Lhasa-Qiangtang collision: Constraints from Late Cretaceous red beds in Asa, Tibet
-
摘要:
晚白垩世拉萨板块与羌南-保山板块陆陆碰撞事件是青藏高原形成与演化研究的热点。西藏阿索地区的晚白垩世竟柱山组和马莫勒组是阿索地区该时期最具代表性的沉积记录。目前有关其形成时代及沉积环境的研究非常薄弱,限制了对于区域构造背景等方面的认识。对西藏阿索地区的晚白垩世竟柱山组的形成时代、沉积环境进行了研究。碎屑锆石LA-ICP-MS U-Pb定年结果表明,竟柱山组碎屑锆石样品中的最小单颗粒锆石年龄为89±5 Ma,阿索地区竟柱山组南部侵入的闪长岩岩脉获得了88 Ma的锆石U-Pb年龄,进一步表明竟柱山组的沉积时代应在90 Ma左右。结合该地区同时代马莫勒组的研究成果,认为竟柱山组沉积于冲积扇环境,而马莫勒组为辫状河-三角洲环境。在沉积物源方面,竟柱山组物源更偏向汇聚环境下的岛弧,而马莫勒组则具有更复杂的物源。竟柱山组和马莫勒组作为拉萨-羌塘板块碰撞造山作用在地表的沉积响应,共同记录了晚白垩世的地壳抬升过程。
Abstract:The continent-continent collision between Lhasa plate and Qiangtang-Baoshan plate has been a spotlight in the study of Tibetan Plateau's formation and evolution.In Asa area, Late Cretaceous Jingzhushan Formation and Mamole Formation are the most representative deposits in that time.However, the limited research on their ages and sedimentary environment has limited the understanding of the regional tectonic background.This paper reports the studies on the age and sedimentary environment of the Late Cretaceous Jingzhushan Formation in Asa of Tibet.The detrital zircon LA-ICP-MS U-Pb dating results show that the smallest single grain zircon obtained from the Jingzhushan Formation yields age of 89±5 Ma.The diorite dyke intruding into the south part of Jingzhushan Formation gives a zircon U-Pb age of 88 Ma, which further indicates that the sedimentary age of the Jingzhushan Formation in this area should be around 90 Ma.Combined with the research results of the contemporary Mamole Formation in this area, it is suggested that the Jingzhushan Formation was deposited in the alluvial fan environment, while the Mamole Formation in the braided river-delta environment.In terms of sediment sources, the source of Jingzhushan Formation tends to be an island arc provenance under converging environment, while the Mamole Formation has a more complicated source.The Jingzhushan Formation and the Mamole Formation, as the sedimentary response of the Lhasa-Qiangtang plate collision orogeny on the surface, jointly record the crustal uplift process in the Late Cretaceous.
-
Keywords:
- Tibet /
- Late Cretaceous /
- detrital zircom /
- Jingzhushan Formation /
- sedimentary environment /
- zircon U-Pb dating
-
关于国际地层年表中的侏罗系/白垩系界线年龄,在21世纪80年代初国际地学界分别提出了144Ma和130Ma两种方案。英国剑桥大学Harland等[1]提出了侏系系/白垩系界线年龄为144Ma,是用“年龄平摊法”算出的;法国居里大学Kennedy等[2]根据各国海相地层中海绿石年龄的测定结果提出侏罗系/白垩系界线年龄为130Ma [3](包括世界各国20个实验室、136位专家提供的研究成果)。
对上述2种方案,144Ma(现在国际地层年表修改为145Ma)方案被认为不可取[4]。王思恩等[3]评述中国陆相生物地层的侏罗系/白垩系界线在河北滦平盆地;王思恩等[5]确认130.7Ma为中国陆相地层侏罗系/白垩系的界线年龄。本文依据全国地层委员会组织的滦平盆地中生代地层野外考察时采集的凝灰岩样品,对大北沟组顶部凝灰岩(斑脱岩)锆石实测年龄数据表明:侏罗系/白垩系界线的年龄应在129.9±1.1Ma,该数据与Odin为首的各国专家提出的130Ma方案一致,考虑了法国、英国、前苏联、瑞典、美国的侏罗系/白垩系界线附近地层中多国的海绿石测年数据,建议采用法国侏罗系/白垩系界线为标准[2]。
“国际地层表说明” [6]明确指出,“侏罗系—白垩系界线无疑是所有系(纪)中最成问题的界线之一”。究其原因,无论海相或陆相均未找到沉积连续和化石丰富的界线地层剖面,更未建立层型,使研究者讨论问题缺乏统一的标准。中国陆相侏罗纪—白垩纪地层发育得天独厚,自Grabau于1923年提出“热河生物群”开始,两系界线划分一直存在激烈争论,争论焦点是热河生物群的发展演化和层位归属[7-8]。
1. 地质背景
中国陆相侏罗系—白垩系相当发育,分布广泛。在中国东部地区主要分布于各种断陷盆地和山间小盆地中。中国侏罗纪和白垩纪的陆相地层中赋存丰富的煤、石油、天然气资源;火山岩地层中含有多种金属矿产,因此,对侏罗纪—白垩纪地层的研究有重要的意义。通过建立“陆相层型”工作[9-22],于冀北滦平盆地火斗山乡张家沟找到了大北沟组-大店子组-西瓜园组沉积连续剖面,该剖面出露完整、化石丰富、无后期构造干扰;该剖面属单一断陷湖盆沉积,以半深湖-深湖相夹扇三角洲相为特征,夹多层火山岩。剖面上发育丰富的多门类化石,富含三尾拟蜉蝣、介形虫、叶肢介、腹足类、双壳类、两栖类龟鳖类、节肢动物虾类、脊椎动物狼鳍鱼、鲟等。特别是张家沟下营榆树下剖面,大北沟组顶部—大店子组底部界线为典型的陆相地层剖面,属单一浅湖相泥岩夹砂岩沉积。经过多学科的综合研究,建立陆相侏罗系—白垩系界线层型,确定界线点位以介形虫Cypridea stenolonga的始现为标志。
