• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

覆压作用下页岩的孔渗性实验及其应力敏感性研究

张骞, 岳晓晶

张骞, 岳晓晶. 2021: 覆压作用下页岩的孔渗性实验及其应力敏感性研究. 地质通报, 40(9): 1514-1521. DOI: 10.12097/gbc.dztb-40-9-1514
引用本文: 张骞, 岳晓晶. 2021: 覆压作用下页岩的孔渗性实验及其应力敏感性研究. 地质通报, 40(9): 1514-1521. DOI: 10.12097/gbc.dztb-40-9-1514
ZHANG Qian, YUE Xiaojing. 2021: Experimental study on porosity and permeability and stress sensitivity of shale under pressurization. Geological Bulletin of China, 40(9): 1514-1521. DOI: 10.12097/gbc.dztb-40-9-1514
Citation: ZHANG Qian, YUE Xiaojing. 2021: Experimental study on porosity and permeability and stress sensitivity of shale under pressurization. Geological Bulletin of China, 40(9): 1514-1521. DOI: 10.12097/gbc.dztb-40-9-1514

覆压作用下页岩的孔渗性实验及其应力敏感性研究

基金项目: 

国家科技重大专项项目《页岩气等非常规油气开发环境监测与保护关键技术》 2016ZX05040

详细信息
    作者简介:

    张骞(1988-),男,硕士,助理研究员,从事地质战略研究。E-mail:373983765@qq.com

    通讯作者:

    岳晓晶(1989-),女,博士,从事非常规油气开发地下水环境影响研究。E-mail: yuexiaojing412@163.com

  • 中图分类号: P619.22+7

Experimental study on porosity and permeability and stress sensitivity of shale under pressurization

  • 摘要:

    为了研究页岩在应力作用下的孔渗变化及孔隙结构特征,采用四川盆地昭通区块页岩样,不同压力条件下对页岩的孔隙度和渗透率进行实验分析,建立了页岩样孔隙度、渗透性与净覆压之间的相关关系和模型;采用渗透率损害率和应力敏感系数分析了页岩储层的应力敏感性。研究结果表明,页岩基质孔隙度和渗透率随有效应力的增加呈负指数函数规律降低,渗透率与孔隙结构有关,页岩地层中包括基质孔隙和裂隙共同发育的双重介质体系。当净覆压小于5 MPa时,页岩储层应力敏感系数变化较大,应力敏感性强;当净覆压大于5 MPa时,页岩储层应力敏感系数随有效应力的增加下降速度整体减缓,且存在波动变化,应力敏感性减弱,渗透率损害率随有效应力的增大而缓慢增加。研究发现,不同孔径的孔隙度随应力的增大而减小,反映了页岩中不同孔径对孔隙度的协同效应,对揭示页岩储层的孔径变化,指导深部页岩储层的物性特征具有一定的实际意义。

    Abstract:

    In order to study the pore and permeability changes and pore structure characteristics of shale under stress, the porosity and permeability of shale in net confining stress were analyzed through experiment using the shale samples in Zhaotong area, Sichuan Basin.The stress sensitivity of shale reservoir was analyzed by permeability damage rate and stress sensitivity coefficient.The results indicate that the porosity and permeability of shale matrix decrease by a negative exponential function with the increasing effective stress, and permeability is related to pore structure.Shale formation consists of a dual media system including matrix pores and fractures.If the net confing stress is less than 5 MPa, the stress sensitivity coefficient of shale reservoir varies significantly and the shale reservoir is highly sensitive to stress.If the net confing stress is greater than 5 MPa, the stress sensitivity coefficient of the shale reservoir decreases as the effective stress increases slowly, and there is a fluctuation.Stress sensitivity weakens and permeability damage rate increases slowly with the increase of effective stress.It is found that the porosity of different pore sizes decreases with the increase of stress, which reflects the synergistic effect of different pore sizes on porosity in shale, and has certain practical significance to reveal the pore size change of shale reservoir and guide the physical properties of deep shale reservoir.

