• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约

曾孝文, 王明, 李航, 曾先进, 申迪

曾孝文, 王明, 李航, 曾先进, 申迪. 2021: 西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约. 地质通报, 40(8): 1291-1301.
引用本文: 曾孝文, 王明, 李航, 曾先进, 申迪. 2021: 西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约. 地质通报, 40(8): 1291-1301.
ZENG Xiaowen, WANG Ming, LI Hang, ZENG Xianjin, SHEN Di. 2021: Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet. Geological Bulletin of China, 40(8): 1291-1301.
Citation: ZENG Xiaowen, WANG Ming, LI Hang, ZENG Xianjin, SHEN Di. 2021: Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet. Geological Bulletin of China, 40(8): 1291-1301.

西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约

基金项目: 

中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》 DD20160026

国家自然科学基金青年科学基金项目《青藏高原羌塘南部埃迪卡拉纪地层研究》 41602230

详细信息
    作者简介:

    曾孝文(1995-), 男, 在读博士生, 构造地质学专业。E-mail: zengxwjlu@126.com

    通讯作者:

    王明(1984-), 男, 教授, 博士生导师, 从事青藏高原大地构造与区域地质研究。E-mail: wm609@163.com

  • 中图分类号: P588.12;P59

Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet

  • 摘要:

    明确狮泉河-纳木错蛇绿岩带的构造属性是重建西藏中部中特提斯演化的关键之一。报道了西藏中部阿索地区蛇绿混杂岩带中岛弧玄武岩的岩石学、地球化学特征,并讨论了该岩石的构造意义。野外和镜下观察结果显示,该样品具有枕状构造并具有细碧岩的岩石特征,表示其形成于海底喷发环境。全岩地球化学分析结果显示,该样品属于亚碱性系列中的钙碱性玄武岩。该岩石富集轻稀土元素,具有平坦的重稀土元素分布特征,轻、重稀土元素分异较强。岩石富集Ba、Th、Pb等大离子亲石元素,亏损Nb、Ta等高场强元素。地球化学分析结果显示,岩石起源于被俯冲沉积物熔体交代的亏损地幔的部分熔融,形成于洋内岛弧环境之下。结合前人研究,发现狮泉河-纳木错蛇绿岩带并非仅存在洋壳成因的蛇绿岩,还保存了一些岛弧成因的岩浆岩。这些岛弧成因岩浆岩的存在表明,狮泉河-纳木错蛇绿岩带中的岩浆岩并非单一构造背景下形成的蛇绿岩,而是包含了多种构造背景之下的岩浆产物。研究表明,狮泉河-纳木错蛇绿岩带并非仅保留了弧后盆地的遗迹,其包含了洋内俯冲环境中多种成因的岩浆作用产物。

    Abstract:

    The tectonic setting of the Shiquanhe-Namco ophiolitic belt in central Tibet is a key to understanding the Mesozoic tectonic evolution of the Meso-Tethys Ocean.Based on the analysis of major and trace element compositions of island arc basalts in the Asa mélange zone, central Tibet, its tectonic significance was discussed.Field observation and microscopic study indicate that they were formed in submarine eruption environment.Whole-rock geochemical analyses suggest that these rocks belong to calc-alkaline rocks, rich in light rare earth and Ba, Th, Pb large-ion lithophile elements, and depleted in Nb and Ta, with clear differentiation of light and heavy rare earth elements and flat distribution of heavy rare earth elements.Geochemical analysis shows that the rocks were originated from partial melting of depleted mantle metasomatized by melt of subducting sediments and formed under the oceanic island arc environment.Combined with previous work, it is suggested that there are some island arc basalts widely preserved in the Shiquanhe-Namco ophiolitic belt.The existence of the island-arc magmatic rocks within the Shiquanhe-Namco ophiolitic belt reveals that the Shiquanhe-Namco ophiolitic belt cannot be interpreted as an ophiolite in a single back-arc setting but contains magmatic products under various tectonic settings.The results show that the Shiquanhe-Namco ophiolite belt does not only retain the remains of backarc basin, but also contains the magmatic products of various genesis in the subduction environment.

