• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

辽宁锦州城区土壤环境质量及潜在生态危害评价

代雅建, 崔健, 郭常来, 李旭光, 赵岩, 石旭飞, 孙秀波, 江山

代雅建, 崔健, 郭常来, 李旭光, 赵岩, 石旭飞, 孙秀波, 江山. 2021: 辽宁锦州城区土壤环境质量及潜在生态危害评价. 地质通报, 40(10): 1671-1679. DOI: 10.12097/gbc.dztb-40-10-1671
引用本文: 代雅建, 崔健, 郭常来, 李旭光, 赵岩, 石旭飞, 孙秀波, 江山. 2021: 辽宁锦州城区土壤环境质量及潜在生态危害评价. 地质通报, 40(10): 1671-1679. DOI: 10.12097/gbc.dztb-40-10-1671
DAI Yajian, CUI Jian, GUO Changlai, LI Xuguang, ZHAO Yan, SHI Xufei, SUN Xiubo, JIANG Shan. 2021: Evaluation of soil environmental quality and potential ecological hazards in Jinzhou City, Liaoning Province. Geological Bulletin of China, 40(10): 1671-1679. DOI: 10.12097/gbc.dztb-40-10-1671
Citation: DAI Yajian, CUI Jian, GUO Changlai, LI Xuguang, ZHAO Yan, SHI Xufei, SUN Xiubo, JIANG Shan. 2021: Evaluation of soil environmental quality and potential ecological hazards in Jinzhou City, Liaoning Province. Geological Bulletin of China, 40(10): 1671-1679. DOI: 10.12097/gbc.dztb-40-10-1671

辽宁锦州城区土壤环境质量及潜在生态危害评价

基金项目: 

中国地质调查局项目《辽西凌河地区综合地质调查》 DD20189711

详细信息
    作者简介:

    代雅建(1980-), 男, 硕士, 高级工程师, 从事城市地质调查工作。E-mail: 731059585@qq.com

    通讯作者:

    李旭光(1982-), 男, 硕士, 高级工程师, 从事城市地质调查工作。E-mail: john2011@163.com

  • 中图分类号: P595;S15

Evaluation of soil environmental quality and potential ecological hazards in Jinzhou City, Liaoning Province

  • 摘要:

    为研究锦州城区土壤环境质量及潜在生态危害,以城区表层土壤为研究对象,按照2018年发布的土壤环境质量农用地及建设用地土壤污染风险管控标准,分别对城区表层土壤重金属环境质量进行评估,采用潜在生态危害指数法对其潜在生态危害进行评价。结果表明,相对于深层土壤背景值,表层土壤Hg、Cd的元素富集系数较高,分别为2.36、2.27,变异系数Hg、Cd较高,分别为1.28、1.49,城区绿地土壤Hg、Zn、Cu元素含量平均值均高于城郊旱田1.5倍以上;综合评价,锦州城区以一等无风险土壤为主,二等风险可控土壤多分布于城郊,汤河子工业区周边为三等污染风险较高土壤;潜在生态危害评价结果表明,Hg元素易于释放且对生物潜在毒性较大,达到较高生态危害程度,其他元素为低生态危害程度,综合潜在生态危害指数(RI)达到中等生态危害程度。

    Abstract:

    In order to understand the soil environmental quality and potential ecological hazards in Jinzhou urban area, the surface soil of the urban area was taken as the research object; the environmental quality of heavy metals in the surface soil of the urban area was evaluated according to the soil environmental quality control standards for agricultural land and construction land issued in 2018;and the potential ecological hazards were evaluated by the potential ecological hazard index method.The results show that the enrichment coefficients of Hg and Cd in surface soil are 2.36 and 2.27 respectively, and the variation coefficients of Hg and Cd are 1.28 and 1.49 respectively.The average contents of Hg, Zn and Cu in green land soil in urban area are 1.5 times higher than those in dry land in suburban area.The first-class risk-free soil is the main soil in Jinzhou City, and the second-class risk controllable soil is more distributed in the suburb, Tanghezi industrial zone is surrounded by the third-class soil with high pollution risk.The results of potential ecological hazard assessment show that Hg element is easy to release, whose potential toxicity to organisms is relatively high, while other elements are of low ecological hazard, and the comprehensive potential ecological hazard index (RI) is of medium ecological hazard.

  • 安徽滁州地区探明的铜、金矿床(点)较多,典型的有上成金矿、郭大洼金矿、马厂金矿、大庙山金矿、铜苟城金矿、琅琊山铜矿等,地质学和年代学研究表明,这些矿床在空间和时间上与早白垩世岩体有关[1-2],地球化学研究进一步显示这些岩体具有埃达克质岩石的特征,并与长江中下游含矿埃达克岩特征类似[2]。目前国内学者对埃达克质岩成因的认识仍存在分歧[3-27]。比如,埃达克质岩的形成可能来自地壳混染的玄武岩浆结晶分异作用[5, 16-17, 20];或是幔源岩浆和壳源岩浆的混合,并可能有来自古太平洋板块俯冲带来的混入端元成分的参与[25-26];再或者是俯冲洋壳的部分熔融[18-22, 27];依据比俯冲洋壳高的87Sr/86Sr值和低的143Nd/144Nd值,一些学者认为,埃达克质岩由拆沉或加厚古老下陆壳部分熔融而成[3-4, 6-15]。尽管关于埃达克质岩的成因存在不同认识,但是世界上大部分著名的铜-金矿床都与埃达克(质)岩有关[28-33],且埃达克岩或埃达克质岩对陆壳的演化、地幔橄榄岩的交代作用[28]也有潜在的重要性,因此,本文通对安徽滁州张八岭地区闪长质岩锆石U-Pb年代学和岩石地球化学特征的详细研究,提供研究区闪长质岩的准确年龄数据,分析其岩石成因,初步讨论动力学背景及其与铜、金等的成矿关系,更好地为该区铜、金多金属矿提供找矿依据。