  • 关于国际地层年表中的侏罗系/白垩系界线年龄,在21世纪80年代初国际地学界分别提出了144Ma和130Ma两种方案。英国剑桥大学Harland等[1]提出了侏系系/白垩系界线年龄为144Ma,是用“年龄平摊法”算出的;法国居里大学Kennedy等[2]根据各国海相地层中海绿石年龄的测定结果提出侏罗系/白垩系界线年龄为130Ma [3](包括世界各国20个实验室、136位专家提供的研究成果)。

    对上述2种方案,144Ma(现在国际地层年表修改为145Ma)方案被认为不可取[4]。王思恩等[3]评述中国陆相生物地层的侏罗系/白垩系界线在河北滦平盆地;王思恩等[5]确认130.7Ma为中国陆相地层侏罗系/白垩系的界线年龄。本文依据全国地层委员会组织的滦平盆地中生代地层野外考察时采集的凝灰岩样品,对大北沟组顶部凝灰岩(斑脱岩)锆石实测年龄数据表明:侏罗系/白垩系界线的年龄应在129.9±1.1Ma,该数据与Odin为首的各国专家提出的130Ma方案一致,考虑了法国、英国、前苏联、瑞典、美国的侏罗系/白垩系界线附近地层中多国的海绿石测年数据,建议采用法国侏罗系/白垩系界线为标准[2]

    “国际地层表说明” [6]明确指出,“侏罗系—白垩系界线无疑是所有系(纪)中最成问题的界线之一”。究其原因,无论海相或陆相均未找到沉积连续和化石丰富的界线地层剖面,更未建立层型,使研究者讨论问题缺乏统一的标准。中国陆相侏罗纪—白垩纪地层发育得天独厚,自Grabau于1923年提出“热河生物群”开始,两系界线划分一直存在激烈争论,争论焦点是热河生物群的发展演化和层位归属[7-8]

    中国陆相侏罗系—白垩系相当发育,分布广泛。在中国东部地区主要分布于各种断陷盆地和山间小盆地中。中国侏罗纪和白垩纪的陆相地层中赋存丰富的煤、石油、天然气资源;火山岩地层中含有多种金属矿产,因此,对侏罗纪—白垩纪地层的研究有重要的意义。通过建立“陆相层型”工作[9-22],于冀北滦平盆地火斗山乡张家沟找到了大北沟组-大店子组-西瓜园组沉积连续剖面,该剖面出露完整、化石丰富、无后期构造干扰;该剖面属单一断陷湖盆沉积,以半深湖-深湖相夹扇三角洲相为特征,夹多层火山岩。剖面上发育丰富的多门类化石,富含三尾拟蜉蝣、介形虫、叶肢介、腹足类、双壳类、两栖类龟鳖类、节肢动物虾类、脊椎动物狼鳍鱼、鲟等。特别是张家沟下营榆树下剖面,大北沟组顶部—大店子组底部界线为典型的陆相地层剖面,属单一浅湖相泥岩夹砂岩沉积。经过多学科的综合研究,建立陆相侏罗系—白垩系界线层型,确定界线点位以介形虫Cypridea stenolonga的始现为标志。

    目前侏罗系/白垩系界线附近的生物地层学研究,对地层的划分和对比仍存在不同的意见,例如,以冀北—辽西地区为例,侏罗系/白垩系界线划在义县组底,还是划在义县组之中?这是依然需要研究与讨论的问题。

    陆相侏罗系—白垩系界线过渡地层在冀北滦平盆地分别称大北沟组和大店子组,发育于该地区南部,(从东到西)沿西沟—大北沟—大店子—张家沟—兴隆沟—柏砬沟一线呈带状出露(图 1)。大北沟组剖面位于榆树下村的西侧,起点坐标:北纬40o49' 20″、东经117o12'99″;终点坐标:北纬40o 49' 144″、东经117o 12' 50″,总厚226.95m。出露完好且化石丰富。笔者对冀北滦平盆地侏罗系/白垩系界线附近大北沟组顶部的凝灰岩进行了采样(图版Ⅰ)。

    图  1  冀北滦平县榆树下侏罗系与白垩系界线剖面[23]
    Figure  1.  The section of the boundary between Jurassic and Cretaceous in Yushuxia, Luanping County, Hebei Province
      图版Ⅰ 
    a.滦平县榆树下大北沟组剖面;b.滦平县榆树下土城子组砾岩;c、d.大北沟组采样点;e、f.大北沟组凝灰岩薄片;g、h.大北沟组凝灰岩锆石特征
      图版Ⅰ. 

