Discovery of the Late Triassic-Early Jurassic volcanic rocks of Xionglai Formation and constraint on the tectonic evolution of Zhikong-Sumdo Paleo-Tethyan orogen in the Riduo area of Tibet
-
摘要:
对拉萨地块东段日多地区新厘定的雄来组火山岩进行了岩石地球化学、锆石U-Pb定年及Lu-Hf同位素研究。研究区雄来组火山岩以中基性熔岩及火山碎屑岩占优势为特征。LA-ICP-MS锆石U-Pb测年获得安山岩和玄武安山岩的206Pb/238U年龄加权平均值为201.3±6.0 Ma和184.5±4.4 Ma,表明雄来组火山岩形成于晚三叠世—早侏罗世。其中,基性火山岩SiO2含量为48.53%~49.92%,MgO含量较高,为10.68%~11.43%,Mg#值平均为72.67,高Cr(224.7×10-6~347.8×10-6)和Ni(90.1×10-6~109.7×10-6)含量,富集大离子亲石元素Rb、Th、U、Sr和轻稀土元素,亏损高场强元素Nb、Ta、P、Ti;中性火山岩的SiO2含量为53.93%~60.54%,Al2O3含量为14.74%~16.12%,MgO含量为2.45%~8.12%,富集大离子亲石元素Rb、Th、U、K、Ba和轻稀土元素,亏损高场强元素Nb、Ta、P、Ti,锆石εHf(t)值介于-12.25~-3.64之间,二阶段模式年龄(tDMC)为1621~2004 Ma。岩石地球化学特征和构造环境判别图解均指示,雄来组火山岩形成于后碰撞的构造背景,基性火山岩起源于亏损岩石圈地幔的部分熔融,中性火山岩起源于古老下地壳物质的部分熔融,上升过程中受古老地壳混染,代表了直孔-松多古特提斯造山带后碰撞伸展背景作用下的岩浆响应。
Abstract:Zircon U-Pb dating, geochemical and Hf isotope analyses were carried out on the volcanic rocks of Xionglai Formation newly discovered in Riduo area, the eastern part of the Gangdese magmatic belt.The volcanic rocks of Xionglai Formation in Riduo area in the eastern part of Lhasa massif are mainly intermediate basic lava and pyroclastic rock.Zircon U-Pb dating of andesite and basaltic andesite yields weighted mean ages of 201.3 ±6.0 Ma and 184.5 ±4.4 Ma respectively, indicating that the Xionglai Formation volcanic rocks were formed in the Late Triassic-Early Jurassic.Geochemically, the basic volcanic rocks are characterized by low SiO2(48.53%~49.92%), high MgO(10.68%~11.43%), Mg#(72.67), Cr(224.7×10-6~347.8×10-6), and Ni(90.1×10-6~109.7×10-6), enriched in large ion lithophile elements(Rb, Th, U, Sr) and light rare earth elements(LREEs), and depleted in high field strength elements(Nb, Ta, P, Ti).The intermediate volcanic rocks are characterized by high SiO2(53.93%~60.54%), Al2O3(14.74%~16.12%), low MgO(2.45%~8.12%).They are enriched in light rare earth elements(LREEs), large ion lithophile elements(LILEs, e.g., Rb, Th, U and Ba), but depleted in high-field strength elements(e.g., Nb, Ta, P, Ti).Isotope analyses reveal that most samples have low zircon εHf(t) (-12.25~-3.64), and the values of tDMC range from 1621 Ma to 2004 Ma.Combining with regional geology, geochronological, geochemical and zircon Hf isotopic data, it is proposed that the Late Triassic-Early Jurassic volcanic rocks of Xionglai Formation were formed in post-collision tectonic setting as a magmatic response to post-collision and extension of Zhikong-Sumdo Paleo-Tethyan orogen.The basic volcanic rocks were derived from partial melting of a depleted lithospheric mantle, while the intermediate volcanic rocks were derived from partial melting of ancient lower crustal material and contaminated by ancient lower crust during ascending.