    研究区大地构造位置处于张八岭隆起构造带与扬子前陆褶冲带结合部位,经过多次构造变形,断裂构造发育,主要断裂为近南北向管店-马厂断裂和北东向黄栗树-庙集断裂,北部张八岭隆起构造带出露的主要地层为新元古代北将军组和西冷岩组,北将军组主要为千枚岩为主的副变质岩系;西冷岩组主要为变细碧-角斑岩夹变粉砂岩,岩石类型包括绢云千枚岩、石英绢云千枚岩、绢云石英片岩、含云母石英片岩等。东南部扬子前陆褶冲带主要出露震旦系—奥陶系。下震旦统岩性主要为砂岩、粉砂岩、粉砂质千枚岩,上震旦统岩性主要为灰岩夹砂岩、砂质千枚岩;寒武系主要岩性为碳酸盐岩,下部见炭质页岩、硅质页岩夹石煤层;奥陶系主要岩性为灰岩、大理岩。研究区岩浆活动较强烈,有管店岩体、瓦屋刘岩体、瓦屋薛岩体、马厂岩体及广泛分布的中酸性脉岩(图 1)。

    图  1  研究区大地构造位置(a)及地质简图(b)
    1—新元古代地层;2—寒武纪-奥陶纪地层;3—白垩纪-第四纪地层;4—花岗岩类;5—二长岩;6—断层;7—韧性剪切带;8—采样位置
    Figure  1.  Tectonic position of the study area(a) and geological sketch map(b)

    本次采集了安徽滁州地区张八岭隆起区和扬子前陆带出露的管店岩体、马厂岩体及马厂地区出露的脉岩。马厂岩体及马厂地区出露的脉岩(图版Ⅰ-a)呈北东向展布,本次以马厂闪长玢岩为定年及岩石地球化学研究对象。岩石主要矿物成分为斜长石和角闪石,同成分组成斑晶和基质,基质具显微晶质结构。斜长石斑晶呈板柱状,均径为1.00~2.00mm,最大2.50mm,常见环带结构,为更-中长石,有绢云母化。角闪石斑晶为柱状,横切面为菱形,见解理,均径为1.00~1.50mm,有绿泥石化、绿帘石化,一般为普通角闪石。基质为同成分显微晶质结构,分布较均匀(图版Ⅰ-cd)。

      图版Ⅰ 
    a、b.马厂闪长玢岩野外露头照片;c、d.马厂闪长玢岩镜下照片;e.管店岩体闪长玢岩镜下照片;f.管店岩体细晶闪长岩镜下照片。Pl—斜长石;Am—角闪石;Qtz—石英;Kfs—钾长石;+为正交偏光;-为单偏光
      图版Ⅰ. 

    管店岩体呈北北东向展布,主要岩性包括石英二长岩、二长岩、黑云母花岗岩、花岗闪长岩、闪长玢岩及细晶闪长岩,采集了管店岩体北部的闪长玢岩脉及细晶闪长岩(图版Ⅰ-b)作为岩石地球化学研究对象,闪长玢岩主要矿物成分为斜长石和角闪石,其次为黑云母、钾长石,含少量石英。斜长石为板柱状,斑晶最大9mm,基质斜长石一般为1.50~2.00mm,双晶纹较对称,偶见环带结构,为中长石。钾长石为他形粒状,有高岭土化,为正长石。石英呈填隙状,含量很少。角闪石呈浅绿色,半自形,为普通角闪石,有绿泥石化,析出磁铁矿和榍石。细晶闪长岩主要矿物成分为斜长石和角闪石,含少量磁铁矿。斜长石为柱状,聚片双晶较对称,偶见环带结构,以中长石为主,有绢云母化、钠长石化。角闪石为浅黄绿色,绿泥石化、绿帘石化明显,析出的磁铁矿分布于表面(图版Ⅰ-ef)。

    原岩样品破碎成粉末,经淘洗和磁选分离出锆石重砂样,在双目镜下挑选出锆石晶体,将待测锆石颗粒制成环氧树脂样品靶,打磨至大部分颗粒的中心暴露出来,用于拍摄透射光和反射光、阴极发光(CL)图像及U-Th-Pb同位素测试。LA-MCICP-MS锆石U-Th-Pb同位素测试在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以氦为载气。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ1为外标,U、Th含量以锆石M257为外标进行校正。测试过程中每测定10个样品前后重复测定2个锆石标准,对样品进行校正,并测量1个锆石标准Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSData⁃ Cal程序[34],测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,剔除可能受包体等普通Pb的影响204Pb含量异常高的分析点,锆石U-Pb谐和图用Isoplot 3.0程序获得。

    本次工作全岩主量和微量元素分析在广州澳实矿物实验室完成。主量元素分析采用X-射线荧光光谱分析法(XRF法),首先称取0.6g干燥粉末样品,在高温条件下加热,除去挥发分并计算烧失量(LOI),然后加入适量的硼酸将样品高温熔融成玻璃片,然后在X-射线荧光光谱仪上测定氧化物的含量,分析精度优于5%。微量元素采用ICPMS(电感耦合等离子体质谱)分析方法。将约40mg样品酸溶(对中酸性岩)或碱溶(对基性岩)后测定微量元素的浓度,大部分元素的分析精度优于2%。