    下白垩统义县阶(下部)大店子组一段(K1d1)黄褐色厚层细砾岩和含砾粗砂岩

    —————————整合—————————

    上侏罗统大北沟阶大北沟组三段(J3d3)

    27.黄绿色粉砂质泥岩、粉砂岩,夹大量小泥灰岩透镜体。含介形类Eoparacypris surriensis, E.jingshangensis, Torinina obesa, Darwinula leguminellaD.xiayingensis;叶肢介Nestoria pissovi                                                                          10.96m

    26.灰绿色泥岩、粉砂质泥岩,夹灰色薄层泥灰岩和黑色页岩。由下至上发育4个韵律,每一韵律下部为均一的泥岩,上部夹泥灰岩和黑色页岩。含丰富的介形类Luanpingella postacuta, L. dorsincurva, Torinina obesa, Eoparacypris surriensis, E. jingshangensis, E. aff. macroselina, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, P. dorsalta, Limnocypridea subplana, Rhinocypris dadianziensis, R. subechinata, Djungarica sp. 1, Djungarica sp. 2, Darwinula xiayingensi, D. leguminella, D. dadianziensis等;叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, Pseudograpta zhangjiagouensis, P.dadianziensis, Nestoria sp., Yanshania xishunjingensis, Y. subovata, N. latiovata, P. huodoushanensis;双壳类Arguniella lingyuanensis, A. yanshanensis                                                                                                                        18.27m

    25.厚层土黄色钙质泥岩为底,上覆灰绿色钙质粉砂岩和深灰色钙质泥岩,夹灰黑色钙质泥页岩和薄板状粉砂岩、泥灰岩。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. longipoda, Pseudograpta zhangjiagouensis, P. dabeigouensis             21.23m

    24.灰绿色粉砂质泥岩和钙质粉-细砂岩,夹深灰色钙质页岩、硅质泥岩和薄层泥灰岩。向上粉砂岩增多。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis, Djungarica sp. 2等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. ovata                                                                             38.20m

    23.灰黄色、灰绿色中-厚层中-粗粒凝灰质砂岩,层理发育欠佳                                                                             7.94m

    22.灰紫色凝灰角砾岩。角砾粒径小,岩层内分布不均,具有流动构造,横向呈透镜状                                                        1.77m

    ————————整合—————————

    上侏罗统大北沟阶大北沟组二段(J3d2)

    21.黄褐色中薄层钙质粉砂岩、粉砂质泥岩                                                                                                5.43m

    20.黄褐色泥岩夹薄中层粉砂岩。产昆虫Ephemeropsis trisetailis;叶肢介Nestoria pissovi, N. xishunjingensisYanshania xishunjingensis, N. cf. krasinetzi, Pseudograpta cf. dadianziensis                                                          20.18m

    19.灰色中-薄层钙质泥岩,夹黑色页岩和灰黄色粉砂岩。含叶肢介Nestoria pissovi, N. xishunjingensis                                                                                                                      1.39m

    18.黄褐色粉砂岩,夹灰色薄层钙质泥岩。含叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, N. karaica, N. Rotalaria 11.88m

    17.黄褐色粉砂岩,夹灰色薄层泥灰岩                                                                                                   5.28m

    16.灰褐色硅质页岩和钙质页岩。含叶肢介Nestoria pissovi, N.karaica, N. xishunjingensis, N. rotalaria, N. mirififormis, N. oblongaJibeilimnadia ovata, Yanshania cf. xishunjingensis, Pseudograpta cf. zhangjiagouensis                                                                                                                     1.92m

    15.黄褐色中-厚层中-粗粒长石石英砂岩、块状粉砂岩                                                                                                                                      0.96m

    14.深灰色钙质泥岩和土黄褐色粉砂岩、粉砂质泥岩,夹褐黑色钙质页岩和硅质页岩。含叶肢介Jibeilimnadia ovata, J. curtiovata, J. latiovata, J. elliptica, Nestoria pissoviN. karaica, N. krasinetziN. xishunjingensisYanshania zhangjiagouensis               5.28m

    13.灰黄色中-薄层粉砂岩,夹褐黑色钙质页岩和薄层泥灰岩。含叶肢介Nestoria pissovi, Nestoria sp.及大量植物碎片                      7.25m