-
Keywords:
- Xionglai Formation /
- petrogenesis /
- post-collision /
- Riduo area /
- Late Triassic-Early Jurassic /
- Tibetan Plateau
-
致谢: 感谢成都地质调查中心李光明研究员、张林奎高级工程师、陕西省地矿局区研院韩芳林教授级高工、陕西省地质调查院李新林、边小卫教授级高工、西藏地勘局胡敬仁高级工程师和吉林大学解超明博士对野外工作的帮助和支持,感谢审稿专家对本文给予的指导。
-
图 1 拉萨地块南缘日多地区大地构造位置(a)及区域地质简图(b)(据参考文献[12]①③修改)
JSSZ—金沙江缝合带;LSSZ—龙木错—双湖缝合带;BNSZ—班公湖-怒江缝合带;SNMZ—狮泉河-纳木错蛇绿混杂岩带;LMF—洛巴堆- 米拉山断裂带;YZSZ—印度-雅鲁藏布江缝合带;STDS—藏南拆离系;1—第四系;2—新生代侵入岩;3—中生代侵入岩;4—辉绿玢岩;5—中新世火山岩;6—林子宗群火山岩;7—侏罗纪-白垩纪沉积地层;8—叶巴组火山岩;9—三叠纪-侏罗纪沉积地层;10—雄来组三段;11—雄来组二段;12—雄来组一段;13—二叠纪沉积地层;14—二叠纪洋岛;15—榴辉岩;16—石炭纪-二叠纪松多岩组;17—断层、地层界线;18—测年样位置及年龄;F1—洛巴堆-米拉山断裂带
Figure 1. Tectonic position(a)and geological map(b)of Riduo area on the southern Lhasa terrane
图 6 雄来组火山岩球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化数据据参考文献[15])
Figure 6. Chondrite-normalized REE patterns(a)and primitive mantle(PM)-normalized multi-element patterns(b)of Xionglai Formation volcanic rocks
图 8 雄来组玄武岩Sm-Sm/Yb(a)和La/Sm-Sm/Yb图解(b,据参考文献[22]修改)
N-MORB—正常型大洋中脊玄武岩;E-MORB—富集型大洋中脊玄武岩;DDM—亏损的洋中脊玄武岩地幔;PM—原始地幔
Figure 8. Sm-Sm/Yb(a)and La/Sm-Sm/Yb(b)diagrams of Xionglai Formation basalt
图 10 日多地区雄来组火山岩构造环境判别图解
IAB—岛弧玄武岩;IAT—岛弧拉斑系列;ICA—岛弧钙碱系列;SHO—岛弧橄榄玄粗岩系列;WPB-板内玄武岩;MORB—洋中脊玄武岩;TH—拉斑玄武岩;TR—过渡玄武岩;ALK—碱性玄武岩;Ⅰ—板块发散边缘N-MORB区;Ⅱ—板块汇聚边缘(Ⅱ1—大洋岛弧玄武岩区;Ⅱ2—陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ—大洋板内洋岛、海山玄武岩区及T-MORB、E-MORB区;Ⅳ—大陆板内(Ⅳ1—陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2—陆内裂谷碱性玄武岩区;Ⅳ3—大陆拉张带(或初始裂谷)玄武岩区);Ⅴ—地幔热柱玄武岩区
Figure 10. Tectonic discrimination diagrams of Xionglai Formation volcanic rocks in the Riduo area
表 1 日多地区雄来组火山岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1 LA-ICP-MS U-Th-Pb isotopic data of zircons from Xionglai Formation volcanic rocks in the Riduo area
分析点 含量/10-6 Th/U 同位素比值 年龄值/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 浅灰绿色安山岩 D2714/2-2 42 382 338 1.13 0.0507 0.0016 0.230 0.007 0.0331 0.0006 233 74 210 6 210 4 D2714/2-4 14 118 119 1.00 0.0500 0.0026 0.229 0.012 0.0336 0.0008 195 116 209 10 213 5 D2714/2-5 16 131 150 0.88 0.0509 0.0026 0.224 0.011 0.0324 0.0007 239 116 205 9 205 5 D2714/2-9 39 391 337 1.16 0.0500 0.0018 0.208 0.009 0.0302 0.0007 195 83 192 7 192 4 D2714/2-14 33 272 380 0.72 0.0498 0.0014 0.209 0.006 0.0305 0.0005 183 69 193 5 194 3 D2714/2-16 30 249 301 0.83 0.0507 0.0022 0.224 0.010 0.0322 0.0006 228 98 205 8 204 4 D2714/2-19 24 234 217 1.08 