    安徽滁州地区闪长质岩中2个闪长玢岩定年样品的LA-ICP-MS锆石U-Pb年龄数据列于表 1,锆石CL图像见图 2。大部分锆石是无色、透明的,半自形到自形,具有典型的岩浆成因锆石生长环带。Th和U含量变化范围较大(Th为2×10-6~719×10-6,U为46×10-6~531×10-6),Th/U值变化范围为0.24~ 2.42,绝大多数大于0.1,与岩浆成因锆石一致。样品160309-1共获得23个点的年龄,其中14个点的206Pb/238U年龄集中在124~129Ma之间,其年龄加权平均值为126.2±0.44Ma(MSWD=6.9),代表岩体的形成年龄(图 3);另外7个点的207Pb/206Pb年龄介于1976~2657Ma之间,锆石具有岩浆环带,且Th/U值大于0.1,也属于岩浆成因锆石,代表古元古代—太古宙继承锆石年龄。160309-2共测得19个点的年龄,年龄可分为2组,其中7个点的206Pb/238U年龄介于126~130Ma之间,给出的206Pb/238U年龄加权平均值为126.4±0.7Ma(MSWD=8.8),代表岩体的形成年龄;其余12个点的207Pb/206Pb年龄集中在2013~ 2569Ma之间,是继承锆石的年龄,其中2480~ 2569Ma之间8个点的207Pb/206Pb年龄加权平均值为2505±19Ma(图 3)。

    图  2  闪长玢岩锆石阴极发光图像及206Pb/238U年龄
    Figure  2.  Cathodoluminescence images and 206Pb/238U ages of zircon from the dioritic rocks
    图  3  闪长玢岩锆石U-Pb谐和图
    Figure  3.  U-Pb concordia diagrams of zircon from the dioritic rocks
    表  1  LA-ICP-MS锆石U-Th-Pb同位素测定结果
    Table  1.  Results of the LA-ICP-MS zircon U-Th-Pb dating
    样品 含量/10-6 Th/U 207Pb/206Pb 206Pb/238U 207Pb/206Pb 206Pb/238U
    Pb 232Th 238U 比值 比值 年龄/Ma 年龄/Ma
    160309-1-1 13 350 576 0.61 0.0517 0.0019 0.0194 0.0002 272 92 124 2
    160309-1-2 190 14 459 0.03 0.1638 0.0013 0.3711 0.0037 2415 186 2035 18
    160309-1-3 7 180 273 0.66 0.0524 0.0021 0.0201 0.0002 128 103 128 2
    160309-1-5 8 293 313 0.94 0.0514 0.0022 0.0212 0.0003 209 90 128 2
    160309-1-6 115 96 228 0.42 0.1594 0.0015 0.4145 0.0029 2368 16 2234 13
    160309-1-7 11 377 367 1.03 0.0545 0.0028 0.0224 0.0003 276 122 141 2
    160309-1-8 33 75 47 1.60 0.1636 0.0019 0.4575 0.0046 2503 20 2414 20
    160309-1-9 24 527 1060 0.50 0.0526 0.0009 0.0212 0.0002 172 44 125 1
    160309-1-10 6 210 257 0.82 0.0514 0.0025 0.0292 0.0003 332 101 124 2
    160309-1-12 11 185 485 0.38 0.0575 0.0017 0.0214 0.0003 169 84 128 2
    160309-1-13 151 248 258 0.96 0.1636 0.0018 0.4242 0.0035 2454 19 2283 16
    160309-1-14 52 613 254 2.42 0.0754 0.0011 0.1251 0.0011 787 36 730 6
    160309-1-15 14 719 531 1.35 0.0578 0.0013 0.0213 0.0002 102 65 126 1
    160309-1-16 13 344 546 0.63 0.0507 0.0016 0.0245 0.0002 232 68 126 1
    160309-1-17 126 337 276 1.22 0.1202 0.0013 0.3125 0.0034 1976 14 1755 17
    160309-1-18 186 183 306 0.60 0.1812 0.0023 0.4645 0.0045 2657 22 2444 20
    160309-1-19 3 105 137 0.76 0.0528 0.0027 0.0234 0.0002 272 120 126 1
    160309-1-20 44 72 133 0.54 0.1515 0.0019 0.2775 0.0059 2396 21 1541 3
    160309-1-21 4 126 155 0.82 0.0543 0.0041 0.0214 0.0004 217 179 125 2
    160309-1-22 5 170 181 0.94 0.0531 0.0038 0.0236 0.0003 183 167 125 2
    160309-1-23 11 281 469 0.60 0.0502 0.0015 0.0218 0.0003 161 72 129 2
    160309-1-24 3 82 153 0.53 0.0537 0.0038 0.0248 0.0003 376 156 124 2
    160309-1-25 5 150 191 0.79 0.0524 0.0035 0.0256 0.0003 195 137 129 2
    160309-2-1 373 178 735 0.24 0.1625 0.0014 0.4475 0.0045 2480 15 2345 20
    160309-2-2 73 95 130 0.73 0.1643 0.0016 0.4328 0.0033 2486 16 2321 15
    160309-2-3 21 24 61 0.40 0.1216 0.0032 0.2946 0.0027 2013 45 1660 13
    160309-2-4 40 49 73 0.68 0.1528 0.0016 0.4428 0.0039 2367 17 2344 18
    160309-2-5 3 71 124 0.57 0.0575 0.0036 0.0201 0.0004 233 168 128 2
    160309-2-6 98 121 175 0.69 0.1656 0.0014 0.4426 0.0046 2502 14 2340 21
    160309-2-7 2 46 78 0.59 0.0585 0.0062 0.0209 0.0006 309 277 130 4
    160309-2-8 167 174 307 0.57 0.1736 0.0014 0.4345 0.0046 2532 13 2321 21
    160309-2-9 242 274 398 0.69 0.1715 0.0015 0.4805 0.0049 2569 15 2522 21
    160309-2-10 27 1329 986 1.35 0.0515 0.0015 0.0207 0.0002 217 48 126 1
    160309-2-11 76 72 193 0.37 0.1225 0.0013 0.3445 0.0034 2014 18 1886 16
    160309-2-13 98 102 182 0.56 0.1775 0.0017 0.4316 0.0043 2517 51 2324 20
    160309-2-14 45 69 79 0.87 0.1636 0.0017 0.4318 0.0044 2505 18 2323 20
    160309-2-15 9 323 359 0.90 0.0545 0.0039 0.0218 0.0004 187 174 127 2.
    160309-2-16 97 66 244 0.27 0.1425 0.0018 0.3438 0.0052 2333 21 1902 25
    160309-2-17 7 151 276 0.55 0.0558 0.0022 0.0236 0.0002 354 93 126 1
    160309-2-18 3 97 103 0.94 0.0563 0.0044 0.0279 0.0004 317 189 128 2
    160309-2-19 113 157 192 0.82 0.1779 0.0019 0.4346 0.0051 2514 20 2318 23
    160309-2-20 2 61 91 0.68 0.0548 0.0045 0.0228 0.0006 250 202 127 4
    下载: 导出CSV 
    | 显示表格