    12.褐黑色薄片状硅质泥页岩、褐黄色钙质页岩和灰绿色泥岩,夹粉砂质泥岩,泥灰岩透镜体和薄层凝灰质中粗砂岩。含叶肢介Nestoria xishunjingensis, N. pissovi, N. luanpingensis, N. karaica, N. krasinetzi, Yanshania xishunjingensis, Y. subovata, Y. zhangjiagouensis     7.25m

    11.黄褐色薄-中层粗粉砂岩,夹透镜状细砂岩和硅质泥岩                                                                                                                                           3.02m

    10.灰褐色薄-中层硅质泥岩,夹灰绿色薄层粉砂泥岩。含叶肢介N. pissovi, Yanshania xishunjingensis                                     6.04m

    9.浅灰黄色中-薄层状粗粉砂岩和细砂岩。形成下细上粗的5个旋回                                                                                4.23m

    8.灰褐色薄层状硅质泥岩、硅质页岩,顶部为浅灰色中层凝灰质细砂岩                                                                           2.42m

    7.灰褐色中-厚层状硅质泥岩和黄绿色粉砂质泥岩互层。含叶肢介Yanshania xishunjingensis, Y. subovata, Nestoria cf. reticulata, N. pissovi, N. xishunjingensis, Jibeilimnadia ovata                                                                                                4.23m

    —————————整合————————

    上侏罗统大北沟阶大北沟组一段(J3d1)

    6.灰绿色中-厚层凝灰质砂岩、含砾砂岩与粉砂岩、泥岩互层                                                                                     12.90m

    5.灰绿色厚层含砾粗砂岩与粗砾岩,砾石分布不均,局部透镜状,岩层横向变化较大                                                                                                                                            2.20m

    4.灰绿色中-厚层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩,发育斜层理层                                                                                                                                            6.20m

    3.灰绿色砂屑沉凝灰岩,层理发育                                                                                                             3.50m

    2.褐灰色中薄层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩互层                                                                                                                                            8.80m

    1.灰绿色、褐灰色中薄层夹厚层凝灰质含砾砂岩、夹薄层沉凝灰岩                                                                                1.50m

    ——————火山喷发不整合——————

    下伏地层:上侏罗统待建阶张家口组灰绿色凝灰岩

    锆石U-Th-Pb同位素测定在北京离子探针中心的SHRIMP-Ⅱ上进行,参照分析流程[24]。原始数据的处理[24-25]和锆石U-Pb谐和图的绘制采用Ludwig博士编写的Squid和Isoplot程序[26]。所扣除普通铅的组成根据Stacey等给出的模式计算得出[27](表 1),同位素比值和年龄的误差为1σ相对误差,206Pb/238U年龄加权平均值为95%的置信度误差。