目前侏罗系/白垩系界线附近的生物地层学研究,对地层的划分和对比仍存在不同的意见,例如,以冀北—辽西地区为例,侏罗系/白垩系界线划在义县组底,还是划在义县组之中?这是依然需要研究与讨论的问题。
2. 地层序列及采样层位
陆相侏罗系—白垩系界线过渡地层在冀北滦平盆地分别称大北沟组和大店子组,发育于该地区南部,(从东到西)沿西沟—大北沟—大店子—张家沟—兴隆沟—柏砬沟一线呈带状出露(图 1)。大北沟组剖面位于榆树下村的西侧,起点坐标:北纬40o49' 20″、东经117o12'99″;终点坐标:北纬40o 49' 144″、东经117o 12' 50″,总厚226.95m。出露完好且化石丰富。笔者对冀北滦平盆地侏罗系/白垩系界线附近大北沟组顶部的凝灰岩进行了采样(图版Ⅰ)。
图 1 冀北滦平县榆树下侏罗系与白垩系界线剖面[23]Figure 1. The section of the boundary between Jurassic and Cretaceous in Yushuxia, Luanping County, Hebei Province下白垩统义县阶(下部)大店子组一段(K1d1)黄褐色厚层细砾岩和含砾粗砂岩
—————————整合—————————
上侏罗统大北沟阶大北沟组三段(J3d3)
27.黄绿色粉砂质泥岩、粉砂岩,夹大量小泥灰岩透镜体。含介形类Eoparacypris surriensis, E.jingshangensis, Torinina obesa, Darwinula leguminella,D.xiayingensis;叶肢介Nestoria pissovi 10.96m
26.灰绿色泥岩、粉砂质泥岩,夹灰色薄层泥灰岩和黑色页岩。由下至上发育4个韵律,每一韵律下部为均一的泥岩,上部夹泥灰岩和黑色页岩。含丰富的介形类Luanpingella postacuta, L. dorsincurva, Torinina obesa, Eoparacypris surriensis, E. jingshangensis, E. aff. macroselina, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, P. dorsalta, Limnocypridea subplana, Rhinocypris dadianziensis, R. subechinata, Djungarica sp. 1, Djungarica sp. 2, Darwinula xiayingensi, D. leguminella, D. dadianziensis等;叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, Pseudograpta zhangjiagouensis, P.dadianziensis, Nestoria sp., Yanshania xishunjingensis, Y. subovata, N. latiovata, P. huodoushanensis;双壳类Arguniella lingyuanensis, A. yanshanensis 18.27m
25.厚层土黄色钙质泥岩为底,上覆灰绿色钙质粉砂岩和深灰色钙质泥岩,夹灰黑色钙质泥页岩和薄板状粉砂岩、泥灰岩。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. longipoda, Pseudograpta zhangjiagouensis, P. dabeigouensis 21.23m
24.灰绿色粉砂质泥岩和钙质粉-细砂岩,夹深灰色钙质页岩、硅质泥岩和薄层泥灰岩。向上粉砂岩增多。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis, Djungarica sp. 2等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. ovata 38.20m
23.灰黄色、灰绿色中-厚层中-粗粒凝灰质砂岩,层理发育欠佳 7.94m
22.灰紫色凝灰角砾岩。角砾粒径小,岩层内分布不均,具有流动构造,横向呈透镜状 1.77m
————————整合—————————
上侏罗统大北沟阶大北沟组二段(J3d2)
21.黄褐色中薄层钙质粉砂岩、粉砂质泥岩 5.43m
20.黄褐色泥岩夹薄中层粉砂岩。产昆虫Ephemeropsis trisetailis;叶肢介Nestoria pissovi, N. xishunjingensis,Yanshania xishunjingensis, N. cf. krasinetzi, Pseudograpta cf. dadianziensis 20.18m
19.灰色中-薄层钙质泥岩,夹黑色页岩和灰黄色粉砂岩。含叶肢介Nestoria pissovi, N. xishunjingensis 1.39m
18.黄褐色粉砂岩,夹灰色薄层钙质泥岩。含叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, N. karaica, N. Rotalaria 11.88m
17.黄褐色粉砂岩,夹灰色薄层泥灰岩 5.28m
16.灰褐色硅质页岩和钙质页岩。含叶肢介Nestoria pissovi, N.karaica, N. xishunjingensis, N. rotalaria, N. mirififormis, N. oblonga,Jibeilimnadia ovata, Yanshania cf. xishunjingensis, Pseudograpta cf. zhangjiagouensis 1.92m
15.黄褐色中-厚层中-粗粒长石石英砂岩、块状粉砂岩 0.96m
14.深灰色钙质泥岩和土黄褐色粉砂岩、粉砂质泥岩,夹褐黑色钙质页岩和硅质页岩。含叶肢介Jibeilimnadia ovata, J. curtiovata, J. latiovata, J. elliptica, Nestoria pissovi,N. karaica, N. krasinetzi,N. xishunjingensis,Yanshania zhangjiagouensis 5.28m
13.灰黄色中-薄层粉砂岩,夹褐黑色钙质页岩和薄层泥灰岩。含叶肢介Nestoria pissovi, Nestoria sp.及大量植物碎片 7.25m
12.褐黑色薄片状硅质泥页岩、褐黄色钙质页岩和灰绿色泥岩,夹粉砂质泥岩,泥灰岩透镜体和薄层凝灰质中粗砂岩。含叶肢介Nestoria xishunjingensis, N. pissovi, N. luanpingensis, N. karaica, N. krasinetzi, Yanshania xishunjingensis, Y. subovata, Y. zhangjiagouensis 7.25m
11.黄褐色薄-中层粗粉砂岩,夹透镜状细砂岩和硅质泥岩 3.02m
10.灰褐色薄-中层硅质泥岩,夹灰绿色薄层粉砂泥岩。含叶肢介N. pissovi, Yanshania xishunjingensis 6.04m
9.浅灰黄色中-薄层状粗粉砂岩和细砂岩。形成下细上粗的5个旋回 4.23m
8.灰褐色薄层状硅质泥岩、硅质页岩,顶部为浅灰色中层凝灰质细砂岩 2.42m