    安徽滁州地区闪长质岩主量、微量测试结果列于表 2。SiO2含量变化范围为56.75%~60.90%,均大于56%,符合洋壳来源埃达克质岩的特征[28],在TAS图解中,样品点基本全部落入二长岩区域内(图 4),属于高钾钙碱性系列(图 5)。CaO含量变化范围为2.97% ~5.85%,Al2O3含量变化范围为14.82% ~15.77%,Na2O含量变化范围为3.69% ~4.68%;K2O含量变化范围为2.64%~3.55%,Mg#值变化范围为39~45。在Harker图解中,Al2O3、CaO、Fe2O3及K2O表现出随SiO2含量增加而减少的趋势,这与岩浆演化过程中一些矿物的结晶分异作用有关,而Na2O与SiO2无明显的线性关系(图 6)。

    图  4  闪长质岩TAS图解
    Figure  4.  TAS diagram of the dioritic rocks
    图  5  岩浆岩系列判别图解
    Figure  5.  Discrimination diagram of magmatic rock series
    图  6  闪长质岩Harker图解
    Figure  6.  Harker diagrams of the dioritic rocks
    表  2  岩石主量、微量和稀土元素组成
    Table  2.  Composition of major, trace and rare earth elements in rocks
    样号 160309-2-1 160309-2-2 160309-2-3 160309-2-4 160309-2-5 160703-1 160703-2 160703-3 160729-5 160729-6 160729-7 160729-8 160729-1 160729-2 160729-3 160729-4
    SiO2 59.46 59.23 58.71 58.48 58.95 56.98 56.75 56.91 60.38 60.68 60.66 60.90 59.14 59.35 59.58 59.69
    Al2O3 15.44 15.40 15.22 15.06 15.32 15.77 15.66 15.70 14.82 14.88 14.88 14.87 14.98 14.99 14.94 14.86
    CaO 2.97 3.27 4.37 4.40 3.23 5.85 5.76 5.44 4.04 3.85 3.69 3.84 5.68 5.36 5.34 5.09
    TFe2O3 5.71 5.69 5.80 5.81 5.95 7.19 6.98 7.12 5.30 5.56 5.52 5.38 6.49 6.22 6.18 6.12
    K2O 3.22 2.82 3.01 3.09 3.17 3.20 3.31 3.55 2.82 2.39 2.80 2.64 3.12 3.33 3.30 3.45
    MgO 4.62 4.20 4.58 3.69 4.98 4.87 4.90 4.93 4.16 4.15 4.30 4.03 4.97 4.78 4.67 4.67
    MnO 0.07 0.08 0.08 0.07 0.08 0.12 0.11 0.11 0.06 0.06 0.06 0.06 0.11 0.10 0.10 0.10
    Na2O 3.88 4.68 3.75 3.92 4.10 3.86 3.93 3.69 4.09 4.21 4.11 4.26 3.76 3.77 3.77 3.74
    P2O5 0.29 0.28 0.28 0.27 0.28 0.44 0.46 0.46 0.28 0.27 0.28 0.28 0.41 0.39 0.38 0.37
    TiO2 0.58 0.58 0.55 0.56 0.57 0.81 0.82 0.79 0.68 0.68 0.69 0.68 0.74 0.73 0.73 0.73
    烧失量 3.72 4.07 3.77 4.54 3.31 0.70 0.86 1.00 3.62 3.33 3.13 3.01 0.93 0.94 0.86 0.75
    总计 99.96 99.98 99.98 99.89 99.94 99.79 99.54 99.70 99.98 99.97 99.96 99.95 99.89 99.96 99.85 99.57
    Mg# 45 42 44 39 46 40 41 41 44 43 44 43 43 43 43 43
    Rb 69.2 58.8 64.9 69.4 67.6 58.4 66.2 62.7 72.6 77.0 84.0 77.6 58.9 63.0 65.7 68.1
    Ba 1320 1455 1455 2710 1315 2140 1915 2000 1535 1255 1425 1410 1995 2040 2010 2030
    Th 4.85 4.60 4.73 4.85 4.73 4.83 5.44 4.47 7.54 7.59 7.82 7.84 6.20 7.20 8.20 7.20
    U 2.91 1.90 1.53 1.52 2.57 1.35 1.92 1.29 1.74 1.99 1.84 1.80 1.80 2.00 2.10 1.90
    Nb 6.0 5.8 5.8 5.7 5.8 6.8 7.1 6.7 8.0 8.1 8.3 8.2 8.2 8.4 9.0 9.10
    Ta 0.5 0.5 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.70
