• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

基于遥感影像变化检测的城区暗浜自动识别方法——以安庆市为例

牛晓楠, 倪欢, 李云峰, 张庆, 周小平, 陆远志, 郝娇娇

牛晓楠, 倪欢, 李云峰, 张庆, 周小平, 陆远志, 郝娇娇. 2021: 基于遥感影像变化检测的城区暗浜自动识别方法——以安庆市为例. 地质通报, 40(10): 1697-1706.
引用本文: 牛晓楠, 倪欢, 李云峰, 张庆, 周小平, 陆远志, 郝娇娇. 2021: 基于遥感影像变化检测的城区暗浜自动识别方法——以安庆市为例. 地质通报, 40(10): 1697-1706.
NIU Xiaonan, NI Huan, LI Yunfeng, ZHANG Qing, ZHOU Xiaoping, LU Yuanzhi, HAO Jiaojiao. 2021: Automatic recognition method of urban underground silt based on remote sensing image—a case of Anqing City. Geological Bulletin of China, 40(10): 1697-1706.
Citation: NIU Xiaonan, NI Huan, LI Yunfeng, ZHANG Qing, ZHOU Xiaoping, LU Yuanzhi, HAO Jiaojiao. 2021: Automatic recognition method of urban underground silt based on remote sensing image—a case of Anqing City. Geological Bulletin of China, 40(10): 1697-1706.

基于遥感影像变化检测的城区暗浜自动识别方法——以安庆市为例

基金项目: 

国家自然科学青年基金项目《基于空间先验与贝叶斯决策的高分遥感影像城市地表覆盖变化检测》 41901310

《联合分布约束的激光雷达点云空间上下文建模与分类》 41801384

江苏省自然科学青年基金项目《基于空间可变混合模型的激光雷达点云场景分割》 BK20180795

中国地质调查局项目《安庆多要素城市地质调查》 DD20189250

《华东地区自然资源综合调查》 DD20211384

详细信息
    作者简介:

    牛晓楠(1990-), 女, 博士, 助理研究员, 从事资源环境遥感研究。E-mail: niuxiaonan0222@163.com

    通讯作者:

    倪欢(1989-), 男, 博士, 讲师, 从事遥感图像处理与模式识别研究。E-mail: nih@nuist.edu.cn

  • 中图分类号: P627;TU984.11+3

Automatic recognition method of urban underground silt based on remote sensing image—a case of Anqing City

  • 摘要:

    沟塘河渠可能由于各种原因被填埋而形成暗浜,对城市的工程建设造成质量隐患。相比于传统的探测暗浜的方法,如物探、微动探测技术,遥感监测具有监测范围广、效率高、可重复观测等优势。利用遥感图像变化检测方法提取安庆市城区暗浜空间位置与范围,基于面向对象的图像分析方法,分别对多时相影像进行先分割,进而利用SVM算法进行监督分类,得到研究区的多时相影像土地覆盖分类结果。基于2期图像分类结果,进行变化检测分析,提取暗浜的空间分布与范围,并选择典型区域利用微动探测进行实地验证。提出的城区暗浜提取方法能够为城市工程建设与城市规划提供决策支持,并且为实施物探划定出靶区或重点区域,提高物探工作效率。

    Abstract:

    Underground silt, due to complex and loose compound, is a potential threat in urban infrastructure.Compared with the traditional methods of detecting underground silt, such as geophysical and micro-motion detection technology, remote sensing monitoring has the advantages of wide monitoring range, high efficiency and repeatability. The detection method of remote sensing image change was used to extract the spatial location and area of underground silt in urban area of Anqing. The method was mainly based on the object-oriented image analysis method, first splitting the multi-temporal images separately, and then using the SVM algorithm to classify the land cover. Based on the classification results, the spatial distribution of underground silt was extracted by change detection analysis, which could be defined as the target area or key area for the implementation of physical exploration, so as to detect the depth of the underground silt. Based on the results of two phases of image classification, change detection analysis was carried out to extract the spatial distribution and range of underground silt, and select typical areas for field verification using microtremor detection. The proposed method can provide decision support for urban engineering construction and urban planning. It can delineate the target area or key area for geophysical exploration, and improve the efficiency of geophysical exploration.