0.0510 0.0025 0.217 0.012 0.0308 0.0006 243 115 199 10 195 3 D2714/2-21 35 336 300 1.12 0.0518 0.0018 0.228 0.008 0.0321 0.0005 276 81 208 7 203 3 灰绿色玄武安山岩 D2852/4-1 56 537 467 1.15 0.0507 0.0020 0.213 0.007 0.0310 0.0007 233 95 196 6 196 4 D2852/4-3 28 230 351 0.65 0.0507 0.0019 0.210 0.009 0.0298 0.0004 228 92 193 8 189 3 D2852/4-9 39 411 325 1.26 0.0497 0.0018 0.196 0.008 0.0284 0.0004 189 82 182 7 181 3 D2852/4-11 41 190 830 0.23 0.0504 0.0013 0.190 0.006 0.0273 0.0006 213 90 177 5 174 4 D2852/4-12 59 669 359 1.86 0.0495 0.0019 0.202 0.008 0.0297 0.0005 172 91 187 7 188 3 D2852/4-13 20 201 200 1.01 0.0508 0.0018 0.194 0.006 0.0279 0.0007 232 88 180 5 177 4 D2852/4-14 61 660 440 1.50 0.0463 0.0015 0.188 0.007 0.0294 0.0006 13 74 175 6 187 4 D2852/4-15 29 325 237 1.37 0.0482 0.0016 0.180 0.009 0.0269 0.0007 109 77 168 8 171 5 D2852/4-18 43 519 434 1.19 0.0555 0.0028 0.232 0.034 0.0292 0.0028 432 110 212 28 186 17 D2852/4-19 31 283 311 0.91 0.0487 0.0025 0.198 0.011 0.0293 0.0005 200 119 184 9 186 3 D2852/4-24 56 667 348 1.92 0.0511 0.0028 0.206 0.012 0.0293 0.0006 243 128 190 10 186 4 D2852/4-30 33 333 310 1.08 0.0558 0.0025 0.230 0.014 0.0304 0.0018 456 96 210 12 193 11 表 2 日多地区雄来组火山岩锆石Hf同位素分析结果
Table 2 Hf isotopic data of zircons from Xionglai Formation volcanic rocks in the Riduo area
分析点 t/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ tDM1/Ma tDMC/Ma fLu/Hf 浅灰绿色安山岩 D2714/2-2 210 0.020267 0.000116 0.000898 0.000005 0.282493 0.000017 -9.99 -5.52 0.62 1077 1593 -0.97 D2714/2-4 213 0.026444 0.000371 0.001005 0.000012 0.282441 0.000023 -11.84 -7.31 0.80 1153 1709 -0.97 D2714/2-5 205 0.028014 0.000157 0.001025 0.000008 0.282423 0.000017 -12.49 -8.12 0.60 1179 1754 -0.97 D2714/2-9 192 0.029734 0.000239 0.001063 0.000006 0.282399 0.000023 -13.33 -9.26 0.81 1214 1816 -0.97 D2714/2-14 194 0.032580 0.000282 0.001277 0.000018 0.282528 0.000018 -8.78 -4.70 0.65 1039 1529 -0.96 D2714/2-16 204 0.025603 0.000301 0.000926 0.000012 0.282403 0.000022 -13.17 -8.82 0.76 1203 1797 -0.97 D2714/2-19 195 0.019809 0.000262 0.000800 0.000009 0.282531 0.000027 -8.63 -4.45 0.96 1020 1514 -0.98 D2714/2-21 203 0.020292 0.000194 0.000873 0.000010 0.282546 0.000021 -8.10 -3.76 0.75 1001 1477 -0.97 灰绿色玄武岩山岩 D2852/4-1 196 0.026696 0.000569 0.001216 0.000029 0.282483 0.000019 -10.37 -6.22 0.67 1101 1627 -0.96 D2852/4-3 189 0.028899 0.000239 0.001222 