Late Cretaceous Dongco granodiorite porphyry, Tibet: Product of lithospheric delamination
-
摘要:
班公湖-怒江缝合带是国内外备受关注的特提斯构造域的重要组成部分,可为恢复和反演特提斯洋构造演化提供重要依据。对南羌塘地块南缘洞错地区晚白垩世花岗闪长斑岩进行了详细的岩石学、锆石U-Pb定年、全岩地球化学和Lu-Hf同位素研究。锆石U-Pb定年和Lu-Hf同位素研究结果显示,该花岗闪长斑岩形成时代为74.1±1.1 Ma,εHf(t)值为4.5~6.9。全岩地球化学特征显示,其为高钾钙碱性系列,富集轻稀土元素,轻重稀土元素分馏较强,具弱负Eu异常;富集Rb、Th、U、K和Pb,亏损Ba、Nb、Ta、La、Ce、P和Ti。该花岗闪长斑岩为加厚新生下地壳部分熔融的产物。在综合区域最新研究成果的基础上,认为该花岗闪长斑岩形成于后碰撞环境,为班公湖-怒江洋闭合后岩石圈拆沉的产物。
Abstract:The Bangong-Nujiang suture zone is an important part of Tethyan tectonic domain, which is significant for revealing the evolution of Tethys Ocean, Tibet Plateau.The Late Cretaceous granodiorite porphyry in Dongco area from Southern Qiangtang terrane was selected to study petrology, zircon U-Pb age, Lu-Hf isotopic and whole-rock geochemistry.Zircon U-Pb dating and Lu-Hf isotopic analysis yields an age of 74.1±1.1 Ma, with positive εHf(t) values of 4.5~6.9.Geochemical data reveal that the granodiorite porphyry belong to high-K calc-alkaline series, enriched in light rare earth elements with weak negative Eu anomaly and strong fractionation between light and heavy rare earth elements.In spider diagram, it is enriched in Rb, Th, U, K and Pb, and depleted in Ba, Nb, Ta, La, Ce, P and Ti.It is inferred that the granodiorite porphyry was derived from partial melting of thickened juvenile lower crust.Combined with previous research, it is concluded that the Dongco granodiorite porphyry was emplaced in post-collision tectonic setting as the product of lithosphere delamination, postdating the closure of Bangong-Nujiang Ocean.
-
Keywords:
- Tibet /
- Dongco /
- Late Cretaceous /
- granodiorite porphyry /
- delamination
-
致谢: 样品采集过程中得到吉林大学地球科学学院青藏高原地学研究中心王国徽等的协助,分析测试得到了中国地质大学(北京)地学实验中心苏犁老师和张红雨老师的指导,审稿专家提出了宝贵的修改意见,在此一并致以衷心的感谢。
-
图 1 洞错地区地质简图(据参考文献[29]修改)
①—康西瓦-玛沁-昆仑山缝合带;②—西金乌兰-金沙江缝合带;③—龙木错-双湖-澜沧江缝合带;④—班公湖-怒江缝合带;⑤—印度-雅鲁藏布江缝合带
Figure 1. Symplified geological map of the Dongco area
图 5 洞错地区晚白垩世花岗闪长斑岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准数据据参考文献[45])
Figure 5. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b) of Late Cretaceous granodiorite porphyry in the Dongco area
图 6 洞错晚白垩世花岗闪长斑岩Rb/Sr-Nb/U图解(a)和La-La/Yb图解(b)[7]
Figure 6. Rb/Sr-Nb/U(a)and La-La/Yb(b)diagrams of Late Cretaceous granodiorite porphyry in the Dongco area
表 1 洞错花岗闪长斑岩LA-ICP-MS锆石U-Th-Pb同位素测定结果
Table 1 U-Th-Pb isotope compositions of zircons from Dongco granodiorite porphyry as measured by LA-ICP-MS