    Pb 17 15 13 11 16 20 25 18 8 9 8 7 21 25 20 26
    Sr 871 831 1030 1050 864 1320 1270 1230 767 800 786 816 1045 967 977 968
    Nd 18.6 17.9 21.9 20.7 20.5 27.7 27.8 27.0 28.8 29.4 27.1 30.0 29.5 29.5 29.4 29.8
    Zr 146 135 140 137 137 191 177 178 189 195 201 195 165 199 201 218
    Hf 3.60 3.3 3.6 3.4 3.5 4.8 4.4 4.4 4.6 4.7 4.9 4.8 4.2 5.1 4.8 5.6
    Tb 0.32 0.31 0.38 0.36 0.35 0.51 0.51 0.50 0.46 0.46 0.46 0.48 0.60 0.50 0.50 0.60
    Er 0.96 0.93 1.05 1.01 1.11 1.61 1.54 1.50 1.20 1.08 1.19 1.19 1.50 1.60 1.60 1.60
    La 27.1 22.8 30.5 28.8 28.8 34.6 35.1 33.7 43.5 41.6 32.5 42.9 38.8 38.8 39.3 39.6
    Ce 49.9 44.2 56.5 53.5 53.4 67.2 66.4 64.5 77.8 75.7 62.8 78.0 74.4 73.3 75.3 75.5
    Pr 5.13 4.79 5.84 5.65 5.49 7.23 7.17 7.11 7.93 8.02 6.97 8.2 7.97 7.91 7.88 7.95
    Nd 18.6 17.9 21.9 20.7 20.5 27.7 27.8 27 28.8 29.4 27.1 30 29.5 29.5 29.4 29.8
    Sm 3.26 3.2 3.8 3.5 3.51 5.07 5 4.83 5 4.86 4.83 5.25 5.26 5.43 5.01 5.42
    Eu 0.97 0.93 1.21 1.1 1.12 1.61 1.54 1.56 1.46 1.47 1.51 1.48 1.59 1.47 1.52 1.56
    Gd 2.48 2.38 2.93 2.82 2.9 4.08 4.01 4.05 3.82 3.77 3.97 3.94 4.09 4.04 4.08 4.09
    Tb 0.32 0.31 0.38 0.36 0.35 0.51 0.51 0.5 0.46 0.46 0.46 0.48 0.58 0.53 0.51 0.55
    Dy 1.62 1.62 1.86 1.85 1.82 2.78 2.64 2.74 2.4 2.24 2.41 2.37 2.9 2.85 2.81 2.87
    Ho 0.34 0.34 0.37 0.36 0.38 0.54 0.56 0.53 0.45 0.42 0.44 0.45 0.56 0.55 0.56 0.57
    Er 0.96 0.93 1.05 1.01 1.11 1.61 1.54 1.5 1.2 1.08 1.19 1.19 1.51 1.55 1.59 1.61
    Tm 0.15 0.15 0.16 0.15 0.15 0.21 0.21 0.21 0.16 0.15 0.16 0.16 0.21 0.23 0.22 0.23
    Yb 0.81 0.79 0.99 0.9 0.95 1.25 1.24 1.33 0.85 0.83 0.91 0.94 1.33 1.32 1.26 1.39
    Lu 0.13 0.13 0.14 0.13 0.13 0.19 0.18 0.18 0.13 0.12 0.13 0.12 0.2 0.21 0.2 0.21
    Y 8.7 8.6 10.1 9.5 9.9 14.8 14.3 14.2 11.7 11.4 11.9 11.7 15.5 15.2 15.7 15.4
    Sr/Y 100.1 96.6 102.0 110.5 87.3 89.2 88.8 86.6 65.6 70.2 66.1 69.7 67.4 63.6 62.2 62.9
    δEu 1.00 0.99 1.07 1.04 1.04 1.05 1.02 1.05 0.98 1.01 1.02 0.95 1.01 0.92 1.00 0.97
      注:Mg#=100×Mg2+/(Mg2++TFe2+); 主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV 
    | 显示表格

    稀土元素总量(ΣREE)为100.47×10-6~175.48×10-6,平均值为145.47×10-6。在稀土元素配分模式图上,各稀土元素配分曲线近一致,显示同源岩浆演化的特点(图 7)。(La/Yb)N值为18.18~36.71,变化范围较大,表明后期岩浆分异较强烈。稀土元素配分曲线明显右倾,强烈富集轻稀土元素,轻、重稀土元素分馏明显。轻稀土元素(LREE)的总量与ΣREE呈同消长,而重稀土元素总量变化小,表明岩体ΣREE的差别主要由LREE引起。δEu为0.95~1.11,几乎全部接近于1,说明Eu异常不明显,表明该岩体源区几乎没有斜长石的分离,暗示源区为榴辉岩或角闪榴辉岩,熔融的残留矿物为石榴子石和金红石,没有或很少有斜长石。在MORB标准化微量元素蛛网图上,富集Ba、U、Pb、Sr,亏损Nb、Ta和Ti(图 7)。