0.000012 0.282332 0.000030 -15.71 -11.71 1.06 1314 1968 -0.96 D2852/4-9 181 0.025696 0.000282 0.001018 0.000007 0.282351 0.000025 -15.01 -11.17 0.89 1279 1928 -0.97 D2852/4-12 188 0.033197 0.000167 0.001302 0.000007 0.282317 0.000022 -16.26 -12.29 0.77 1338 2004 -0.96 D2852/4-13 177 0.029644 0.000213 0.001212 0.000009 0.282482 0.000040 -10.41 -6.67 1.42 1102 1641 -0.96 D2852/4-14 187 0.042585 0.000468 0.001673 0.000015 0.282346 0.000028 -15.28 -11.39 0.99 1313 1946 -0.95 D2852/4-18 186 0.042758 0.000787 0.001835 0.000031 0.282455 0.000029 -11.42 -7.58 1.02 1162 1705 -0.94 D2852/4-19 186 0.027427 0.000312 0.001125 0.000014 0.282314 0.000042 -16.34 -12.40 1.47 1336 2009 -0.97 D2852/4-24 186 0.031931 0.000395 0.001257 0.000011 0.282337 0.000030 -15.54 -11.61 1.07 1308 1959 -0.96 D2852/4-30 193 0.023403 0.000189 0.000957 0.000006 0.282354 0.000041 -14.91 -10.80 1.45 1273 1913 -0.97 表 3 日多地区雄来组火山岩主量、微量和稀土元素分析结果
Table 3 Major, trace elements and REE compositions of Xionglai Formation volcanic rocks in the Riduo area
样号 D2840/1 D0922/1 D2852/5 D2852/4 D2852/3 D7011/2 D7011/4 D7011/5 D7011/9 D2714/2 岩石名称 玄武岩 玄武安山岩 安山质凝灰岩 安山岩 SiO2 47.84 47.30 46.94 53.93 57.50 58.22 56.38 56.31 56.32 60.54 Al2O3 14.96 16.15 15.30 14.74 15.59 16.12 15.15 15.20 15.68 14.89 TFe2O3 9.25 9.49 8.82 7.39 8.09 8.34 8.61 8.57 8.31 8.42 MgO 10.95 10.41 10.09 8.12 3.48 2.64 5.09 5.30 5.68 2.45 CaO 8.14 9.31 7.70 6.88 6.13 6.36 7.99 8.33 8.21 5.32 Na2O 3.24 3.35 3.88 5.61 3.96 2.65 1.95 2.03 1.58 2.94 K2O 0.11 0.11 0.16 0.19 0.60 2.53 1.37 1.48 1.00 2.64 P2O5 0.16 0.14 0.11 0.11 0.25 0.22 0.17 0.17 0.18 0.22 MnO 0.16 0.16 0.19 0.12 0.18 0.12 0.15 0.15 0.15 0.15 TiO2 1.03 1.04 1.13 0.88 1.08 0.96 0.76 0.75 0.87 1.04 烧失量 4.30 3.10 6.16 2.38 2.94 1.73 1.98 1.56 1.76 0.73 总计 100.14 100.56 100.48 100.35 99.80 99.89 99.60 99.85 99.74 99.34 Mg# 73.40 71.88 72.72 71.92 50.06 42.45 57.94 59.04 61.43 40.41 ALK 3.35 3.46 4.04 5.80 4.56 5.18 3.32 3.51 2.58 5.58 σ 1.71 2.18 2.62 2.87 1.34 1.69 0.77 0.88 0.47 1.73 Rb 5.20 3.60 8.30 14.20 8.20 72.94 56.23 59.19 42.14 72.90 Ba 26.10 44.10 27.20 161.00 62.70 537.30 318.60 270.80 184.50 496.00 Th 2.97 1.25 0.75 1.52 2.70 7.42 6.13 5.28 4.47 9.98 U 0.61 0.29 0.50 0.47 0.63 1.53 1.53 1.39 0.76 2.07 Ta 0.48 0.62 0.38 0.38 0.67 0.76 0.57 0.53 0.57 1.51 Nb 5.14 5.11 3.02 4.56 4.31 11.24 6.79 8.35 7.11 10.80 Sr 248.90 357.70 306.00 289.00 