  • 致谢: 野外工作得到了吉林大学西藏科研队的队员们和后勤工作人员的帮助,全岩地球化学测试分析由中国地质大学(北京)科学研究院帮助完成,在此一并致以真挚的谢意,并感谢审稿专家的建议和意见。
  • 图  1   藏北尼玛县阿索乡阿索混杂岩带地质简图(据参考文献[17]修改)

    a—青藏高原区域地质简图;b—研究区区域地质图;①—龙木错-双湖-澜沧江板块缝合带;②—班公湖-怒江板块缝合带;③—狮泉河-纳木错蛇绿岩带;④—沙莫勒-米拉山断裂带;⑤—印度-雅鲁藏布江板块缝合带

    Figure  1.   Geological map of the Asa mélange in Asa Town of Nima County, northern Tibet

    图  2   阿索混杂岩带岛弧玄武岩实测剖面(a)和野外(b~d)、镜下照片(e~g)

    1—复理石砂岩;2—白云母石英片岩;3—大理岩;4—层状玄武岩;5—枕状玄武岩;6—片麻岩;7—石英岩;8—断层;9—采样点;Cpx—单斜辉石;Pl—斜长石;Chl—绿泥石;Pum—绿纤石

    Figure  2.   Geological section(a), field photos(b~d)and micrographs(e~g)of the island arc basalt from Asa mélange

    图  3   阿索岛弧玄武岩Nb/Y-Zr/TiO2[20](a)和Co-Th[21](b)岩石分类图解

    Figure  3.   Nb/Y-Zr/TiO2 (a)and Co-Th(b)diagrams of Asa island arc basalt

    图  4   阿索岛弧玄武岩球粒陨石标准化稀土元素配分模式图(a)及N-MORB标准化微量元素蛛网图(b) (原始地幔和N-MORB, E-MORB, OIB的标准值据参考文献[27])

    N-MORB—正常型大洋中脊玄武岩;E-MORB—富集型大洋中脊玄武岩;OIB—洋岛玄武岩

    Figure  4.   Chondrite-normalized rare earth element patterns(a)and N-MORB-normalized trace element diagram(b)of the Asa island arc basalt

    图  5   阿索岛弧玄武岩Th/Yb-Nb/Yb[28](a)、SiO2-U/Nb[31](b)、U/Th-Th[24](c)岩石成因判别图解(原始地幔和N-MORB, E-MORB, OIB的标准值据参考文献[27])

    N-MORB—正常型大洋中脊玄武岩;E-MORB—富集型大洋中脊玄武岩;OIB—洋岛玄武岩

    Figure  5.   Th/Yb-Nb/Yb(a)、SiO2-U/Nb(b)and U/Th-Th(c)diagrams of the Asa island arc basalt

    图  6   阿索岛弧玄武岩Hf/3-Th-Nb(a)、Y /15-La/10-Nb/8 (b)和Ce-Yb(c)构造环境判别图解

    图a:A-洋岛/板内玄武岩;B-富集型洋中脊玄武岩; C-亏损型洋中脊玄武岩;D-岛弧玄武岩 图b:1A-钙碱性玄武岩;1B-过渡区域;1C- 火山弧 拉斑玄武岩;2A-大陆玄武岩;2B-弧后盆地玄武岩;3A-碱性玄武岩;3B、3C-富集型洋中脊玄武岩; 3D-亏损型洋中脊玄武岩

    Figure  6.   Hf/3-Th-Nb(a),Y/15—La/10-Nb/8(b) and Ce-Yb(c) tectonic setting discrimination diagrams of Asa island arc basalt

    表  1   阿索岛弧玄武岩主量、微量和稀土元素测试结果

    Table  1   Whole-rock major, trace elements and REE data of the Asa island arc basalt

