• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

怒江构造带东段同卡蛇绿混杂岩中变玄武岩地球化学特征和角闪石40Ar-39Ar年龄

李化启, 李天福, 吉风宝

李化启, 李天福, 吉风宝. 2021: 怒江构造带东段同卡蛇绿混杂岩中变玄武岩地球化学特征和角闪石40Ar-39Ar年龄. 地质通报, 40(8): 1279-1290.
引用本文: 李化启, 李天福, 吉风宝. 2021: 怒江构造带东段同卡蛇绿混杂岩中变玄武岩地球化学特征和角闪石40Ar-39Ar年龄. 地质通报, 40(8): 1279-1290.
LI Huaqi, LI Tianfu, JI Fengbao. 2021: Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt. Geological Bulletin of China, 40(8): 1279-1290.
Citation: LI Huaqi, LI Tianfu, JI Fengbao. 2021: Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt. Geological Bulletin of China, 40(8): 1279-1290.

怒江构造带东段同卡蛇绿混杂岩中变玄武岩地球化学特征和角闪石40Ar-39Ar年龄

基金项目: 

国家自然科学基金项目《藏东八宿变质杂岩带:对怒江构造带中东段早侏罗世弧-陆造山的启示》 41772216

中央级公益性科研院所基本科研业务费项目《西藏安多微地体早中生代构造热事件探究》 J1910

中国地质调查局项目《拉萨-腾冲构造岩浆带区域地质调查》 DD20190060

详细信息
    作者简介:

    李化启(1979-), 男, 博士, 从事青藏高原区域大地构造研究。E-mail: muzi_7540@163.com

  • 中图分类号: P534.52;P597+.3

Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt

  • 摘要:

    青藏高原中部班公湖-怒江缝合带所代表古洋盆的性质和早期演化仍存在很多争议。为探讨怒江构造带中-东段早侏罗世构造-岩浆事件的性质和微地体构造、造山格局,对怒江带东段分割八宿微地体的同卡蛇绿混杂岩中的变玄武岩进行了岩石地球化学分析和角闪石40Ar-39Ar年代学研究。同卡蛇绿混杂岩中的变玄武岩经历了强烈变质变形,显示绿帘角闪岩相的矿物学组成。岩石地球化学分析表明,变玄武岩的稀土元素配分模式为左倾的轻稀土元素亏损型,显示正常洋中脊玄武岩(N-MORB)特征。但在N-MORB标准化的微量元素配分图解上,样品又显示Rb、Ba、Th、U、Pb、Sr的富集和Nb、Ta的亏损,表明变玄武岩样品具有N-MORB和岛弧的双重特征,形成于不成熟的弧后盆地扩张中心,为SSZ型蛇绿岩的组分。同卡变玄武岩获得角闪石40Ar-39Ar坪年龄为161±2 Ma,与邻近同卡微陆块中石榴矽线黑云斜长片麻岩和怒江带中段安多黑云二长片麻岩中的黑云母40Ar/39Ar冷却年龄(165~167 Ma)相近,从蛇绿岩构造就位的角度,为约束怒江构造带东段次级洋盆的闭合时限和嘉玉桥变质地体于侏罗纪早期沿同卡—俄学一线与同卡微陆块碰撞拼贴提供了直接证据。通过对怒江构造带北缘早、晚侏罗世构造-岩浆事件的综合分析,认为班公湖-怒江构造带不同区段、不同分支的演化、俯冲造山极性及造山时限可能有所不同。这个类似多岛-增生造山的模式表明,青藏高原腹地的造山可能是一系列不同规模、不同性质的地质体沿不同层级的洋盆渐次消减、渐次拼贴的结果,并不一定存在那种古特提斯大洋关闭后中特提斯大洋再接着打开的过程。

    Abstract:

    The nature and early evolution of the ancient ocean basin represented by the Bangongco-Nujiang suture zone in the central Qinghai-Tibetan Plateau are still controversial.To identify the nature of the Early Jurassic tectono-magmatic events and micro-continental tectonics and orogenic processes along the mid-eastern Nujiang suture, geochemical study on meta-basaltic rocks and 40Ar-39Ar dating of amphibole from the Tongka ophiolitic mélange, eastern Nujiang belt, were conducted.The meta-basalts in the Tongka ophiolitic mélange witnessed strong metamorphic deformation, indicating the mineralogical composition of the epidote-amphibolite facies.Rare earth element(REE) patterns of the meta-basaltic rocks on the chondrite-normalized REE diagram display LREE depletions indicative of N-MORB, whereas on the N-MORB-normalized spider diagram, the samples indicate Rb, Ba, Th, U, Pb and Sr enrichments and Nb and Ta depletions, which suggest a mixing characteristic of arc and N-MORB, and an origin from back-arc basin spreading center, indicating a SSZ affinity.The 40Ar-39Ar dating of the amphibole from a meta-basalt sample yields a plateau age of 161 ±2 Ma, analogous to 40Ar-39Ar cooling ages(165~167 Ma) of biotite from the Tongka and Amdo gneisses, which provides direct evidence from ophiolite emplacement for local closure of the eastern Nujiang Ocean and Early Jurassic collision along the Tongka-Exue suture between the Jiayuqiao and Tongka micro-blocks.On the basis of comprehensive analyses of the early and late Jurassic magmatic rocks north of the Bangong-Nujiang belt, the Bangong-Nujiang belt is assumed to have distinct evolutionary histories, subduction polarities and collisional timing at different segments and ophiolitic branches.The multi-island-accretive orogeny model suggests that the orogeny in the hinterland of the Qinghai-Tibet Plateau might be the result of varying level convergences by diverse-sized terranes/blocks with consumption of different oceanic basins, rather than the re-opening process of the Meso-Tethyan Ocean after the closure of the Paleo-Tethyan Ocean.

  • 致谢: 工作中得到中国地质科学院地质研究所翟庆国、向华、李毅兵、贺振宇和胡培远研究员的指导和帮助,特此表示衷心的感谢。
  • 图  1   西藏中南部区域构造格局(a)与八宿微地体区域构造地质图和采样位置(b)

    SG—松潘-甘孜地体; NQT—北羌塘地体; SQT—南羌塘羌塘地体; NLS—北拉萨地体; SLS—南拉萨地体; HM—喜马拉雅地体; IND—印度板块; JS.S—金沙江缝合带; CQT.S—中羌塘缝合带; BN.S—班公湖-怒江缝合带; SD.S—松多缝合带; YLTP.S—雅鲁藏布缝合带; LC.F—澜沧江断裂; MBT—主边界断裂。Ⅰ—(北)羌塘地体; Ⅱ—八宿微地体被分割为(Ⅱa)同卡微陆块和(Ⅱb)嘉玉桥残余弧地体;Ⅲ—拉萨地体; DQ.O—丁青蛇绿岩带; TE.O—同卡-俄学蛇绿岩带; BS.O—八宿蛇绿岩带

    Figure  1.   Tectonic outline of central south Tibet and adjacent areas(a)and regional tectonics of the Basu micro-terrane and sampling locations(b)

    图  2   同卡变玄武岩野外产出(a、b)和显微变形特征(c、d)

    a—变玄武岩的片理化特征;b—变玄武岩和大理岩接触;c、d—显微照片显示变玄武岩矿物学组成和定向构造。Hb—角闪石;Pl—斜长石

    Figure  2.   Field occurrences(a, b) and micrographs(c, d) showing the mineral components and deformation of the Tongka meta-basalts

    图  3   同卡变玄武岩类和岩石系列判别图解(玄武岩样品岩类图解据参考文献[37],岩石系列图解据参考文献[38])