    图  7  稀土元素配分曲线及微量元素蛛网图(标准化值据参考文献[35])
    Figure  7.  Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagram

    本次研究获得的锆石U-Pb年龄为126Ma。李学明等[36]用U-Pb法获得张八岭隆起北段管店岩体的年龄为128Ma,牛漫兰[37]测得瓦屋刘、瓦屋薛岩体的黑云母40Ar/39Ar年龄分别为128.2Ma和120.1Ma,资峰等[38]测得管店岩体的U-Pb年龄为131.5 ± 1.6Ma;胡子龙[2]利用锆石U-Pb测得滁县岩体的年龄为121.8±1.9Ma和124.0±1.4Ma,马厂岩体的年龄为123.1±2.0Ma,上腰铺岩体的年龄为126.6±1.8Ma和123.4±1.9Ma。基于以上的定年数据,安徽滁州地区闪长质岩的侵位时代应为120~130Ma,为早白垩世。

    安徽滁州地区闪长质岩地球化学特征显示,其具有高Al2O3、Sr、Sr/Y、La/Yb,低Y、Yb,Sr正异常的特征,富集轻稀土元素和大离子亲石元素(LILE),亏损高场强元素Nb、Ta、Ti,Eu异常不明显,与典型的埃达克质岩一致[28]。在Y-Sr/Y图解和Yb-La/Yb图解中,大部分样品点落入埃达克岩区域(图 8)。

    图  8  安徽滁州地区岩浆岩埃达克质岩判别图解
    Figure  8.  The discrimination diagrams of the adakitic rocks in Chuzhou area of Anhui

    埃达克岩最初指由俯冲洋壳熔融形成的一套具有特殊地球化学性质的中酸性岩石,如Eu弱负异常至正异常。随着对埃达克岩的深入研究,发现除俯冲洋壳模式外,一些其他的形成机制也可以产生具有埃达克岩地球化学特征的岩石(埃达克质岩),如增厚下地壳熔融、拆沉下地壳熔融、玄武质岩浆的地壳混染和低压分离结晶过程,以及岩浆混合作用等。安徽滁州地区埃达克质岩具有高Mg(3.69%~4.98%)的特征,在SiO2-MgO图解上落入俯冲洋壳熔融和拆沉下地壳熔融形成的埃达克岩的共同区域,但与长江下游埃达克质岩相比,具有较高的MgO含量(图 9)。

    图  9  安徽滁州地区埃达克质岩的成因分类图解
    (长江中下游埃达克质岩数据参考文献[27])
    Figure  9.  Petrogenetic diagrams of the adakitic rocks in Chuzhou area of Anhui

    另外,安徽滁州地区埃达克质岩K2O/Na2O值变化于0.57~0.96之间,平均值为0.75,明显低于大别造山带加厚下地壳埃达克岩[13, 39-40],安徽滁州地区埃达克质岩无论SiO2含量高还是低,均具有较高的Mg#值,变化范围为39~45,几乎全部大于40,高于玄武岩的实验熔体值[41],有效地排除了加厚下地壳部分熔融形成的埃达克质岩成因;安徽滁州地区埃达克质岩具有高Sr、Sr/Y及低Y的特点,但是Sr含量最高不过1270×10-6,Sr/Y值最高达110,属于高硅埃达克质岩,因此不属于与长英质板片熔体反应交代过橄榄岩地幔楔熔融形成的埃达克岩。此外,安徽滁州地区埃达克质岩具有不高的Cr和Ni含量, 也不支持橄榄岩与熔体相互作用成因的埃达克质岩。一般来说,陆壳Ce /Pb值为4~5[42-43],比洋壳(约24[35])低,安徽滁州地区埃达克质岩Ce /Pb值集中在3~5之间,少数较高,最高不超过10,明显低于洋壳。此外,受海水蚀变的洋壳更富集Sr,导致Sr/La值升高,安徽滁州地区埃达克质岩Sr/La值也明显低于洋壳,排除了俯冲洋壳部分熔融形成的埃达克质岩成因。区域上缺失与埃达克岩同期的基性岩及从基性岩、中基性岩到埃达克岩的一系列岩石组合,排除了玄武质岩浆分离结晶成因的埃达克质岩。由此认为,安徽滁州埃达克质侵入岩很可能由拆沉下地壳部分熔融形成,产生的埃达克质岩浆在上升过程中与地幔橄榄岩发生反应,导致熔体的MgO、Cr、Ni等含量增高。

    现有研究认为,从早侏罗世开始,中国东部已逐渐变成与古太平洋俯冲有关的活动大陆边缘[44-45]。太平洋板块向欧亚大陆俯冲,大陆岩石圈地壳受挤压增厚,地壳玄武岩向榴辉岩转变,密度增大,为后期下地壳的拆沉提供了必要的先决条件。直到早白垩世中期,太平洋板块向欧亚大陆俯冲方向发生急剧变化,由北向南西俯冲,中国东部地壳构造背景经历了重大转变,开始伸展减薄,区域内重要断裂重新活化,下地壳发生拆沉,岩石圈地幔和拆沉下地壳进入下伏软流圈参与地幔循环,并发生部分熔融产生埃达克质岩浆,这些岩浆在上升过程中受到地幔物质不同程度的混染,使岩浆的MgO含量、Mg#值及相容元素含量明显升高,最终沿伸展激活的断裂带侵位形成安徽滁州地区的高镁埃达克质岩,从而形成与断裂走向一致的平面展布特征。