    样品号 NT38H1 NT38H2 NT38H3 NT38H4 NT38H5 样品号 NT38H1 NT38H2 NT38H3 NT38H4 NT38H5
    SiO2 54.18 52.37 49.95 54.29 54.85 Nb 3.81 4.30 5.98 3.89 4.02
    TiO2 0.92 1.00 0.96 0.92 0.97 Ta 0.24 0.27 0.32 0.23 0.23
    Al2O3 16.35 17.41 14.76 17.27 16.67 La 12.02 12.89 30.33 13.02 13.69
    TFe2O3 6.99 7.36 6.98 6.68 6.79 Ce 22.66 25.29 54.94 24.59 24.95
    MnO 0.12 0.13 0.13 0.13 0.13 Pb 5.74 4.22 5.67 6.20 3.58
    MgO 5.85 5.15 5.50 4.92 5.14 Pr 2.72 3.04 6.10 2.92 3.03
    CaO 5.69 7.02 12.19 5.45 5.66 Sr 257.2 438.2 455.7 447.2 339.4
    Na2O 6.73 6.25 4.77 6.84 7.12 Nd 10.35 11.33 20.35 10.98 11.33
    K2O 0.08 0.07 0.44 0.07 0.07 Zr 88.72 98.57 84.86 92.34 93.33
    P2O5 0.13 0.14 0.21 0.13 0.14 Hf 2.22 2.46 1.98 2.26 2.25
    烧失量 2.68 2.95 4.09 3.02 2.16 Sm 2.51 2.82 3.77 2.67 2.76
    总计 99.71 99.84 99.98 99.72 99.69 Eu 0.78 0.92 1.06 0.85 0.82
    Mg# 66.11 61.98 64.75 63.18 63.86 Gd 2.71 3.06 3.47 2.88 2.95
    Sc 29.24 31.54 32.87 29.32 30.40 Tb 0.48 0.52 0.53 0.49 0.50
    V 211.0 225.4 244.67 209.8 220.2 Dy 3.24 3.50 3.39 3.25 3.32
    Cr 90.66 74.12 229.59 73.40 92.70 Y 21.58 23.04 22.90 22.08 23.54
    Co 26.58 27.56 28.65 27.28 25.64 Ho 0.69 0.74 0.71 0.69 0.71
    Ni 50.22 48.12 81.40 53.16 49.96 Er 2.03 2.12 2.04 2.00 2.07
    Mn 880.6 1027.4 1004.6 968.4 990.8 Tm 0.29 0.31 0.29 0.28 0.29
    Cu 53.36 50.58 34.46 54.98 64.64 Yb 1.82 1.94 1.84 1.83 1.87
    Zn 59.60 67.24 68.32 68.68 66.68 Lu 0.28 0.29 0.27 0.27 0.28
    Ga 19.87 22.04 18.35 19.13 16.31 ∑REE 62.59 68.76 129.09 66.72 68.57
    Cs 1.77 1.39 0.77 2.47 0.79 Eu/Eu* 0.91 0.96 0.90 0.94 0.88
    Rb 2.37 2.26 10.18 1.99 2.27 (La/Yb)N 4.73 4.77 11.85 5.10 5.25
    Ba 63.62 82.44 178.41 80.64 63.92 (La/Sm)N 3.09 2.96 5.19 3.15 3.20
    Th 4.83 5.24 6.97 4.72 4.73 (Dy/Yb)N 1.19 1.21 1.24 1.19 1.19
    U 0.74 0.68 1.18 0.65 0.76
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and Palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    Pan G, Wang L, Li R, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904014.htm
    徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014.
    王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学. 2020, 45(8): 2764-2784. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202008002.htm
    唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, (3): 245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009
    尹滔, 尹显科, 秦宇龙, 等. 西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学: 对班公湖-怒江洋构造演化的启示[J]. 地球科学. 2020, 45(7): 2345-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007011.htm

    Schneider W, Mattern F, Wang P J, et al. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone(Tibet): a Reading cycle[J]. International Journal of Earth Sciences, 2003, 92(2): 228-254. doi: 10.1007/s00531-003-0311-5

    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22: 1029.

    Allegre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22. doi: 10.1038/307017a0

    Liu W L, Huang Q T, Gu M, et al. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 2018, 60: 1-14. doi: 10.1016/j.gr.2018.03.017

    Li H, Wang M, Zeng X W, et al. Generation of Jurassic high-mg diorite and plagiogranite intrusions of the asa area, tibet: Products of intra-oceanic subduction of the Meso-Tethys ocean[J]. Lithos, 2020, 362/363: 105481. doi: 10.1016/j.lithos.2020.105481

    吴珍汉, 叶培盛, 杨艳. 西藏阿里推覆构造与蛇绿岩构造侵位[J]. 中国地质, 2013, 40(1): 182-190. doi: 10.3969/j.issn.1000-3657.2013.01.013

    Wu Z, Barosh P J, Ye P, et al. Late Cretaceous tectonic framework of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015, 114: 693-703. doi: 10.1016/j.jseaes.2014.11.021

    Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300/301: 250-260. doi: 10.1016/j.lithos.2017.11.025

    Tang Y, Zhai Q G, Chung S L, et al. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the North-Central Tibetan Plateau[J]. Geological Society of America Bulletin, 2020, 132(9/10): 2202-2220.

    曾孝文, 王明, 范建军, 等. 青藏高原中部阿索蛇绿岩岩石学与同位素年龄[J]. 地质通报, 2018, 37(8): 1492-1502. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180813&flag=1

    Zhu D C, Zhao Z-D, Niu Y, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    Zeng X W, Wang M, Fan J J, et al. Geochemistry and geochronology of gabbros from the asa ophiolite, Tibet: Implications for the Early Cretaceous evolution of the Meso-Tethys ocean[J]. Lithos, 2018, 320/321: (192-206. doi: 10.1016/j.lithos.2018.09.013

    Liu Y, Wang M, Li C, et al. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 2018, 61(5): 562-583.