测点 含量/10-6 Th/U 比值 年龄/Ma Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ T10-01 39 646 628 1.03 0.0484 0.0018 0.0760 0.0026 0.0115 0.0001 120.5 91.7 74.4 2.5 73.6 0.8 T10-02 10 153 147 1.04 0.0463 0.0032 0.0736 0.0046 0.0118 0.0002 13.1 159.2 72.1 4.4 75.9 1.4 T10-03 14 223 238 0.94 0.0470 0.0025 0.0728 0.0041 0.0112 0.0002 50.1 122.2 71.3 3.8 71.8 1.0 T10-04 7 113 119 0.95 0.0479 0.0040 0.0780 0.0061 0.0120 0.0002 94.5 188.9 76.3 5.8 76.9 1.4 T10-05 9 146 152 0.97 0.0510 0.0029 0.0784 0.0045 0.0112 0.0002 239.0 131.5 76.6 4.3 72.0 1.1 T10-06 10 160 161 1.00 0.0504 0.0030 0.0822 0.0051 0.0120 0.0002 216.7 136.1 80.3 4.8 76.6 1.5 T10-07 21 305 305 1.00 0.0564 0.0021 0.0878 0.0032 0.0113 0.0002 477.8 83.3 85.5 2.9 72.7 1.1 T10-08 5 74 102 0.72 0.0438 0.0034 0.0711 0.0058 0.0117 0.0002 error 69.7 5.5 75.1 1.4 T10-09 43 676 483 1.40 0.0477 0.0015 0.0765 0.0025 0.0116 0.0001 83.4 78.7 74.9 2.4 74.5 0.8 T10-10 18 301 254 1.18 0.0482 0.0025 0.0733 0.0037 0.0111 0.0001 122.3 109.2 71.9 3.5 71.2 0.9 T10-11 12 185 241 0.77 0.0501 0.0026 0.0765 0.0040 0.0111 0.0001 198.2 122.2 74.8 3.7 71.2 0.9 T10-12 18 299 210 1.42 0.0466 0.0024 0.0720 0.0036 0.0114 0.0002 27.9 122.2 70.6 3.4 72.8 1.0 T10-13 16 253 245 1.03 0.0446 0.0024 0.0727 0.0039 0.0119 0.0001 error 71.2 3.7 76.1 0.9 T10-14 13 166 320 0.52 0.0484 0.0019 0.0791 0.0033 0.0119 0.0002 116.8 88.0 77.3 3.1 76.0 1.2 T10-15 19 262 273 0.96 0.0600 0.0026 0.0938 0.0039 0.0114 0.0002 605.6 92.6 91.0 3.6 73.0 1.0 T10-16 29 461 488 0.94 0.0509 0.0018 0.0789 0.0026 0.0113 0.0001 235.3 84.2 77.1 2.5 72.4 0.9 T10-17 53 815 660 1.24 0.0499 0.0017 0.0810 0.0032 0.0117 0.0001 190.8 77.8 79.1 3.0 75.1 0.9 T10-18 23 354 385 0.92 0.0471 0.0031 0.0769 0.0048 0.0119 0.0001 53.8 157.4 75.2 4.5 76.4 0.9 T10-19 24 372 317 1.17 0.0503 0.0023 0.0830 0.0036 0.0121 0.0002 205.6 113.9 81.0 3.4 77.2 1.0 T10-20 20 270 277 0.97 0.0540 0.0028 0.0900 0.0045 0.0122 0.0002 372.3 116.7 87.5 4.2 77.9 1.1 表 2 洞错花岗闪长斑岩锆石Lu-Hf同位素测定结果
Table 2 Lu-Hf isotope compositions of zircons from Dongco granodiorite porphyry
测点 年龄/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1/Ma TDM2/Ma fLu/Hf T10-1 74.1 0.014380 0.000066 0.000628 0.000003 0.282889 0.000016 4.1 5.7 0.6 510 776 -0.98 T10-2 74.1 0.016216 0.000086 0.000717 0.000003 0.282887 0.000014 4.1 5.7 0.5 514 780 -0.98 T10-3 74.1 0.016805 0.000291 0.000790 0.000014 0.282879 0.000014 3.8 5.4 0.5 527 800 -0.98 T10-4 74.1 0.021002 0.000301 0.000911 0.000012 0.282855 0.000018 2.9 4.5 0.6 562 853 -0.97 T10-5 74.1 0.022374 0.000437 0.000968 0.000019 0.282921 0.000015 5.3 6.9 0.5 469 704 -0.97 T10-6 74.1 0.017259 0.000267 0.000770 0.000014 0.282900 0.000016 4.5 6.1 0.6 496 751 -0.98 T10-7 74.1 0.015864 0.000209 0.000687 0.000009 0.282916 0.000014 5.1 6.7 0.5 472 714 -0.98 T10-8 74.1 0.019595 0.000246 0.000968 0.000013 0.282917 0.000013 5.1 6.7 0.4 475 714 -0.97 表 3 洞错花岗闪长斑岩全岩主量、微量和稀土元素测定结果