  • 致谢: 感谢安徽省地球物理地球化学勘查技术院提供的微动探测技术支持,感谢审稿专家对本文的评论及建议。
  • 图  1   研究区概况及遥感影像数据

    a—研究区位置图;b—T2(2018年)影像;c—T1(2004年)影像

    Figure  1.   Illustration of the study area and remote sensing images

    图  2   技术路线图

    Figure  2.   The flow chart of the method

    图  3   技术流程图

    Figure  3.   Technical flow chart

    图  4   微动测量工作布置示意图(2004影像)

    a—测线1和测线2;b—测线3

    Figure  4.   Layout of microtremor survey (images of 2004)

    图  5   影像分类结果

    a—研究区位置图;b—T2影像分类结果;c—T1影像水体提取结果

    Figure  5.   The classification results of remote sensing images

    图  6   暗浜提取结果

    Figure  6.   The extraction results of the underground silt

    图  7   暗浜区域土地覆盖类别

    Figure  7.   Land cover types in the area of underground silt

    图  8   不同测线微动速度-深度剖面和推断地质断面图

    (a、c、e分别为测线1、测线2、测线3微动速度-深度剖面图,b、d、f分别为测线1、测线2、测线3推断地质断面图)

    表  1   分类精度

    Table  1   Accuracy of classification

    影像类型 总体精度 Kappa系数
    T2影像 90.49% 0.8506
    T1影像 96.12% 0.94
    下载: 导出CSV

    表  2   暗浜空间范围分布面积

    Table  2   Area statistics of underground silt  km2

    名称 建设用地 耕地 林地 草地 未利用土地 暗浜总计
    宜秀区 2.3368 0.0486 0.0053 0.1844 2.5751
    十里铺 2.0097 0.0064 0.0510 0.0008 2.0679
    老峰镇 1.6146 0.3560 0.0010 0.0050 0.0093 1.9859
    白泽湖 0.5841 0.0622 0.6463
    山口乡 0.5852 0.0186 0.0010 0.6048
    长风乡 0.5028 0.0607 0.0016 0.0067 0.5718
    龙狮乡 0.5120 0.0496 0.5616
    大龙山 0.3972 0.0021 0.0055 0.0159 0.4207
    大观区 0.0932 0.0007 0.0000 0.0939
    月山镇 0.0716 0.0072 0.0035 0.0007 0.0830
    海口镇 0.0003 0.0659 0.0000 0.0000 0.0662
    迎江区 0.0184 0.0268 0.0045 0.0138 0.0635
    菱北街 0.0306 0.0010 0.0316
    杨桥镇 0.0049 0.0180 0.0024 0.0253
    鲟鱼镇 0.0225 0.0009 0.0000 0.0234
    五横乡 0.0202 0.0015 0.0217
    新洲乡 0.0090 0.0091 0.0018 0.0199
    总计 8.7929 0.6874 0.1345 0.2378 0.0100 9.8626
    下载: 导出CSV
  • 翟法智, 徐佩芬, 潘丽娜, 等. 宁波轨道交通暗浜勘察物探方法研究[J]. 地球物理学进展, 2017, 32(4): 1856-1861. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201704061.htm
    刘军强, 翟法智, 黄明. 微动探测法在城市轨道交通暗浜勘察中的应用[J]. 铁道勘察, 2017, 43(6): 57-60. doi: 10.3969/j.issn.1672-7479.2017.06.017

    Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6): 989-1003. doi: 10.1080/01431168908903939

    Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80(2): 91-106.