7.灰褐色中-厚层状硅质泥岩和黄绿色粉砂质泥岩互层。含叶肢介Yanshania xishunjingensis, Y. subovata, Nestoria cf. reticulata, N. pissovi, N. xishunjingensis, Jibeilimnadia ovata 4.23m
—————————整合————————
上侏罗统大北沟阶大北沟组一段(J3d1)
6.灰绿色中-厚层凝灰质砂岩、含砾砂岩与粉砂岩、泥岩互层 12.90m
5.灰绿色厚层含砾粗砂岩与粗砾岩,砾石分布不均,局部透镜状,岩层横向变化较大 2.20m
4.灰绿色中-厚层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩,发育斜层理层 6.20m
3.灰绿色砂屑沉凝灰岩,层理发育 3.50m
2.褐灰色中薄层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩互层 8.80m
1.灰绿色、褐灰色中薄层夹厚层凝灰质含砾砂岩、夹薄层沉凝灰岩 1.50m
——————火山喷发不整合——————
下伏地层:上侏罗统待建阶张家口组灰绿色凝灰岩
3. 分析方法和结果
3.1 分析方法
锆石U-Th-Pb同位素测定在北京离子探针中心的SHRIMP-Ⅱ上进行,参照分析流程[24]。原始数据的处理[24-25]和锆石U-Pb谐和图的绘制采用Ludwig博士编写的Squid和Isoplot程序[26]。所扣除普通铅的组成根据Stacey等给出的模式计算得出[27](表 1),同位素比值和年龄的误差为1σ相对误差,206Pb/238U年龄加权平均值为95%的置信度误差。
表 1 滦平盆地侏罗纪—白垩纪斑脱岩样品(2PDBG-2-1) SHRIMP锆石U-Th-Pb测定结果Table 1. SHRIMP U-Th-Pb results for zircons bentonate(2PDBG-2-1) from the Luanping Basin, Hebei Province测点 206Pbc/% U/10-6 Th/10-6 232Th/
238U206Pb*/10-6 206Pb/238U
年龄/Ma207Pb*/235U 206Pb*/238U 误差相关系数 比值 ±1 比值 ±1σ 2PDBG-2-1-1.1 0.64 825 446 0.56 14.4 129.0±2.2 0.1136 7.6 0.02022 1.7 0.229 2PDBG-2-1-2.1 0.57 435 189 0.45 7.77 131.8±2.4 0.128 8.4 0.02066 1.8 0.215 2PDBG-2-1-3.1 0.21 509 221 0.45 8.93 130.0±2.3 0.1299 7.1 0.02038 1.8 0.248 2PDBG-2-1-4.1 0.00 545 327 0.62 9.49 130.6±2.4 0.151 9.4 0.02047 1.8 0.195 2PDBG-2-1-5.1 1.24 595 366 0.64 10.5 129.6±2.2 0.0967 9.6 0.02031 1.8 0.183 2PDBG-2-1-6.1 0.22 676 395 0.60 12.1 132.6±2.2 0.1311 3.9 0.02079 1.7 0.433 2PDBG-2-1-7.1 3.45 432 184 0.44 7.52 125.0±2.7 0.054 51 0.01958 2.2 0.043 2PDBG-2-1-8.1 0.00 836 556 0.69 14.9 132.4±2.2 0.1407 3.4 0.02075 1.7 0.482 2PDBG-2-1-9.1 0.62 644 337 0.54 11.2 128.3±2.2 0.1128 8.7 0.02010 1.8 0.201 2PDBG-2-1-10.1 9.71 848 696 0.85 16.3 128.8±3.9 0.074 76 0.02019 3.1 0.041 2PDBG-2-1-11.1 0.51 789 540 0.71 13.6 127.0±2.1 0.1195 4.4 0.01990 1.7 0.385 2PDBG-2-1-12.1 0.00 381 192 0.52 6.74 134.9±3.0 0.204 13 0.02115 2.2 0.175 2PDBG-2-1-13.1 0.00 521 286 0.57 9.11 130.8±2.3 0.145 8.3 0.02049 1.8 0.217 2PDBG-2-1-14.1 0.41 611 233 0.39 10.9 132.1±2.4 0.1325 4.3 0.02070 1.8 0.424 2PDBG-2-1-15.1 1.66 744 437 0.61 12.8 126.2±2.2 0.091 15 0.01977 1.8 0.122 2PDBG-2-1-16.1 0.00 745 430 0.60 13.1 131.1±2.2 0.1444 3.4 0.02054 1.7 0.490 2PDBG-2-1-17.1 0.00 443 225 0.53 7.63 128.0±2.2 0.1448 4.7 0.02005 1.8 0.379 2PDBG-2-1-18.1 0.00 940 767 0.84 16.3 129.2±2.1 0.1375 3.2 0.02024 1.6 0.510 3.2 分析结果
样品中的锆石晶体呈无色透明-浅黄色自形,粒度多在150~200μm之间,长宽比为2~3。阴极发光图像(CL)显示,锆石具典型的岩浆生长环带,古锆石属于岩浆结晶的产物(图版Ⅰ-g、h)。根据可见光图像和CL图像选择合适的位置进行测定,即根据可见光图像剔出裂隙发育和含包裹体较多的颗粒,选取无裂缝、无包裹体的区域;同时根据CL图像,避免测定位置跨越不同世代的混合区域。
凝灰岩样品(2PDBG-2-1)共测试18颗锆石;其中U含量为381×10-6~848×10-6;个别可达940×10-6;Th含量为184×10-6~696×10-6;个别可达767×10-6;Th/U值为0.21~3.45,个别可到9.71(表 1)。样品2PDBG-2-1测试了18个数据点,15个数据点位于谐和线上(图 2),排除受后期普通铅影响的3个数据点(7.1、10.1、15.1)的年龄值。15个数据点的206Pb/238U年龄为129.9±1.1 Ma,MSWD=0.79,该年龄代表了大北沟组顶部凝灰岩的形成时代。
4. 结论
(1) 依据生物地层的研究,将中国陆相侏罗系/白垩系界线划在大北沟组与大店子组之间,由此结合前人资料推测,国际海相侏罗系/白垩系界线的年龄应接近130.7Ma。
(2) 参考前人资料土城子组(后城组)下部年龄为142.6 ± 1.9Ma,中部为139.6 ± 1.5Ma,上部为136.4±1.9~137.3±1.1Ma;张家口组底部锆石年龄为133.7±1.1Ma,张家口组顶部锆石年龄为130.8± 0.7Ma;本文获得大北沟组顶部精确锆石年龄129.9±1.1M,建议将大北沟组顶部凝灰岩(斑脱岩)锆石年龄129.9±1.1Ma视为中国陆相侏罗系/白垩系界线年龄。
(3) 冀北滦平盆地侏罗系—白垩系同位素年龄测定表明,侏罗系/白垩系界线年龄值可能接近130Ma,而非145Ma。
致谢: 感谢吉林大学高忠维硕士、于云鹏和董宇超博士在野外工作时的帮助和成文过程中提供的宝贵意见,以及各位后勤人员在生活和工作过程中的付出;碎屑锆石测试分析在中国地质大学(北京)科学研究院实验中心苏犁老师和各位同学的协助下完成,在此一并致谢。 -
图 1 拉萨板块构造划分图[29](a)和西藏尼玛县阿索地区地质简图(b)