Table 3 Whole-rock major, trace elements and REE compositions of Dongco granodiorite porphyry
样品 T10H1 T10H2 T10H3 样品 T10H1 T10H2 T10H3 SiO2 68.15 66.88 69 Ni 18.01 20.02 16.08 TiO2 0.45 0.53 0.45 Rb 94.84 75.18 103.6 Al2O3 14.2 14.99 14.05 Ba 562.6 485.8 623.2 TFe2O3 3.35 3.42 3.18 Th 10.79 11.92 11.72 MnO 0.06 0.07 0.07 U 2.36 2.23 2.2 MgO 1.74 1.62 1.71 Nb 16.3 17.94 17 CaO 1.68 1.84 1.78 Cs 1.21 0.49 1.99 Na2O 4.29 5.34 3.59 Ta 1.05 1.16 1.25 K2O 3.28 3.06 3.43 La 22.3 32.02 24.81 P2O5 0.18 0.2 0.18 Ce 53.1 66.2 56.59 烧失量 2.54 2.01 2.51 Pr 5.09 6.63 5.36 总计 99.92 99.97 99.93 Sr 265.2 230.6 283.3 Mg# 54.7 52.4 55.6 Nd 17.97 23.22 18.79 T/℃ 787 780 795 Zr 172.2 182.6 173.5 A/CNK 1.04 0.97 1.09 Hf 4.14 4.41 4.23 Li 67.42 34.88 87.53 Sm 3.24 4.08 3.34 P 924.2 980.2 962.9 Eu 0.74 0.91 0.73 K 28640 26560 30877 Gd 2.84 3.62 2.93 Sc 6.71 7.37 6.65 Tb 0.39 0.48 0.4 V 56.86 58.57 54.89 Dy 2.36 2.85 2.45 Co 8.91 8.79 8.56 Y 13.47 16.24 14.04 Cu 10.12 24.38 13.5 Ho 0.47 0.56 0.48 Zn 54.04 57.94 47.87 Er 1.32 1.54 1.35 Ga 16.61 17.03 16 Tm 0.2 0.23 0.21 Pb 9.79 13.28 14.04 Yb 1.35 1.51 1.36 Cr 38.44 42.22 33.77 Lu 0.21 0.23 0.21 注:Mg# =(MgO/40.31)/(MgO/40.31+TFe2O3×0.8998/71.85×0.85)×100;A/CNK=(Al2O3/101.96)/((CaO/56.08)+(Na2O/61.98)+(K2O/94.20)); TZr=12900/(2.95+0.85×((2×Na2O/61.9789+2×K2O/94.1960+2×CaO/56.0774)/(2×Al2O3/101.9613×SiO2/60.0843/(SiO2/60.0843+TiO2/79.8658+2×Al2O3/101.9613+2×Fe2O3/159.6882+FeO/71.8444+MgO/40.3044+CaO/56.0774+2×Na2O/61.9789+2×K2O/94.196+2×P2O5/141.9445)))+ln(496000/Zr))-273.15;主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
刘一鸣. 青藏高原羌南-保山板块550~450 Ma岩浆事件——兼论冈瓦纳大陆北缘基底构造演化[D]. 吉林大学博士学位论文, 2017. 许志琴, 杨经绥, 李海兵, 等. 印度-亚洲碰撞大地构造[J]. 地质学报, 2011, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm 朱弟成, 赵志丹, 牛耀龄, 等. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904014.htm Liu Y M, Wang M, Li C, et al. Cretaceous structures in the Duolong region of central Tibet: Evidence for an accretionary wedge and closure of the Bangong-Nujiang Neo-Tethys Ocean[J]. Gondwana Research, 2017, 48: 110-123. doi: 10.1016/j.gr.2017.04.026
Liu Y M, Wang M, Li C, et al. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 2019, 61: 562-583. doi: 10.1080/00206814.2018.1437789
Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.