    世界范围内,铜、金矿床与埃达克质岩有密切关系,埃达克质岩可作为铜、金的找矿标志[28-33]。安徽滁州地区埃达克质岩与成矿也有密切的联系,管店岩体内部的郭大洼金矿、岩体外接触带的上成金矿及南部马厂大庙山、龙王尖金矿均与埃达克质岩密切相关。

    长江中下游是目前中国最重要的铜、金成矿区之一,从鄂东—九瑞到安庆—铜陵地区,埃达克质岩形成于140~145Ma,是由俯冲洋壳部分熔融形成的[27],洋壳部分熔融来源的岩浆具有偏高的Cu含量[22]。俯冲进入地幔的洋壳,由于本身携带大量水、物质和具有较高的氧逸度,形成高氧逸度和富水的溶体,富含Cu、Au等成矿物质的溶体在快速上升到地壳浅处时,由于温度的降低和压力的释放有利于成矿[12-13]。此外,由于氧逸度降低,上升至地表浅处的岩浆也可能导致Cu、Au等成矿物质从溶体中释放而成矿[43]。与之不同的是,安徽滁州地区埃达克质岩是由拆沉下地壳部分熔融形成的,也有地幔物质的参与,地幔物质带来部分Cu、Au等成矿元素,从成矿规模看,远小于长江中下游地区,但是,埃达克质岩依然可作为该地区Cu、Au矿床的找矿标志。

    (1)安徽滁州地区闪长质岩形成年龄为120~130Ma。具有高Al2O3、MgO、Sr、Sr/Y、La/Yb,低Y、Yb的特征,同时富集轻稀土元素和大离子亲石元素,亏损高场强元素Nb、Ta、Ti,Eu异常不明显,与典型的埃达克质岩一致。岩石地球化学研究结果表明,该地区埃达克质岩是由拆沉下地壳部分熔融形成的,并在上升过程中与地幔橄榄岩发生了反应。

    (2)早白垩世中期太平洋板块俯冲转向,中国东部的地壳伸展减薄导致下地壳拆沉,使研究区埃达克质岩沿断裂上升侵位,平面展布与区域上断裂走向一致。

    (3)安徽滁州地区埃达克质岩区别于长江中下游俯冲洋壳成因的埃达克质岩,但也有地幔物质的参与,带来Cu、Au等成矿元素,成矿规模小于长江中下游地区,但依然可作为该地区铜、金矿床的找矿标志。

    致谢: 本次研究得到中国地质调查局沈阳地质调查中心城市地质研究团队的大力支持和帮助,在论文的修订过程中, 中国地质调查局房浩教授、沈阳地质调查中心蔡贺教授等给予了建设性的意见与建议,在此一并表示感谢。
  • 图  1   研究区地质图

    Figure  1.   Geological map of the study area

    图  2   土壤As、Cd、Cr、Cu、Zn单元素环境质量分级及综合分级图

    Figure  2.   The soil As, Cd, Cr, Cu and Zn single element environmental quality classification and comprehensive classification map

    图  3   锦州城区土壤重金属元素潜在生态危害指数频率分布图

    Figure  3.   Frequency distribution of potential ecological hazard coefficient of heavy metal in urban soil of Jinzhou City

    图  4   土壤Cd、Hg潜在生态危害指数分布图

    Figure  4.   Distribution of potential ecological hazard index of Cd and Hg in soil

    图  5   锦州城区土壤重金属潜在生态危害指数空间分布图

    Figure  5.   Spatial distribution of heavy metals of RI in urban soil of Jinzhou City

    表  1   单指标土壤环境地球化学等级划分方法

    Table  1   Classification method of single index soil environmental geochemistry

    土壤环境地球化学等级 一等 二等 三等
    污染风险 无风险 风险可控 风险较高
    划分方法 CiSi Si < CiGi Ci > Gi
          注:Ci为土壤中i指标的实测浓度;Si为农用地(或建设用地)土壤污染风险筛选值;Gi为农用地(或建设用地)土壤污染风险管控值
    下载: 导出CSV

    表  2   Hakanson潜在生态危害指数法污染程度划分

    Table  2   Classification of the potential ecological hazard suggested by Hakanson

    单元素潜在生态危害系数(Ei) 潜在生态危害指数(RI)
    < 40 低生态危害 < 150 低生态危害
    40~80 中等生态危害 150~300 中等生态危害
    80~160 较高生态危害 300~600 高生态危害
    160~320 高生态危害 ≥600 极高生态危害
    ≥320 极高生态危害
    下载: 导出CSV

    表  3   土壤元素地球化学参数

    Table  3   Geochemical parameters of soil elements mg/kg

    类别 Cu Pb Zn Cr Ni Cd As Hg
    最大值 162.00 122.00 966.00 1457.00 119.00 1.91 31.30 1.55
    最小值 10.80 15.50 36.50 34.10 14.10 0.10 4.48 0.02
    平均值(X) 33.05 37.94 128.99 115.28 31.89 0.41 7.89 0.16
    中位数(M) 28.80 34.10 109.00 74.40 29.00 0.37 7.46 0.10
    标准离差(S) 17.27 14.94 82.64 171.37 10.63 0.22 2.49 0.21
    变异系数(Cv) 0.52 0.39 0.64 1.49 0.33 0.53 0.32 1.28
    深层土壤元素背景值 23.26 25.03 72.34 72.43 29.18 0.18 6.79 0.07
    表层土壤元素富集系数 1.42 1.52 1.78 1.59 1.09 2.27 1.16 2.36
    下载: 导出CSV

    表  4   不同土地利用类型表层土壤元素地球化学参数

    Table  4   Soil element geochemical parameters of different used land types mg/kg