Figure 1. Plate tectonic framework of the Lhasa block(a)and geological map of the Asa area, Nima County, Tibet(b)
图 4 竟柱山组碎屑锆石阴极发光图像及锆石分析点位置和年龄(a)、锆石U-Pb年龄谐和曲线(b)、竟柱山组与马莫勒组碎屑锆石概率密度及核密度估计曲线(c)
Figure 4. Cathodoluminescence images with analytical spots and corresponding apparent ages of detrital zircons of the Jingzhushan Formation(a), U-Pb concordia plots of detrital zircons from the Jingzhushan Formation sample(b), probability plots and kernel functional plots(c) of the Jingzhushan Formation and Mamole Formation
图 6 岩浆锆石与热液锆石判别图解[51](a)、锆石原岩类型判别图解[49](b)、锆石原岩构造环境判别图解[53](c)和拉萨板块中I,S与A型花岗岩锆石投影[54] (d)
Figure 6. Discriminants bretween magmatic and hydrothermal genatic zircons(a), discrimination diagram of zircon protorock types(b), discrimination diagram of tectonic setting of zircon protolites(c)and trace element plots for zircons from I-, S-, and A-type granites(d)
图 7 碎屑锆石年龄的构造分类图解
图像判别区域按90 Ma沉积年龄进行校准[44] A—汇聚环境;B—碰撞环境;C—拉伸环境
Figure 7. Tectonic classification diagram of detrital zircon ages
表 1 拉萨板块晚白垩世地层时代
Table 1 Late Cretaceous deposition dating in Lhasa block
研究地区 沉积时代 方法 参考文献 尼玛盆地南部 < 99 Ma 火山凝灰岩锆石U-Pb [5] 尼玛盆地南部 90~100 Ma 火山凝灰岩锆石U-Pb、碎屑锆石 [18] 尼玛盆地南部 塞诺曼期 植物孢粉化石 [19] 改则扎西错东南 79 Ma(YSG) 碎屑锆石 [20] 革吉唐杂 92~96 Ma 圆笠虫化石、碎屑锆石 [21] 阿索马莫勒 < 99 Ma 碎屑锆石 [22] 日土县班公湖西 96~73 Ma 软体动物化石、石英ERS测年、磁性地层学 [23] 比如盆地 约83 Ma 安山岩K-Ar [24] 措勤虾格子 < 96 Ma,约91 Ma 火山凝灰岩锆石U-Pb、碎屑锆石 [25] 措勤塔惹增 晚白垩世 珊瑚化石 [26] 表 2 西藏尼玛县阿索乡山嘎勒上白垩统竟柱山组碎屑锆石测年数据
Table 2 Detrital zircon U-Pb dating data of Upper Cretaceous Jingzhushan Formation in the Shangale,Asa,Nima County,Tibet
测点号 含量/10 -6 Th/U 同位素比值 年龄/Ma Th U Pb 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 最佳年龄 1σ N17T3-01 86.69 112.68 2.71 0.77 0.04851 0.00319 0.13182 0.00863 0.01971 0.00028 124 120 126 8 126 2 126 2 N17T3-02 61.59 124.1 2.78 0.5 0.04842 0.00269 0.13145 0.00727 0.01969 0.00027 120 99 125 7 126 2 126 2 N17T3-03 119.63 229.16 5.12 0.52 0.04859 0.0018 0.13192 0.00486 0.01969 0.00025 128 62 126 4 126 2 126 2 N17T3-04 136.11 230.96 5.28 0.59 0.04862 0.00176 0.13225 0.00477 0.01972 0.00025 130 61 126 4 126 2 126 2 N17T3-05 155.87 257.1 56.56 0.61 0.07651 0.00127 1.97729 0.03384 0.18741 0.00219 1108 17 1108 12 1107 12 1108 17 N17T3-06 94.26 197.66 4.35 0.48 0.04856 0.00193 0.13118 0.00519 0.01959 0.00025 127 68 125 5 125 2 125 2 N17T3-07 99.05 99 2.54 1 0.04848 0.00374 0.13174 0.01012 0.0197 0.00028 123 145 126 9 126 2 126 2 N17T3-08 78.62 128.93 2.94 0.61 0.04851 0.00358 0.13108 0.00961 0.01959 0.00029 124 136 125 9 125 2 125 2 N17T3-09 86.58 142.21 3.29 0.61 0.04851 0.00298 0.13165 0.00805 0.01968 0.00027 124 112 126 7 126 2 126 2 N17T3-10 166.48 237.41 5.59 0.7 0.04841 0.00186 0.13111 0.00502 0.01964 0.00025 119 65 125 5 125 2 125 2 N17T3-11 112.73 181.11 4.02 0.62 0.04781 0.00312 0.12366 0.00802 0.01876 0.00026 90 118 118 7 120 2 120 2 N17T3-12 74.92 192.05 8.29 0.39 0.05108 0.00152 0.27383 0.00816 0.03887 0.00048 244 46 246 7 246 3 246 3 N17T3-13 149.18 239.88 5.57 0.62 0.04944 0.0023 0.13408 0.0062 0.01967 0.00026 169 83 128 6 126 2 126 2 N17T3-14 327.51 442.12 8.11 0.74 0.04802 0.00141 0.09988 0.00293 0.01508 0.00019 100 46 97 3 96 1 96 1 N17T3-15 135.81 211.27 4.41 0.64 0.04827 0.00235 0.11798 0.00572 0.01773 0.00023 113 85 113 5 113 1 113 1 N17T3-17 132.76 299.6 9.16 0.44 0.04954 0.00157 0.18651 0.0059 