264.00 443.50 380.70 410.40 390.60 375.00 P 698.21 610.93 480.02 480.02 1090.96 960.04 741.85 741.85 785.49 960.04 Hf 2.43 1.78 2.43 3.68 3.52 3.73 2.56 2.09 2.19 6.57 Zr 83.80 82.70 89.30 110.00 108.00 161.00 115.20 115.80 105.90 184.00 V 179.60 189.40 192.00 128.00 170.00 228.30 216.80 229.80 212.40 219.00 Sc 28.00 24.20 22.50 15.80 23.10 24.07 33.46 35.50 32.82 15.10 Cr 314.70 347.80 224.70 17.30 316.80 43.40 131.60 143.70 183.00 25.40 Co 42.00 44.60 33.70 14.00 32.60 20.49 29.21 29.77 28.94 19.30 Ni 96.60 109.70 90.10 6.79 107.00 19.90 37.70 39.90 35.00 9.47 La 9.56 10.30 5.45 9.08 11.20 25.01 16.80 18.08 16.49 32.80 Ce 21.00 21.70 13.60 20.80 26.40 50.66 34.09 38.06 33.93 63.80 Pr 2.73 2.97 2.26 3.00 3.98 5.68 3.87 4.04 3.88 7.57 Nd 11.80 13.10 11.20 13.40 18.70 22.27 15.62 16.50 15.67 29.20 Sm 3.38 3.41 3.11 3.35 4.64 4.62 3.32 3.44 3.48 5.47 Eu 1.15 1.27 1.13 0.96 1.64 1.34 0.94 0.97 1.09 1.35 Gd 2.98 3.66 3.25 3.35 4.72 4.86 3.36 3.44 3.51 5.02 Tb 0.54 0.65 0.65 0.63 0.89 0.71 0.51 0.51 0.54 0.81 Dy 3.05 3.55 4.14 3.96 5.64 4.07 2.96 2.98 3.12 4.70 Ho 0.73 0.85 0.85 0.80 1.16 0.84 0.62 0.58 0.64 0.93 Er 1.85 2.04 2.29 2.21 3.19 2.40 1.81 1.69 1.85 2.59 Tm 0.27 0.30 0.36 0.37 0.52 0.35 0.26 0.24 0.26 0.42 Yb 1.63 1.80 2.13 2.41 3.21 2.19 1.61 1.59 1.65 2.63 Lu 0.25 0.25 0.30 0.34 0.47 0.35 0.26 0.26 0.26 0.41 Y 19.50 21.30 23.70 22.80 33.20 21.61 15.88 19.06 16.20 26.50 ΣREE 60.92 65.85 50.72 64.66 86.36 125.35 86.03 92.38 86.37 157.70 LREE/HREE 4.39 4.03 2.63 3.60 3.36 6.95 6.55 7.18 6.30 8.00 (La/Yb)N 3.95 3.86 1.73 2.54 2.35 7.70 7.04 7.67 6.74 8.41 δEu 1.11 1.10 1.09 0.88 1.07 0.86 0.86 0.86 0.95 0.79 注:Mg# =(Mg2+ /(Mg2+ + Fe2+);主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 4 日多地区雄来组中性火山岩与不同构造环境安山岩微量元素及比值对比
Table 4 Trace elements and ratios of intermediate volcanic rocks in the Riduo area in compared with features of andesite from various tectonic settings
安山岩类别 Sc/10-6 Nb/10-6 Y/10-6 Zr/Y Ni/Co Sc/Cr Cr/V Hf/Yb Sc/Ni Ba/Rb Ba/Sr 安山岩(本文,n=8) 26 7.59 22.18 5.80 0.30 0.21 0.61 1.59 0.70 6.23 0.80 大陆弧 20 9.40 22.00 5.42 0.95 0.61 0.15 1.70 1.10 8.20 1.16 大洋弧 31 0.80 25.00 2.20 0.29 3.81 0.08 0.61 3.40 18.50 0.61 安第斯弧 17 10.00 15.00 14.60 1.41 0.36 0.64 3.42 0.60 10.00 1.05 -
潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm Zhu D C, Zhao Z D, Niu Y L, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.