    表  1  滦平盆地侏罗纪—白垩纪斑脱岩样品(2PDBG-2-1) SHRIMP锆石U-Th-Pb测定结果
    Table  1.  SHRIMP U-Th-Pb results for zircons bentonate(2PDBG-2-1) from the Luanping Basin, Hebei Province
    测点 206Pbc/% U/10-6 Th/10-6 232Th/
    238U
    206Pb*/10-6 206Pb/238U
    年龄/Ma
    207Pb*/235U 206Pb*/238U 误差相关系数
    比值 ±1 比值 ±1σ
    2PDBG-2-1-1.1 0.64 825 446 0.56 14.4 129.0±2.2 0.1136 7.6 0.02022 1.7 0.229
    2PDBG-2-1-2.1 0.57 435 189 0.45 7.77 131.8±2.4 0.128 8.4 0.02066 1.8 0.215
    2PDBG-2-1-3.1 0.21 509 221 0.45 8.93 130.0±2.3 0.1299 7.1 0.02038 1.8 0.248
    2PDBG-2-1-4.1 0.00 545 327 0.62 9.49 130.6±2.4 0.151 9.4 0.02047 1.8 0.195
    2PDBG-2-1-5.1 1.24 595 366 0.64 10.5 129.6±2.2 0.0967 9.6 0.02031 1.8 0.183
    2PDBG-2-1-6.1 0.22 676 395 0.60 12.1 132.6±2.2 0.1311 3.9 0.02079 1.7 0.433
    2PDBG-2-1-7.1 3.45 432 184 0.44 7.52 125.0±2.7 0.054 51 0.01958 2.2 0.043
    2PDBG-2-1-8.1 0.00 836 556 0.69 14.9 132.4±2.2 0.1407 3.4 0.02075 1.7 0.482
    2PDBG-2-1-9.1 0.62 644 337 0.54 11.2 128.3±2.2 0.1128 8.7 0.02010 1.8 0.201
    2PDBG-2-1-10.1 9.71 848 696 0.85 16.3 128.8±3.9 0.074 76 0.02019 3.1 0.041
    2PDBG-2-1-11.1 0.51 789 540 0.71 13.6 127.0±2.1 0.1195 4.4 0.01990 1.7 0.385
    2PDBG-2-1-12.1 0.00 381 192 0.52 6.74 134.9±3.0 0.204 13 0.02115 2.2 0.175
    2PDBG-2-1-13.1 0.00 521 286 0.57 9.11 130.8±2.3 0.145 8.3 0.02049 1.8 0.217
    2PDBG-2-1-14.1 0.41 611 233 0.39 10.9 132.1±2.4 0.1325 4.3 0.02070 1.8 0.424
    2PDBG-2-1-15.1 1.66 744 437 0.61 12.8 126.2±2.2 0.091 15 0.01977 1.8 0.122
    2PDBG-2-1-16.1 0.00 745 430 0.60 13.1 131.1±2.2 0.1444 3.4 0.02054 1.7 0.490
    2PDBG-2-1-17.1 0.00 443 225 0.53 7.63 128.0±2.2 0.1448 4.7 0.02005 1.8 0.379
    2PDBG-2-1-18.1 0.00 940 767 0.84 16.3 129.2±2.1 0.1375 3.2 0.02024 1.6 0.510
    下载: 导出CSV 
    | 显示表格

    样品中的锆石晶体呈无色透明-浅黄色自形,粒度多在150~200μm之间,长宽比为2~3。阴极发光图像(CL)显示,锆石具典型的岩浆生长环带,古锆石属于岩浆结晶的产物(图版Ⅰ-gh)。根据可见光图像和CL图像选择合适的位置进行测定,即根据可见光图像剔出裂隙发育和含包裹体较多的颗粒,选取无裂缝、无包裹体的区域;同时根据CL图像,避免测定位置跨越不同世代的混合区域。

    凝灰岩样品(2PDBG-2-1)共测试18颗锆石;其中U含量为381×10-6~848×10-6;个别可达940×10-6;Th含量为184×10-6~696×10-6;个别可达767×10-6;Th/U值为0.21~3.45,个别可到9.71(表 1)。样品2PDBG-2-1测试了18个数据点,15个数据点位于谐和线上(图 2),排除受后期普通铅影响的3个数据点(7.1、10.1、15.1)的年龄值。15个数据点的206Pb/238U年龄为129.9±1.1 Ma,MSWD=0.79,该年龄代表了大北沟组顶部凝灰岩的形成时代。

    图  2  侏罗系与白垩系界线(2PDBG-2-1)锆石U-Pb谐和图
    Figure  2.  Zircon U-Pb concordia diagrams of Jurassic and Cretaceous strata

    (1) 依据生物地层的研究,将中国陆相侏罗系/白垩系界线划在大北沟组与大店子组之间,由此结合前人资料推测,国际海相侏罗系/白垩系界线的年龄应接近130.7Ma。

    (2) 参考前人资料土城子组(后城组)下部年龄为142.6 ± 1.9Ma,中部为139.6 ± 1.5Ma,上部为136.4±1.9~137.3±1.1Ma;张家口组底部锆石年龄为133.7±1.1Ma,张家口组顶部锆石年龄为130.8± 0.7Ma;本文获得大北沟组顶部精确锆石年龄129.9±1.1M,建议将大北沟组顶部凝灰岩(斑脱岩)锆石年龄129.9±1.1Ma视为中国陆相侏罗系/白垩系界线年龄。