0.0273 0.00033 173 51 174 5 174 2 174 2 N17T3-18 137.27 244.13 5.26 0.56 0.04832 0.00223 0.12253 0.00564 0.01839 0.00024 115 80 117 5 117 2 117 2 N17T3-20 73.84 135.03 3.08 0.55 0.0483 0.00309 0.1314 0.00836 0.01973 0.00027 114 117 125 8 126 2 126 2 N17T3-21 296.02 237.04 26.81 1.25 0.05611 0.00114 0.63113 0.01295 0.08157 0.00098 457 25 497 8 505 6 505 6 N17T3-22 227.3 379.85 7.91 0.6 0.04632 0.00139 0.11434 0.00341 0.0179 0.00023 14 40 110 3 114 1 114 1 N17T3-23 143.56 207.19 4.65 0.69 0.04905 0.00185 0.12731 0.00475 0.01882 0.00025 150 62 122 4 120 2 120 2 N17T3-24 77.15 194.46 3.73 0.4 0.04812 0.00216 0.11525 0.00511 0.01737 0.00025 105 74 111 5 111 2 111 2 N17T3-25 86.67 163.78 3.79 0.53 0.05294 0.00265 0.14701 0.00726 0.02014 0.00031 326 84 139 6 129 2 129 2 N17T3-26 197.07 249.68 6.41 0.79 0.05101 0.00158 0.14638 0.00451 0.02081 0.00027 241 47 139 4 133 2 133 2 N17T3-27 158.94 227.57 5.28 0.7 0.0465 0.00166 0.12354 0.00437 0.01926 0.00025 24 52 118 4 123 2 123 2 N17T3-28 427.25 763.65 17.75 0.56 0.05032 0.00107 0.14018 0.00301 0.0202 0.00024 210 28 133 3 129 2 129 2 N17T3-29 78.66 108.18 2.7 0.73 0.04989 0.00271 0.14233 0.00762 0.02069 0.00032 190 95 135 7 132 2 132 2 N17T3-30 277.03 381.58 48.9 0.73 0.06183 0.00109 0.8954 0.01614 0.10501 0.00124 668 20 649 9 644 7 644 7 N17T3-31 341.84 516.55 10.93 0.66 0.04785 0.00124 0.11704 0.00304 0.01774 0.00022 92 38 112 3 113 1 113 1 N17T3-32 144.08 353.59 98.15 0.41 0.09038 0.00252 2.8884 0.07248 0.23178 0.00282 1434 54 1379 19 1344 15 1434 54 N17T3-33 91.21 243.11 5.35 0.38 0.05039 0.00182 0.13766 0.00493 0.01981 0.00027 213 58 131 4 126 2 126 2 N17T3-34 105.25 243.11 5.47 0.43 0.04923 0.00163 0.13638 0.00448 0.02009 0.00026 159 53 130 4 128 2 128 2 N17T3-35 160.5 258.93 98.35 0.62 0.1068 0.0018 4.59933 0.07981 0.31229 0.00368 1746 16 1749 14 1752 18 1746 16 N17T3-36 366.34 778.94 28.76 0.47 0.05323 0.00111 0.23611 0.00498 0.03216 0.00039 339 27 215 4 204 2 204 2 N17T3-37 126.02 239.02 5.41 0.53 0.04767 0.00207 0.12942 0.00554 0.01969 0.00028 83 70 124 5 126 2 126 2 N17T3-38 145.04 155.63 4.02 0.93 0.04835 0.00209 0.13412 0.00573 0.02011 0.00028 116 73 128 5 128 2 128 2 N17T3-39 51.81 138.27 11.78 0.37 0.05711 0.00137 0.60316 0.01454 0.07658 0.00095 496 32 479 9 476 6 476 6 N17T3-40 222.52 350.14 7.89 0.64 0.04797 0.00158 0.1242 0.00406 0.01878 0.00025 98 52 119 4 120 2 120 2 N17T3-41 35.21 52.23 1.15 0.67 0.04263 0.00482 0.10772 0.01205 0.01832 0.00037 143 170 104 11 117 2 117 2 N17T3-44 449.45 725.1 16.93 0.62 0.05011 0.00127 0.13682 0.00347 0.0198 0.00025 200 36 130 3 126 2 126 2 N17T3-45 565.77 600.68 14.79 0.94 0.04927 0.00133 0.12914 0.00348 0.01901 0.00024 161 40 123 3 121 2 121 2 N17T3-46 81.88 101.65 2.56 0.81 0.04811 0.00384 0.12784 0.00998 0.01927 0.00031 105 179 122 9 123 2 123 2 N17T3-47 57.04 526.81 11.4 0.11 0.04854 0.00126 0.14168 0.00369 0.02117 0.00026 126 38 135 3 135 2 135 2 N17T3-48 112.82 521.35 16.15 0.22 0.05238 0.00142 0.21507 0.00584 0.02978 0.00038 302 39 198 5 189 2 189 2 N17T3-49 289.04 482 114.08 0.6 0.07832 0.00139 2.12804 0.03885 0.19703 0.00233 1155 19 1158 13 1159 13 1155 19 N17T3-50 54.31 545.39 11.43 0.1 0.05006 0.00164 0.14154 0.0046 0.0205 0.00027 198 51 134 4 131 2 131 2 N17T3-51 141.26 131.06 33.14 1.08 0.07382 0.00146 1.92203 0.0388 