杨经绥, 许志琴, 耿全如, 等. 中国境内可能存在一条新的高压/超高压(?) 变质带——青藏高原拉萨地体中发现榴辉岩带[J]. 地质学报, 2006, 80(12): 1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001 许志琴, 杨经绥, 李文昌, 等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm Cheng H, Liu Y M, Vervoort J D, et al. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-TethysOcean in the Lhasa terrane, Tibet[J]. Gondwana Research, 2015, 28(4): 1482-1499. doi: 10.1016/j.gr.2014.09.017
Weller O M, St-Onge M R, Rayner N, et al. U-Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: Insights into prograde zircon growth and the assembly of the Tibetan plateau[J]. Lithos, 2016, 262: 729-741. doi: 10.1016/j.lithos.2016.06.005
Yu Y P, Xie C M, Fan J J, et al. Zircon U-Pb geochronology and geochemistry of Early Jurassic granodiorites in Sumdo area, Tibet: Constraints on petrogenesis and the evolution of the Neo-Tethyan Ocean[J]. Lithos, 2018, 320/321: 134-143. doi: 10.1016/j.lithos.2018.09.006
Wang B, Xie C M, Fan J J, et al. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane[J]. Lithos, 2019, 324/325: 429-438. doi: 10.1016/j.lithos.2018.11.015
解超明, 李才, 李光明, 等. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 2020, 40(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202002002.htm 李化启, 蔡志慧, 陈松永, 等. 拉萨地体中的印支造山事件及年代学证据[J]. 岩石学报, 2008, 24(7): 1595-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807016.htm 王立全, 潘桂堂, 丁俊, 等. 青藏高原及邻区地质图及说明书(1: 1 500 000)[M]. 北京: 地质出版社, 2013: 9-48. 韩奎, 周斌, 乔新星, 等. 拉萨地块南缘日多地区叶巴组火山岩地球化学、年代学、锆石Lu-Hf同位素特征及其地质意义[J]. 地质通报, 2018, 37(8): 1554-1570. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180819&flag=1 Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-117. doi: 10.1016/j.chemgeo.2007.10.003
路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publicatin, 1989, 42(1): 313-345.
吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm Vervoort J D, Patchett P J, Gehrels G E, et al. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. doi: 10.1038/379624a0
Dupuy C, Dostal J. Trace element geochemistry of some continental tholeiites[J]. Earth and Planetary Science Letters, 1984, 67(1): 61-69. doi: 10.1016/0012-821X(84)90038-4
Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
Huang Y M, Hawkesworth C, Smith I, et al. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel New Zealand: Implications for Mantle Enrichment Processes[J]. Chemical Geology, 2000, 64(3/4): 219-238. http://www.sciencedirect.com/science/article/pii/S000925419900145X
Jiang Y H, Jiang S Y, Dai B Z, et al. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province. Southeast China: Implications for a Continental Are to Rifting[J]. Lithos, 2009, 107(3/4): 185-204. http://www.sciencedirect.com/science/article/pii/S0024493708002296
夏林圻, 夏祖春, 李向民, 等. 中国中西部及邻区大陆板内火山作用[M]. 北京: 科学出版社, 2013. 徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010. Ringwood A E. Composition and Petrology of the Earth's Mantle[M]. New York: McGraw-Hill, 1975.