    (3) 冀北滦平盆地侏罗系—白垩系同位素年龄测定表明,侏罗系/白垩系界线年龄值可能接近130Ma,而非145Ma。

    致谢: 感谢中国石油集团安全环保技术研究院在研究过程中提供的经费、场地、实验原料等帮助;中国地质大学(北京)水资源与环境学院辜海林、梁峰、李颖等同学在野外调查和取样过程中完成部分工作,特此表示衷心感谢。
  • 图  1   水力压裂开采增加页岩储层压力过程示意图

    P1—一定深度的页岩储层压力;P2—水力压裂作用下的压力;ΔP—地层实际增加的净覆压

    Figure  1.   Schematic diagram of hydraulic fracturing increasing the pressure of shale reservoir

    图  2   页岩孔隙度、渗透率与净覆压力之间的关系

    Figure  2.   Relationship between porosity, permeability of shale and the net confining pressure

    图  3   页岩渗透压缩率(PPR)、应力敏感系数(SSC) 与净覆压的关系

    Figure  3.   Relationship between permeability damage rates(PPR), stress sensitivity coefficient(SSC)and the effective stress

    图  4   页岩孔隙度压缩系数和净覆压的关系

    Figure  4.   Relationship between pore compressibility factor and the effective stress

    图  5   覆压条件下页岩孔隙度与渗透率的关系

    Figure  5.   Relationship between porosity and permeability of shale under stress

    图  6   覆压条件下页岩孔渗双对数曲线

    Figure  6.   Logarithmic curve of pore and permeability of shale under stress

    图  7   由孔渗幂指数判断孔隙结构图(据参考文献[5]修改)

    Figure  7.   General sketch of pore geometry

    图  8   样品14在电镜扫描下裂缝的存在

    Figure  8.   The existence of cracks in sample 14 under electron microscope scanning

    表  1   实验样品基础数据

    Table  1   Basic data of the shale samples

    样品编号 直径/cm 长度/cm 孔隙度/% 渗透率/10-3μm2 密度/(g·cm-3) 样品描述
    1 2.457 6.452 5.33 0.08371 2.58 平行层理
    6 2.462 4.597 7.49 0.0333 2.56 平行层理
    8 2.472 4.966 7.47 0.04242 2.53 平行层理
    12 2.477 3.813 5.85 0.025 2.58 垂直层理
    14 2.474 5.210 4.59 0.00016 2.58 垂直层理
    17 2.474 5.242 4.99 0.00061 2.59 垂直层理
    下载: 导出CSV

    表  2   页岩样品孔隙度、渗透率和净覆压力之间的统计分析结果

    Table  2   Statistic analysis results of relationship between porosity and permeability of shale and the effective confining pressure

    样品编号 压缩系数(Cp)/(MPa-1) 孔隙度(φ0)/% 相关系数(R12) 渗透率应力敏感系数(a)/(MPa-1) 渗透率(K0)/mD 相关系数(R22)
    1 0.026 5.333 0.959 0.280 0.0837 0.987
    6 0.049 7.494 0.983 0.090 0.033 0.991
    8 0.012 7.479 0.536 0.012 0.042 0.857
    12 0.017 5.811 0.823 0.263 0.025 0.945
    14 0.032 4.591 0.835 0.00016
    17 0.039 4.989 0.778 0.00061
    下载: 导出CSV
  • Cai J, Yu B, Zou M, et al. Fractal characterization of spontaneous co-current imbibition in porous media[J]. Energy Fuel., 2010, 24: 1860-1867. doi: 10.1021/ef901413p

    Dutta R, Lee C, Odumabo S, et al. Experimental investigation of fracturing-fluid migration caused by spontaneous imbibition in fractured low-permeability sands[J]. SPE Reservoir Evaluation & Engineering, 2014, 7(1): 74-81. http://www.onacademic.com/detail/journal_1000037967035110_160f.html

    李继山. 表面活性剂体系对渗吸过程的影响[D]. 河北: 中国科学院研究生院(渗流流体力学研究所)博学位论文, 2006.

    King G E. Thirty Years of Gas Shale Fracturing: What Have We Learned?[C]//Society of Petroleum Engineers, 2010, 62(11): 88-90.