0.18881 0.00228 1037 22 1089 13 1115 12 1037 22 N17T3-52 246.49 489.45 11.81 0.5 0.04782 0.00135 0.13849 0.00392 0.021 0.00027 90 43 132 3 134 2 134 2 N17T3-53 242.86 555.68 10.37 0.44 0.05056 0.0017 0.11375 0.00379 0.01631 0.00022 221 52 109 3 104 1 104 1 N17T3-54 223.96 278.59 29.94 0.8 0.05829 0.00121 0.68561 0.01446 0.08529 0.00103 541 26 530 9 528 6 528 6 N17T3-55 132.71 193.05 8.87 0.69 0.04605 0.00337 0.13997 0.01008 0.02205 0.00029 162 133 9 141 2 141 2 N17T3-56 51.57 107 2.43 0.48 0.04754 0.00286 0.12824 0.00747 0.01956 0.00029 77 134 123 7 125 2 125 2 N17T3-57 66.48 109.31 2.52 0.61 0.04706 0.00316 0.12551 0.00831 0.01934 0.00033 52 113 120 7 123 2 123 2 N17T3-58 138.84 200.5 12.26 0.69 0.05368 0.01403 0.13222 0.03445 0.01786 0.00037 358 485 126 31 114 2 114 2 N17T3-59 59.43 112.34 2.52 0.53 0.04895 0.00265 0.12995 0.00696 0.01925 0.00029 145 94 124 6 123 2 123 2 N17T3-61 449.7 1157.08 23.2 0.39 0.05067 0.00149 0.12487 0.00367 0.01787 0.00023 226 44 119 3 114 1 114 1 N17T3-62 333.29 774.76 15.72 0.43 0.04858 0.00123 0.11879 0.00302 0.01773 0.00022 128 37 114 3 113 1 113 1 N17T3-63 121.67 230.71 4.99 0.53 0.04395 0.00168 0.11238 0.00428 0.01854 0.00025 73 57 108 4 118 2 118 2 N17T3-64 25.71 38.51 12.03 0.67 0.04605 0.05667 0.08833 0.10858 0.01391 0.0008 1395 86 101 89 5 89 5 N17T3-65 166.09 267.32 6.38 0.62 0.04778 0.00188 0.1322 0.00514 0.02006 0.00028 88 63 126 5 128 2 128 2 N17T3-66 122.78 173.44 4.67 0.71 0.05111 0.00215 0.15422 0.00642 0.02188 0.00031 246 70 146 6 140 2 140 2 N17T3-67 92.53 133.19 3.25 0.69 0.05003 0.00247 0.13721 0.00671 0.01989 0.0003 196 86 131 6 127 2 127 2 N17T3-68 166.88 252.54 5.95 0.66 0.04555 0.00183 0.12234 0.00489 0.01948 0.00027 26 57 117 4 124 2 124 2 N17T3-69 313.09 498.94 10.84 0.63 0.04621 0.00164 0.11649 0.00411 0.01828 0.00025 9 49 112 4 117 2 117 2 N17T3-70 177.07 426.13 9.48 0.42 0.04882 0.00149 0.13253 0.00404 0.01969 0.00026 139 47 126 4 126 2 126 2 N17T3-71 94.65 126.95 3.09 0.75 0.04952 0.00323 0.1334 0.00857 0.01953 0.00033 173 115 127 8 125 2 125 2 N17T3-72 116.52 217.37 4.76 0.54 0.04977 0.00207 0.12734 0.00524 0.01856 0.00026 184 70 122 5 119 2 119 2 N17T3-73 140.95 147.13 36.13 0.96 0.07847 0.00173 1.98617 0.04441 0.18355 0.00228 1159 25 1111 15 1086 12 1159 25 N17T3-74 96.22 183.35 4.31 0.52 0.05008 0.0023 0.13896 0.0063 0.02012 0.00029 199 78 132 6 128 2 128 2 N17T3-75 137.98 292.08 53.1 0.47 0.07317 0.00157 1.55685 0.03395 0.1543 0.0019 1019 25 953 13 925 11 1019 25 N17T3-76 227.6 507.93 10.33 0.45 0.05083 0.00152 0.1236 0.00369 0.01763 0.00023 233 45 118 3 113 1 113 1 N17T3-77 33.38 62.5 22.89 0.53 0.10495 0.0024 4.35924 0.10067 0.3012 0.00381 1713 24 1705 19 1697 19 1713 24 N17T3-78 131.46 201.41 4.62 0.65 0.04849 0.00194 0.12635 0.005 0.0189 0.00026 123 67 121 5 121 2 121 2 N17T3-79 113.5 208.97 4.91 0.54 0.04533 0.00192 0.12467 0.00524 0.01994 0.00028 3 61 119 5 127 2 127 2 N17T3-80 253.02 499.32 11.27 0.51 0.0474 0.00144 0.12629 0.00384 0.01932 0.00025 69 47 121 3 123 2 123 2 N17T3-81 64.52 116.83 6.53 0.55 0.04605 0.00892 0.12541 0.0242 0.01975 0.00035 331 120 22 126 2 126 2 N17T3-83 154.91 269.86 6.13 0.57 0.04939 0.00193 0.12906 0.00501 0.01895 0.00026 166 65 123 5 121 2 121 2 N17T3-84 60.12 90.43 17.62 0.66 0.0692 0.00186 1.52225 0.04095 0.15952 0.00207 905 