    Wang M, Zeng X W, Xie C M, et al. Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area, Tibet: Constraints on the Late Palaeozoic evolution of the Lhasa Terrane[J]. International Geology Review, 2020, 62(4): 465-478. doi: 10.1080/00206814.2019.1619199

    唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, (3): 245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009

    Li H, Wang M, Zeng X W, et al. Slab break-off origin of 105 Ma a-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 157(8): 1281-1298. doi: 10.1017/S0016756819001559

    于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京) 硕士学位论文, 2011.

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Ross P S, Polat A, Bédard J H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams[J]. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839. doi: 10.1139/E09-054

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1): 251-285.

    Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48. http://www.sciencedirect.com/science/article/pii/S0024493707001375

    Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc-and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59(9): 1811-1844. doi: 10.1093/petrology/egy080

    Ma X H, Cao R, Zhou Z H, et al. Early Cretaceous high-Mg diorites in the Yanji area, northeastern China: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 393-405. doi: 10.1016/j.jseaes.2014.07.010

    Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland plume[J]. Earth & Planetary Science Letters, 1997, 153(3/4): 197-208. http://www.sciencedirect.com/science/article/pii/S0012821X97001702

    Pearce J A, Stern R J, Bloomer S H, et al. Geochemical Mapping of the mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07006. doi: 10.1029/2004GC000895

    Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita ophiolite(albania) and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 2008, 100: 174-209. doi: 10.1016/j.lithos.2007.06.026

    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346. http://www.sciencedirect.com/science/article/pii/S0012821X01004538

    Hart S R, Staudigel H. The control of alkalies and uranium in seawater by ocean crust alteration[J]. Earth and Planetary Science Letters, 1982, 58(2): 202-212. doi: 10.1016/0012-821X(82)90194-7

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8

    Cabanis B, Lecolle M. The La/10-Y/15-Nb/8 diagram: a tool for discrimination volcanic series and evidencing continental crust magmatic mixtures and/or contamination(en)[J]. Physics. Chemistry. Space sciences. Earth sciences, 1989, 309: 2023-2029. http://www.researchgate.net/publication/279899839_The_La10-Y15-Nb8_diagram_a_tool_for_discriminating_volcanic_series_and_evidencing_continental_crust_magmatic_mixtures_andor_contaminationLa_diagramme_La10-Y15-Nb8_un_outil_pour_la_discrimination_des_s

    Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: New insights from iodp drilling[J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    Ishizuka O, Taylor RN, Yuasa M, et al. Making and breaking an island arc: A new perspective from the oligocene Kyushu-Palau arc, Philippine sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005, DOI: 10.1029/2010GC003440.

    Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 175-204. doi: 10.1146/annurev.ea.21.050193.001135

    Matte P, Tapponnier P, Amaud N, et al. Tectonics of western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6

    Yuan Y, Yin Z, Liu W, et al. Tectonic evolution of the Meso-Tethys in the western segment of Bangonghu-Nujiang suture zone: Insights from geochemistry and geochronology of the Lagkor Tso ophiolite[J]. Acta Geoblgica Sinica(English edition), 2015, 89: 369-388. http://www.ixueshu.com/document/e27ba01d21ad780f10e9a14f063b149f318947a18e7f9386.html

    Peng Y B, Yu S Y, Li S Z, et al. The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture[J]. Earth-Science Reviews, 2020, 211: 103376. doi: 10.1016/j.earscirev.2020.103376

    Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245: 18-33. doi: 10.1016/j.lithos.2015.07.016

    Yang P, Huang Q, Zhou R, et al. Geochemistry and geochronology of ophiolitic rocks from the Dongco and Lanong areas, Tibet: Insights into the evolution history of the Bangong-Nujiang Tethys ocean[J]. Minerals, 2019, 9(8): 466. doi: 10.3390/min9080466

    Zhu D C, Zhao Z D, Niu Y, et al. The lhasa terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. http://www.sciencedirect.com/science/article/pii/S0012821X10007004

    胡承祖. 狮泉河-古昌-永珠蛇绿岩带特征及其地质意义[J]. 成都地质学院学报, 1990, (1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199001005.htm
图(6)  /  表(1)
计量
  • 文章访问数:  2706
  • HTML全文浏览量:  327
  • PDF下载量:  1570
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 修回日期:  2021-04-21
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-08-14

目录

    /

    返回文章
    返回