    类别 Cu Pb Zn Cr Ni Cd As Hg
    旱田(n=82) 27.02 33.22 107.01 118.30 31.38 0.39 8.10 0.13
    林地(n=14) 28.34 35.77 107.73 125.00 34.51 0.43 6.98 0.10
    城市绿地(n=107) 38.75 42.07 150.88 116.46 31.76 0.43 7.92 0.20
    果园(n=5) 32.44 37.46 124.40 85.28 40.28 0.53 7.74 0.19
    菜地(n=9) 27.90 35.47 104.63 75.29 29.37 0.36 7.07 0.15
    下载: 导出CSV

    表  5   土壤环境地球化学等级划分结果

    Table  5   Results of soil environmental geochemical classification

    指标 总样品数 一等,无风险 二等,风险可控 三等,风险较高
    样品数 比例/% 样品数 比例/% 样品数 比例/%
    As 217 216 99.54 1 0.46 0 0.00
    Hg 217 217 100.00 0 0.00 0 0.00
    Cr 217 199 91.71 16 7.37 2 0.92
    Pb 217 217 100.00 0 0.00 0 0.00
    Cd 217 180 82.95 37 17.05 0 0.00
    Cu 217 214 98.62 3 1.38 0 0.00
    Zn 217 210 96.77 7 3.23 0 0.00
    Ni 217 217 100.00 0 0.00 0 0.00
    下载: 导出CSV

    表  6   锦州城区土壤重金属元素潜在生态危害系数

    Table  6   Potential ecological hazard coefficient of heavy metal in urban soil of Jinzhou City

    地质单元 As Hg Cr Pb Cd Cu Zn Ni RI
    最大值 42.82 885.71 41.29 19.23 163.71 30.86 9.59 22.14 959.65
    最小值 6.13 12.57 0.97 2.44 8.31 2.06 0.36 2.62 36.40
    平均值 10.79 92.99 3.27 5.98 35.52 6.30 1.28 5.93 162.06
    危害程度 较高 中等
    下载: 导出CSV
  • 李敏, 林玉锁. 城市环境铅污染及其对人体健康的影响[J]. 环境监测管理与技术, 2006, 18(5): 6-10. doi: 10.3969/j.issn.1006-2009.2006.05.003

    Hakanson L. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

    刘玉燕, 刘敏, 刘浩峰. 城市土壤重金属污染特征分析[J]. 土壤通报, 2006, 37(1): 184-188. doi: 10.3321/j.issn:0564-3945.2006.01.040
    吴新民, 李恋卿, 潘根兴, 等. 南京市不同功能城区土壤中重金属Cu, Zn, Pb和Cd的污染特征[J]. 环境科学, 2003, 24(3): 105-111. doi: 10.3321/j.issn:0250-3301.2003.03.021
    李随民, 栾文楼, 魏明辉, 等. 河北省唐-秦地区表层土壤地球化学质量评价[J]. 中国地质, 2009, 36(4): 932-939. doi: 10.3969/j.issn.1000-3657.2009.04.023
    李章平, 陈玉成, 杨学春, 等. 重庆市主城区土壤重金属的潜在生态危害评价[J]. 西南农业大学学报, 2006, 28(2): 227-230. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200602013.htm
    郭平, 谢忠雷, 李军, 等. 长春市土壤重金属污染特征及其潜在生态风险评价[J]. 地理科学, 2005, 25(1): 108-112. doi: 10.3969/j.issn.1000-0690.2005.01.017
    柴立立, 崔邢涛. 保定城市土壤重金属污染及潜在生态危害评价[J]. 安全与环境学报, 2019, 19(2): 607-614 https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201902037.htm
    中国地质调查局. 多目标区域地球化学调查规范(1: 250000, DD2005-01)[S]. 2005.
    国家环境保护局. 土壤环境监测技术规范(HJ/T166-2004)[S]. 2004.
    中国地质调查局. 生态地球化学评价样品分析技术要求(试行) (DD2005-3)[S]. 2005.
    高健翁, 龚晶晶, 杨剑洲, 等. 海南岛琼中黎母山-湾岭地区土壤重金属元素分布特征及生态风险评价[J]. 地质通报, 2021, 40(5): 808-816. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210515&flag=1
    安永龙, 黄勇, 孙朝, 等. 北京平原区两年内土壤中五种重金属元素化学形态变化及生物有效性[J]. 地质通报, 2018, 37(6): 1143-1149. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180616&flag=1
    薛强, 赵元艺, 张佳文, 等. 基于农作物食用安全的土壤重金属风险阈值[J]. 地质通报, 2014, 33(8): 1132-1139. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140805&flag=1
    生态环境部国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行) (GB36600-2018)[S]. 2018.
    生态环境部国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行) (GB15618-2018)[S]. 2018.
    崔邢涛, 栾文楼, 牛彦斌, 等. 唐山城市土壤重金属污染及潜在生态危害评价[J]. 中国地质, 2011, 38(5): 1379-1386. doi: 10.3969/j.issn.1000-3657.2011.05.024
    代杰瑞, 庞绪贵, 宋建华, 等. 山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 2018, 45(3): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201803015.htm
    管后春, 李运怀, 彭苗芝, 等. 黄山城市土壤重金属污染及其潜在生态风险评价[J]. 中国地质, 2013, 40(6): 1949-1958. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201306025.htm
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
图(5)  /  表(6)
计量
  • 文章访问数:  2068
  • HTML全文浏览量:  328
  • PDF下载量:  1852
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-06
  • 修回日期:  2021-03-20
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-10-14

目录

/

返回文章
返回