王建平, 刘彦明, 李秋生, 等. 西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J]. 地质通报, 2002, 21(7): 405-410. doi: 10.3969/j.issn.1671-2552.2002.07.007 陈国荣, 刘鸿飞, 蒋光武, 等. 西藏班公湖-怒江结合带中段沙木罗组的发现[J]. 地质通报, 2004, 23(2): 193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015 Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3): 298-312. http://www.sciencedirect.com/science/article/pii/S0009254109003878
Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1): 241-255. http://www.sciencedirect.com/science/article/pii/S0012821X10007004
Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
Fan J J, Li C, Xu J X, et al. Petrology geochemistry and geological significance of the Nadong ocean island Banggong-Nujiang suture Tibetan Plateau[J]. International Geology Review, 2014, 56: 915-928. doi: 10.1080/00206814.2014.900651
Liu D L, Shi R D, Ding L, et al. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean[J]. Gondwana Research, 2017, 41: 157-172. doi: 10.1016/j.gr.2015.04.007
Baxter A T, Aitchison J C, Zyabrev S V. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet[J]. Journal of the Geological Society, 2009, 166(4): 689-694. doi: 10.1144/0016-76492008-128
Liu D, Zhao Z D, Zhu D C, et al. Zircon xenocrysts in Tibetan ultrapotassic magmas: imaging the deep crust through time[J]. Geology, 2014, 42: 43-46. doi: 10.1130/G34902.1
Fan J J, Li C, Xie C M, et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J]. International Geology Review, 2014, 56(12): 1504-1520. doi: 10.1080/00206814.2014.947639
Fan J J, Li C, Liu Y M, et al. Age and nature of the late Early Cretaceous Zhaga Formation, northern Tibet: constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed[J]. International Geology Review, 2015, 57(3): 342-353. doi: 10.1080/00206814.2015.1006695
Li G M, Qin K Z, Li J X, et al. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions[J]. Gondwana Research, 2017, 41: 110-127. doi: 10.1016/j.gr.2015.09.006
刘一鸣, 李才, 李三忠, 等. 青藏高原羌南-保山板块都古尔地区早白垩世变质辉长岩: 对班公湖-怒江洋俯冲闭合的制约[J]. 地质通报, 2018, 37(8): 1450-1463. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180809&flag=1 Li Y L, He J, Wang C S, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 2013, 160: 1-13.
Wang Q, Zhu D C, Zhao Z D, et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos, 2014, 198: 24-37.
Sun G Y, Hu X M, Zhu D C, et al. Thickened juvenile lower crust-Derived ~90 Ma adakitic rocks in the central Lhasa terrane, Tibet[J]. Lithos, 2015, 224-225: 225-239. doi: 10.1016/j.lithos.2015.03.010
Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9): 1202-1222. doi: 10.1130/B25388.1
马国林, 岳雅慧. 西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J]. 岩石矿物学杂志, 2010, 29(5): 525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008 吴珍汉, 吴学文, 赵珍, 等. 羌塘地块南部晚白垩世火山岩离子探针测年及其对红层时代的约束[J]. 地球学报, 2014, 35(5): 567-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201405008.htm 禹丽, 李龚健, 王庆飞, 等. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J]. 岩石学报, 2014, 30(9): 2709-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm Fan J J, Niu Y L, Liu Y M, et al. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong-Nujiang Suture Zone, Tibetan Plateau[J]. Geological Society of America Bulletin, 2020, https://doi.org/10.1130/B35896.1. http://www.researchgate.net/publication/346676973_Timing_of_closure_of_the_Meso-Tethys_Ocean_Constraints_from_remnants_of_a_141-135_ocean_island_within_the_Bangong-Nujiang_suture_zone_Tibetan_Plateau
Barazangi M, Isacks B L. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America[J]. Geology, 1976, 4: 686-692. doi: 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
Jordan T E, Gardeweg M. Tectonic evolution of the Late Cenozoic Central Andes(20°~33°S)[C]//Ben-Avraham Z. Oxford monographs on geology and geophysics 8: The evolution of the Pacific Ocean Margins. Oxford, Clarendon Press, 1989: 193-207.