    李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH2003S1003.htm
    肖化超, 周诠, 张建华. 遥感卫星在轨机场变化检测方法[J]. 测绘通报, 2015, (1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201501006.htm
    眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1885-1898. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812015.htm

    Liu H, Yang M, Chen J, et al. Line-constrained shape feature for building change detection in VHR remote sensing imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(10): 410. doi: 10.3390/ijgi7100410

    Wen D, Huang X, Zhang L, et al. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 609-625. doi: 10.1109/TGRS.2015.2463075

    杜培军, 白旭宇, 罗洁琼, 等. 城市遥感研究进展[J]. 南京大学学报(自然科学版), 2018, 10(1): 11-29. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201801004.htm
    龙玄耀, 李培军. 基于图像分割的城市变化检测[J]. 地球信息科学, 2008, 10(1): 121-127. doi: 10.3969/j.issn.1560-8999.2008.01.020
    侯恩科, 张杰, 谢晓深, 等. 无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J]. 地质通报, 2019, 38(2/3): 443-448. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2019020325&flag=1

    Desclee B, Bogaert P, Defourny P. Forest change detection by statistical object-based method[J]. Remote Sensing of Environment, 2006, 102(1): 1-11.

    Conchedda G, Durieux L, Mayaux P. An object-based method for mapping and change analysis in mangrove ecosystems[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(5): 578-589. doi: 10.1016/j.isprsjprs.2008.04.002

    Duveiller G, Defourny P, Desclee B, et al. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts[J]. Remote Sensing of Environment, 2008, 112(5): 1969-1981. doi: 10.1016/j.rse.2007.07.026

    Stow D. Geographic object-based image change analysis. handbook of applied spatial analysis: software tools, methods and applications[M]. Berlin: Springer, 2010: 565-582.

    Wang Z, Liu Y, Ren Y, et al. Object-Level double constrained method for land cover change detection[J]. Sensors, 2018, 19(1): 79. doi: 10.3390/s19010079

    Hansen M C, Loveland T R. A review of large area monitoring of land cover change using Landsat data[J]. Remote Sensing of Environment, 2012, 122: 66-74. doi: 10.1016/j.rse.2011.08.024

    Hantson S, Chuvieco E. Evaluation of different topographic correction methods for Landsat imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 691-700. doi: 10.1016/j.jag.2011.05.001

    Xian G, Homer C G. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat imagery change detection methods[J]. Remote Sensing of Environment, 2010, 114(8): 1676-1686. doi: 10.1016/j.rse.2010.02.018

    Okada H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Australian Society of Exploration Geophysicists (ASEG), 2006, 37(1): 73-85. doi: 10.1071/EG06073

    Apostolidis P, Raptakis D, Roumelioti Z, et al. Determination of S-wave velocity structure using microtremors and spac method applied in Thessaloniki (Greece)[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(1): 49-67.

    Satoh T, Kawase H, Matsushima S. Estimation of S-Wave Velocity Structures in and around the Sendai Basin, Japan, Using Array Records of Microtremors[J]. Bulletin of the Seismological Society of America, 2001, 91(2): 206-218. doi: 10.1785/0119990148

    刘铁华. 综合微动技术在昆明地铁勘探中适用性的量化研究[J]. 工程地球物理学报, 2019, 16(5): 572-579. doi: 10.3969/j.issn.1672-7940.2019.05.003
    王娜. 面向对象的高分辨率遥感影像土地覆盖信息提取技术研究[D]. 昆明理工大学硕士学位论文, 2016.
    刘建华. 高空间分辨率遥感影像自适应分割方法研究[D]. 福州大学博士学位论文, 2011.

    Kavzoglu T, Colkesen I. A kernel functions analysis for support vector machines for land cover classification[J]. International Journal of Applied Earth Observation & Geoinformation, 2009, 11(5): 352-359.

图(8)  /  表(2)
计量
  • 文章访问数:  2407
  • HTML全文浏览量:  286
  • PDF下载量:  1554
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2021-06-06
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-10-14

目录

    /

    返回文章
    返回