34 939 16 954 12 905 34 N17T3-85 62.08 138.43 3.13 0.45 0.04943 0.00243 0.13403 0.00652 0.01966 0.00029 168 85 128 6 126 2 126 2 N17T3-86 76.52 169.86 3.87 0.45 0.04677 0.00219 0.12776 0.00591 0.01981 0.00029 37 72 122 5 126 2 126 2 N17T3-87 55.55 111.94 2.45 0.5 0.0452 0.0028 0.11714 0.00717 0.01879 0.0003 9 101 112 7 120 2 120 2 N17T3-88 938.36 690.34 20.05 1.36 0.04813 0.00134 0.13526 0.00378 0.02038 0.00026 106 42 129 3 130 2 130 2 N17T3-89 125.81 218.7 4.58 0.58 0.04755 0.00198 0.11525 0.00477 0.01758 0.00025 77 66 111 4 112 2 112 2 N17T3-90 143.86 259.72 6.25 0.55 0.05428 0.00192 0.15041 0.00528 0.02009 0.00028 383 54 142 5 128 2 128 2 N17T3-91 60.71 57.48 1.23 1.06 0.04286 0.00475 0.09417 0.01034 0.01593 0.00031 131 170 91 10 102 2 102 2 N17T3-92 53.46 122.94 2.67 0.43 0.04708 0.00266 0.1219 0.00681 0.01877 0.00029 53 93 117 6 120 2 120 2 N17T3-93 103.78 140.44 3.33 0.74 0.04613 0.00247 0.12187 0.00646 0.01916 0.00029 4 84 117 6 122 2 122 2 N17T3-94 204.38 358.62 7.87 0.57 0.0502 0.00177 0.12749 0.00448 0.01842 0.00025 204 56 122 4 118 2 118 2 N17T3-95 269.21 350.6 8.59 0.77 0.04997 0.00221 0.13202 0.00577 0.01916 0.00028 194 74 126 5 122 2 122 2 N17T3-96 68.06 48.74 8.53 1.4 0.06299 0.0022 1.05006 0.03646 0.12088 0.00169 708 50 729 18 736 10 736 10 N17T3-97 171.83 211.83 5.27 0.81 0.0519 0.0022 0.14011 0.00588 0.01958 0.00028 281 70 133 5 125 2 125 2 N17T3-98 112.4 128.13 3 0.88 0.048 0.00268 0.12057 0.00667 0.01821 0.00028 99 95 116 6 116 2 116 2 N17T3-99 68.15 144.39 3.33 0.47 0.04962 0.00244 0.13636 0.00663 0.01993 0.0003 177 85 130 6 127 2 127 2 注:测试单位为中国地质大学(北京)科学研究院实验中学 -
尹安. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J]. 地球学报, 2001, (3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 5-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865. doi: 10.1130/B25595.1
Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsabull&resid=119/7-8/917
DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680. http://adsabs.harvard.edu/abs/2006AGUFM.T31E..01D
Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045
Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319: 105-121. doi: 10.2475/02.2019.02
Luo A, Wang M, Li C, et al. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: post-collisional partial melting of thickened lower crust[J]. International Journal of Earth Sciences, 2019, 108(6): 1979-1999. doi: 10.1007/s00531-019-01744-4
潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023
Fan J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249. doi: 10.1007/s00531-017-1487-4
周亚楠, 邵瑞琦, 姜南, 等. 拉萨地块保吉地区晚侏罗世-早白垩世地层磁组构特征[J]. 地质通报, 2019, 38(4): 522-535. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190405&flag=1 夏邦栋, 张开均, 孔庆友. 青藏高原内部三条磨拉石带的确定及其构造意义[J]. 地学前缘, 1999, 6(3): 173-180. doi: 10.3321/j.issn:1005-2321.1999.03.017 Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed[J]. GSA Today, 2007, 17(7): 4. doi: 10.1130/GSAT01707A.1
Leier A L, DeCelles P G, Kapp P, et al. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77(10): 809-825. doi: 10.2110/jsr.2007.078
西藏自治区地质矿产局. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1997. Lai W, Hu X, Garzanti E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous(ca. 92 Ma)[J]. Geological Society of America Bulletin, 2019, 131(11/12): 1823-1836.