    Zhang R, Ning Z F, Yang F, et al. A laboratory study of the porosity-permeability relationships of shaleand sandstone under effective stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, (81): 19-27. http://www.researchgate.net/profile/Rui_Zhang139/publication/284232801_A_laboratory_study_of_the_porosity-permeability_relationships_of_shale_and_sandstone_under_effective_stress/links/571e2e5e08aead26e71a82e0.pdf

    Arthur J D, Bohm B, Coughlin B J, et al. Hydraulic fracturing considerations for natural gas wells of the Fayetteville Shale[M]. All Consulting, 2008.

    张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040
    秦积舜, 李爱芬. 油层物理学[M]. 东营: 石油大学出版社, 2001: 178-182.

    Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics, 1956, (27): 457-467. http://www.onacademic.com/detail/journal_1000035968482110_5b1c.html

    Lubinski A. Theory of elasticity for porous bodies displaying a strongpore structure[C]//Proc. 2nd U.S. National Congress of Applied Mechanics, 1954: 247-256.

    贾文瑞, 李福恺, 肖敬修. 低渗透油田开发部署中几个问题的研究[J]. 石油勘探与开发, 1995, 22(4): 47-51. doi: 10.3321/j.issn:1000-0747.1995.04.017

    Reyes L, Osisanya S O. Empirical correlation of effective stress dependent shalerock properties[J]. J. Can. Pet. Tech., 2002, (27): 47-53. http://www.onacademic.com/detail/journal_1000039246541510_435b.html

    伍向阳, 陈祖安, 孙德明, 等. 静水压力下砂岩孔隙度变化实验研究[J]. 地球物理学报, 1995, 38(S1): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S1.027.htm

    Cho Y, Ozkan E, Apaydin O G. Pressure-dependent natural-fracture permeabilityin shale and its effect on shale-gas well production[M]. Paper SPE, 2013: 159801.

    Chalmers G, Ross D, Bustin R. Geological controls on matrix permeability ofDevonian gas shales in the Horn River and Liard basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2012, (103): 120-131. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0166516212001401&originContentFamily=serial&_origin=article&_ts=1471375787&md5=a8ab08c04009e9b0e1ec570bd2b075ce

    Petunin V V, Yin X, Tutuncu A N. Porosity and permeability changes in sandstones and carbonates under stress and their correlation to rock texture[M]. Paper SPE, 2011: 147401.

    Meng Z P, Li G Q. Experimental research on the permeability of high-rank coal under varying stress and its influencing factors[J]. Engineering Geology, 2013, (162): 108-117. http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000003/art00012

    Abass H H, Ortiz I, Khan M R., et al. Understanding stress dependant permeability of matrix, natural fractures, and hydraulic fractures in carbonate formations[M]. Paper SPE, 2007: 110973.

    Julia F W, Robert M Reed, Jon Holder. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. American Association of Petroleum Geologists Bulletin, 2007, 91(4), 603-622. doi: 10.1306/11010606061

    David C, Wong T, Zhu W, et al. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust[J]. Pure and Applied Geophysics, 1994, (143): 425-456. doi: 10.1007/BF00874337

    Dehghanpour H, Zubair H A, Chhabra A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9): 5750-5758. doi: 10.1021/ef3009794

    Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures[J]. Energy & Fuels, 2013, 27(6): 3039-3049. doi: 10.1021/ef4002814

    Xu M, Dehghanpour H. Advances in Understanding wettability of gas shales[J]. Energy & Fuels, 2014: 4362-4375. http://www.onacademic.com/detail/journal_1000036675409510_3029.html

    Hu Y, Devegowda D, Striolo A, et al. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed-wettability[C]//SPE unconventional resources conference, Society of Petroleum Engineers Alberta, Canada, 2014.

    Zhu W, Montesi L, Wong T. Characterizing the permeability-porosity relationship during compactive cataclastic flow[M]. Paper ARMA, 2008.

    Kwon O. Permeability of Wilcox shale and its effective pressure law[J]. Journal of Geophysical Research, 2001, (106): 19339-19353.

    Meng Y, Li Z P, Lai F P, et al. Characteristics of black shale in the Upper Ordovician Wufeng and lower Silurian Longmaxi formations in the Sichuan Basin and its periphery, China[J]. Australian Journal of Earth Sciences, 2017, (5): 667-687. doi: 10.1080/08120099.2017.1321581

    腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm
    周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5): 1039-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005021.htm
图(8)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-08-05
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-09-14

目录

/

返回文章
返回