Bea F, Arzamastsev A, Montero P, et al. Aonmalous alkalin rocks of Soustov, Kola: evidence of mantle derived matasomatic fluids affecting crustal materials[J]. Contrib Mineral Petrol, 2001, 140: 554-566. doi: 10.1007/s004100000211
李永军, 李甘雨, 佟丽莉, 等. 玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别[J]. 地球科学与环境学报, 2015, 37(3): 14-21. doi: 10.3969/j.issn.1672-6561.2015.03.004 夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-87. doi: 10.3969/j.issn.1000-6524.2007.01.011 Muller D, Groves D I. Pottassic igneous rocks and associated gold-copper mineralization[M]. Berlin: Springer, 1997: 11-40.
付燕刚. 西藏拉萨地块南部新特提斯洋俯冲成岩成矿作用[D]. 中国地质科学院博士学位论文, 2017. 纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, (7): 849-871. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm 孟元库. 藏南冈底斯中段南缘构造演化[D]. 中国地质科学院博士学位论文, 2016. Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9): 745-748. doi: 10.1130/G22725.1
张宏飞, 徐旺春, 郭建秋, 等. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据[J]. 岩石学报, 2007, 23(6): 1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 曲晓波, 辛洪波, 徐文艺. 三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿容矿火成岩时代的重新厘定[J]. 矿床地质, 2007, 26: 512-518. doi: 10.3969/j.issn.0258-7106.2007.05.003 谭陈诚. 日喀则东嘎乡冈底斯岩体的形成年代及成因[D]. 中国地质大学(北京) 硕士学位论文, 2012. 邱检生, 王睿强, 赵姣龙, 等. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示: 以日喀则东嘎岩体为例[J]. 岩石学报, 2015, 31(12): 3569-3580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512005.htm 曾云川. 拉萨地块晚三叠世-晚侏罗纪岩浆-构造演化[D]. 中国科学院大学博士学位论文, 2017. 王程, 魏启荣, 刘小念, 等. 冈底斯印支晚期后碰撞花岗岩: 锆石U-Pb年代学及岩石地球化学证据[J]. 地球科学, 2014, 39(9): 1277-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409003.htm 于云鹏. 藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义[D]. 吉林大学博士学位论文, 2020. 周斌, 潘亮, 韩奎, 等. 西藏拉萨-日多晚侏罗世-早白垩世盆地顺层剪切构造及其地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202002007.htm Hunen J V, Allen M B. Continental collision and slab break-off: a comparison of 3-D numerical models with observation[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 27-37.
Davies J H, Blanckenburg F. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129: 85-102. doi: 10.1016/0012-821X(94)00237-S
李化启, 许志琴, 杨经绥, 等. 拉萨地体内松多榴辉岩的同碰撞折返: 来自构造变形和40Ar-39Ar年代学的证据[J]. 地学前缘, 2011, 18(3): 66-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103011.htm 王斌, 解超明, 李才, 等. 青藏高原松多地区温木朗蛇绿岩的发现及其地质意义[J]. 地质通报, 2017, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017 张旗. 碰撞与花岗岩-碰撞是构造事件, 不是构造环境[J]. 岩石矿物学杂志, 2012, 31(5): 745-749. doi: 10.3969/j.issn.1000-6524.2012.05.012 van de Zedde D M A, Wortel M J R. Shallow slab detachment as a transient source of heat at midlithospheric depths[J]. Tectonics, 2001, 20(6): 868-882. doi: 10.1029/2001TC900018
朱立东,王刚,杨文光,等.西藏唐加地区4幅1:5万区域地质调查成果报告.成都理工大学,2019. 解超明,于云鹏,董宇超,等.西藏松多地区4幅1:5万区域地质调查成果报告.吉林大学,2019. 周斌,韩奎,潘亮,等.西藏日多地区3幅1:5万区域地质调查成果报告.陕西省地质调查中心,2019.