贾共祥, 杜凤军, 刘伟. 西藏尼玛一带上白垩统竟柱山组的厘定及其意义[J]. 地质调查与研究, 2007, 30(3): 172-177. doi: 10.3969/j.issn.1672-4135.2007.03.003 Li S, Guilmette C, Ding L, et al. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision[J]. Journal of Asian Earth Sciences, 2017, 147: 469-484. doi: 10.1016/j.jseaes.2017.08.019
叶加鹏, 胡修棉, 孙高远, 等. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma)[J]. 科学通报, 2019, 64(15): 1620-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915007.htm 罗安波, 王明, 曾孝文, 等. 藏北尼玛县阿索乡上白垩统马莫勒组的建立及其意义[J]. 地质通报, 2018, 37(8): 1529-1540. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180817&flag=1 李华亮, 高成, 李正汉, 等. 西藏班公湖地区竟柱山组时代及其构造意义[J]. 大地构造与成矿学, 2016, 40(4): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604004.htm 和钟铧, 杨德明, 王天武, 等. 西藏比如盆地竟柱山组沉积-火山岩形成环境及构造意义[J]. 沉积与特提斯地质, 2006, (01): 8-12. doi: 10.3969/j.issn.1009-3850.2006.01.002 Sun G, Hu X, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin(Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127(7/8): 1001-1020. . http://smartsearch.nstl.gov.cn/paper_detail.html?id=af010386a9e85c5726a1b2ef6701fe64
黄建国, 马德胜, 龙胜清. 西藏塔惹增地区上白垩统竟柱山组的厘定及其意义[J]. 贵州地质, 2014, 31(3): 206-209+240. doi: 10.3969/j.issn.1000-5943.2014.03.008 Wu F, Ji W, Liu C, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 2010, 271(1): 13-25. http://igg.cas.cn/xwzx/yjcg/201004/W020100406359092055092.pdf
黄童童. 班公湖-怒江缝合带中西段晚中生代构造演化的地球化学制约[D]. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文, 2017. 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 王立全, 潘桂棠, 朱弟成, 等. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报, 2008, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?[J]. 岩石学报, 2008, 24(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm 朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm BouDagher-Fadel M K, Hu X, Price G D, et al. Foraminiferal Biostratigraphy and Palaeoenvironmental Analysis of the Mid-cretaceous Limestones in the Southern Tibetan Plateau[J]. Journal of Foraminiferal Research, 2017, 47(2): 188-207. doi: 10.2113/gsjfr.47.2.188
张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902001.htm 郑有业, 许荣科, 何来信, 等. 西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J]. 沉积与特提斯地质, 2004, 24(1): 13-20. doi: 10.3969/j.issn.1009-3850.2004.01.002 徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014. Zeng X, Wang M, Fan J, et al. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean[J]. Lithos, 2018, 320/321: 192-206. doi: 10.1016/j.lithos.2018.09.013
刘海永, 曾庆高, 王雨, 等. 西藏拉果错蛇绿混杂岩岩石学, 锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2/3): 164-176. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2020020302&flag=1 王伟. 西藏阿索地区早白垩世中酸性侵入岩岩石成因及地质意义[D]. 吉林大学硕士学位论文, 2018. Liu Y, Wang M, Li C, et al. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination Beneath the Qiangtang-Lhasa Collision Zone[J]. International Geology Review, 2019, 61(5): 562-583. doi: 10.1080/00206814.2018.1437789
Li H, Wang M, Zeng X, et al. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 155(8): 1281-1291. http://www.researchgate.net/publication/339522221_Slab_break-off_origin_of_105_Ma_A-type_porphyritic_granites_in_the_Asa_area_of_Tibet
Gehrels G. Detrital Zircon U-Pb Geochronology Applied to Tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012
Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0012821X09005469&originContentFamily=serial&_origin=article&_ts=1493864661&md5=de8d075e418b9ca85f230e9f3efcc2d9
Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1
Leier A L, Kapp P, Gehrels G, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19: 361-378. doi: 10.1111/j.1365-2117.2007.00330.x
Ye J, Hu X, Sun G, et al. The disappearance of the Late Cretaceous Bangong-Nujiang residual seaway constrained by youngest marine strata in Geji area, Lhasa Terrane[J]. Chinese Science Bulletin, 2019, 64(15): 1620-1636. doi: 10.1360/N972018-01092
Zhu D, Zhao Z, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730. doi: 10.1130/G31895.1
Dong C, Li C, Wan Y, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 2011, 54(7): 1034-1042. doi: 10.1007/s11430-010-4166-x
Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806012.htm Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006
Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469
Grimes C B, Wooden J L, Cheadle M J, et al. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 2015, 170(5): 46. doi: 10.1007%2Fs00410-015-1199-3.pdf
Wang Q, Zhu D, Zhao Z, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. doi: 10.1016/j.jseaes.2011.07.027
王明.西藏尼则地区 1:5 万区域地质调查报告.吉林大学 2019.