Liu Y M, Li C, Xie C M, et al. Geochronology of the Duguer range metamorphic rocks, Central Tibet: implications for the changing tectonic setting of the South Qiangtang subterrane[J]. International Geology Review, 2017, 59(1): 29-44. doi: 10.1080/00206814.2016.1199977
Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: petrogenetic and tectonic implications[J]. Lithos, 2014, 198: 77-91. http://www.sciencedirect.com/science/article/pii/S0024493714001169
Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023
余红霞, 陈建林, 许继峰, 等. 拉萨地块中北部晚白垩世(约90 Ma) 拔拉扎含矿斑岩地球化学特征及其成因[J]. 岩石学报, 2011, 27(7): 2011-2022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107011.htm 黄瀚霄, 李光明, 陈华安, 等. 西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2013, 87(2): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302010.htm 姚晓峰, 唐菊兴, 李志军, 等. 班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J]. 地质论评, 2013, 59(1): 193-200. doi: 10.3969/j.issn.0371-5736.2013.01.021 王保弟, 许继峰, 刘保民, 等. 拉萨地块北部~90 Ma斑岩型矿床年代学及成矿地质背景[J]. 地质学报, 2013, 87(1): 71-80. doi: 10.3969/j.issn.0001-5717.2013.01.007 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, (10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J]. Geochimica Cosmochimica Acta, 2006, 70(18): A158. http://adsabs.harvard.edu/abs/2006GeCAS..70R.158E
Govindaraju K. Compilation of working values and sample description for 383 geostandards[J]. Geostandards and Geoanalytical Research, 1994, 18: 1-158. doi: 10.1111/j.1751-908X.1994.tb00502.x
于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京) 硕士学位论文, 2011. Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007, 48: 2341-2357. doi: 10.1093/petrology/egm062
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Bonin B. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29. http://www.sciencedirect.com/science/article/pii/s0024493706003252
Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Hildreth W E S, Halliday A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellow stone Plateau volcanic field[J]. Journal of Petrology, 1991, 32(1): 63-138. doi: 10.1093/petrology/32.1.63
Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205: 284-297. doi: 10.1016/j.lithos.2014.07.010
Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245: 18-33. doi: 10.1016/j.lithos.2015.07.016
王立全, 潘桂棠, 丁俊, 等. 青藏高原及邻区地质图及说明书(1: 1 500 000)[M]. 北京: 地质出版社, 2013. Zhang K J. Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet(China) indicate a tectonic transition from continental collision to back-arc rifting[J]. Earth and Planetary Science Letters, 2004, 229: 73-89. doi: 10.1016/j.epsl.2004.10.030
王忠恒, 王永胜, 谢元和, 等. 西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J]. 沉积与特提斯地质, 2005, 25(1/2): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境[J]. 地质学报, 2006, 80(9): 1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008 陈玉禄, 张宽忠, 杨志民, 等. 青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J]. 地质通报, 2006, 25(6): 694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007 鲍佩声, 肖序常, 苏犁, 等. 西藏洞错蛇绿岩的构造环境: 岩石学、地球化学和年代学制约[J]. 中国科学(D辑), 2007, 37(3): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200703001.htm Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245: 223-242. doi: 10.1016/j.lithos.2015.09.015
付佳俊, 丁林, 许强, 等. 西藏改则洞错地区白垩纪火山岩锆石U-Pb年代学、Hf同位素组成及对班公-怒江洋俯冲闭合的制约[J]. 地质科学, 2015, 50(1): 182-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501011.htm 范建军. 班公湖-怒江洋中西段晚中生代汇聚消亡时空重建[D]. 吉林大学博士学位论文, 2016. Chen W W, Zhang S H, Ding J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41: 373-389. doi: 10.1016/j.gr.2015.07.004
张硕, 史洪峰, 郝海健, 等. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义[J]. 地球科学: 中国地质大学学报, 2014, 39(5): 509-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405002.htm Chen S S, Fan W M, Shi R D, et al. Removal of deep lithosphere in ancient continental collisional orogens: A case study from central Tibet, China[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 1225-1243. doi: 10.1002/2016GC006678
辛洪波, 曲晓明. 藏西措勤县日阿与斑(玢) 岩有关的铜矿床的矿床地质特征与成矿时代[J]. 矿床地质, 2006, 25(4): 477-482. doi: 10.3969/j.issn.0258-7106.2006.04.012 Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146: 264-275.
Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169: 144-159. doi: 10.1016/j.lithos.2013.01.012
Wu H, Li C, Hu P Y, et al. Early Cretaceous(100-105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2015, 57(9/10): 1172-1188.
Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Volkmer J E, Kapp P, Guynn J H, et al. Cretaceous-Tertiary structural evolution of the north central Lhasa Terrane, Tibet[J]. Tectonics, 2007, 26: TC6007.
Chen W W, Yang T S, Zhang S H, et al. Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks, Cuoqin, Tibet, and their paleogeographic implications[J]. Gondwana Research, 2012, 22: 461-469. doi: 10.1016/j.gr.2011.07.019
刘函, 王保弟, 陈莉, 等. 拉萨地块西北日土花岗岩基锆石U-Pb年代学、地球化学及构造意义[J]. 大地构造与成矿学, 2015, 39(6): 1141-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506015.htm 曲晓明, 辛洪波, 徐文艺, 等. 藏西措勤含铜双峰岩系的发现及其意义[J]. 岩石学报, 2006, 22(3): 707-716. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603020.htm 辛洪波, 曲晓明, 任立奎, 等. 西藏措勤含铜岩系的物质来源与成因[J]. 地质学报, 2007, 81(7): 939-935. doi: 10.3321/j.issn:0001-5717.2007.07.009