2007, 23(11): 2811-2822. doi: 10.3969/j.issn.1000-0569.2007.11.012
    赵国龙, 杨桂林, 王忠. 大兴安岭中南部中生代火山岩[M]. 北京: 北京科学技术出版社, 1989.

    Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic aceretionary complex in the Jiamusi massif at the western Pacific margin of northeastern China[J]. The Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x

    张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学(北京) 博士学位论文, 2009.
    李成禄, 曲晖, 赵忠海, 等. 黑龙江省霍龙门地区成矿地质特征及潜力分析[J]. 地质与资源, 2013, 22(4): 273-279. doi: 10.3969/j.issn.1671-1947.2013.04.003
    李成禄, 曲晖, 赵忠海, 等. 黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 中国地质, 2013, 40(3): 859-868. doi: 10.3969/j.issn.1000-3657.2013.03.017
    李成禄, 徐文喜, 李胜荣, 等. 大兴安岭东北部霍龙门地区早二叠世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 矿物岩石, 2017, 37(3): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201703007.htm

    Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade meta morphism and continental arcformation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J]. Precam-brian Research, 2017, 290: 32-48.

    Liu Y S, Hu Z C, Gao S, et al. Insitu analysis of major and traceelements of an hydrous minerals by LA-ICP-MS without applying ninternal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crustre cycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and traceelements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 53-571.

    Ludwig K R. ISOPLOT3.00: A Geochronological Tool kit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California, 2003.

    邓晋福, 刘翠, 冯艳芳, 等. 关于火成岩常用图解的正确使用: 讨论与建议[J]. 地质论评, 2015, 61(4): 717-734. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201504002.htm

    Le Maitre R W. Igneous Rocks, A classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002: 1-236.

    Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol., 1976, 58: 63-81. doi: 10.1007/BF00384745

    Middlemost E A K. Magmas and magmatic rocks[M]. London: Longman, 1985: 1-266.

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984: 63-114.

    Sun S S, McDonough W F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.

    Deng C Z, Sun G Y, Sun D Y, et al. Origin of C type adakite magmas in the NE Xing'an block, NE China and tectonic implication[J]. Ac. Geochim., 2018, 37: 281-294. doi: 10.1007/s11631-017-0190-2

    Wedepohl K H. The composition of the continental cruct[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    邓晋福, 罗昭华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004.
    Rollison H R著. 杨学明, 杨晓勇, 陈双喜, 译. 岩石地球化学[M]. 合肥: 中国科学技术大学出版社, 2000.
    张遵忠, 顾连兴, 吴昌志, 等. 东天山印支早期尾亚石英正长岩成岩作用及成岩意义[J]. 岩石学报, 2006, 22(5): 1135-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605007.htm

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74(18): 167-193.

    Miao L C, Zhang F Q, Zhu M S, et al. Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an Ranges, NE China: Timing of formation and metamorphism and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 114(4): 634-648.

    Ying J F, Zhou X H, Zhang L C, et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 2010, 39(6): 786-793. doi: 10.1016/j.jseaes.2010.04.035

    Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.

    Wang T, Tong Y, Zhang L, et al. Phanerozoic granitoids in the middle and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 2017, 145: 368-392. doi: 10.1016/j.jseaes.2017.06.029

    Chu S X, Zeng Q D, Liu J M, et al. Early-Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications[J]. Journal of Geochemical Exploration, 2019, 200: 84-103. doi: 10.1016/j.gexplo.2019.01.013

    Li Y, Xu W L, Tang J, et al. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime[J]. Lithos, 2018, 304/307: 57-73. doi: 10.1016/j.lithos.2018.02.001

    Kravchinsky V A, Cogn J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 148(1): 34-57.

    陈志广, 张连昌, 卢百志, 等. 内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J]. 岩石学报, 2010, 26(5): 1437-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102(1/2): 138-157.

    王伟, 许文良, 王枫, 等. 满洲里-额尔古纳地区中生代花岗岩的锆石U-Pb年代学与岩石组合: 对区域构造演化的制约[J]. 高校地质学报, 2012, 18(1): 88-105. doi: 10.3969/j.issn.1006-7493.2012.01.008

    Zhang C H, Li C M, Deng H L, et al. Mesozoic contraction deformation in the Yanshan and northern Taihang Mountains and its implications to the destruction of the North China Craton[J]. Science China(Earth Sciences), 2011, 54(6): 798-822. doi: 10.1007/s11430-011-4180-7

    赵越, 杨振宇, 马醒华. 东亚大地构造发展的重要转折[J]. 地质科学, 1994, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm
    赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    刘健, 赵越, 柳小明. 冀北承德盆地髫髻山组火山岩的时代[J]. 岩石学报, 2006, 22(11): 2617-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611000.htm

    Yang W, Li S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton[J]. Lithos, 2008, 102(1/2): 88-117.

    杜继宇, 宋维民, 杨佳林, 等. 大兴安岭中段东福岩体锆石U-Pb年龄、地球化学特征及构造背景[J]. 地质通报, 2020, 39(6): 919-928. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200611&flag=1

    Zhou J B, Wilde S A, Zhao G C, et al. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt: Constraints on the Mesozoic evolution of NE China[J]. American Journal of Science, 2010, 310(9): 1024-1053. doi: 10.2475/09.2010.10

    邵济安, 张履桥, 牟保磊. 大兴安岭中南段中生代的构造热演化[J]. 中国科学(D辑), 1998, (3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199803000.htm
    邵济安, 刘福田, 陈辉. 西北太平洋地震层析剖面及地球动力学启示[J]. 自然科学进展, 2000, 10(8): 757-760. doi: 10.3321/j.issn:1002-008X.2000.08.014

    Deng C Z, Sun D Y, Han J S, et al. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China[J]. Lithos, 2019, 326/327: 341-357. doi: 10.1016/j.lithos.2018.12.030

    黑龙江省区域地质调查所. 1:5 万伊洛特河幅、河西厂山幅、老巢山幅区域地质矿产调查报告. 2011.
    黑龙江省第五地质勘察院. 1:5 万中腰站幅、卧都河幅区域地质矿产调查报告. 2011.
    中国人民武装警察部队黄金第三支队. 1:5 万嘎拉山幅、福草山幅区域地质矿产调查报告. 2009.
    吉林大学地质调查研究院. 1:5 万大山幅、上马金厂幅区域地质矿产调查报告.2010.
图(10)  /  表(3)
计量
  • 文章访问数:  2110
  • HTML全文浏览量:  363
  • PDF下载量:  1550
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2021-06-10
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-10-14

目录

    /

    返回文章
    返回