    Figure  3.   Rock type and series discriminations of the Tongka meta-basaltic rocks

    图  4   同卡变玄武岩球粒陨石标准化稀土元素配分模式(a)和N-MORB标准化微量元素蛛网图(b) (球粒陨石和N-MORB标准化数据据参考文献[39])

    N-MORB—正常洋脊玄武岩

    Figure  4.   Chondrite-normalized REE patterns(a)and N-MORB-normalized trace element patterns(b)of the meta-basaltic rocks

    图  5   变玄武岩样品XC8-3-5角闪石40Ar-39Ar年龄谱图

    Figure  5.   40Ar-39Ar age spectra of amphibole from the meta-basalt sample XC8-3-5

    图  6   变玄武岩构造判别图

    a—Ta/Yb-Th/Yb图解[40];b—2Nb-Zr/4-Y图解[41];c—Hf/3-Th-Nb/6图解[42];d—Zr-Zr/Y图解[43]。SHO—橄榄粗玄岩;ICA—岛弧钙碱性玄武岩;IAT—岛弧拉斑玄武岩;IAB—岛弧玄武岩;WPB—板内玄武岩;MORB—洋脊玄武岩;N-MORB—正常洋脊玄武岩; E-MORB—富集洋脊玄武岩;WPT—板内拉斑玄武岩;WPAB—板内碱性玄武岩;ALK—碱性玄武岩;TR—过渡玄武岩;TH—拉斑玄武岩;A1+A2—板内玄武岩;A2+C—板内拉斑玄武岩;B—与地幔柱有关洋脊玄武岩(P-MORB);D—正常洋脊玄武岩(N-MORB)

    Figure  6.   Tectonic discrimination diagrams for the meta-basaltic rocks

    图  7   怒江缝合带中东部安多-八宿微地体及邻区构造格局(图中岩浆岩年龄分别据参考文献[11, 21, 25-28, 30], 蓝色字体为笔者未发表年龄资料)

    Figure  7.   Regional tectono-magmatic outline around the Basu-Amdo micro-terranes along the eastern Bangong-Nujiang belt

    表  1   同卡变玄武岩主量、微量和稀土元素数据

    Table  1   Major, trace and rare earth elements compositions of the Tongka meta-basaltic rocks

    样品 XC8-3-4.1 XC8-3-4.2 XC8-3-4.3 XC8-3-5 XN10-3-1 样品 XC8-3-4.1 XC8-3-4.2 XC8-3-4.3 XC8-3-5 XN10-3-1
    SiO2 49.36 52.59 48.77 46.53 49.67 Tm 0.47 0.44 0.50 0.42 0.37
    Al2O3 13.33 13.43 13.64 14.53 13.96 Yb 3.00 2.88 3.25 2.60 2.41
    CaO 10.38 9.31 9.89 11.18 10.04 Lu 0.50 0.44 0.49 0.39 0.37
    Fe2O3 5.36 4.07 5.49 3.34 4.30 Y 24.20 27.50 32.50 23.40 22.87
    FeO 8.10 6.74 8.37 8.59 5.90 Sr 188.00 215.00 163.00 202.00 142.98
    K2O 0.36 0.28 0.39 0.35 0.29 Rb 15.30 6.87 9.15 10.00 5.50
    MgO 7.25 7.49 7.64 8.57 9.94 Ba 20.50 24.10 22.60 32.40 19.43
    MnO 0.24 0.20 0.24 0.27 0.15 Th 0.22 0.39 0.47 0.27 0.22
    Na2O 1.84 2.66 2.11 2.53 2.74 U 0.14 0.08 0.19 0.24 0.12
    P2O5 0.10 0.09 0.11 0.08 0.06 Nb 1.34 1.53 1.39 1.82 1.42
    TiO2 1.26 1.04 1.28 0.93 0.84 Ta 0.11 0.11 0.11 0.11 0.09
    烧失量 1.56 0.66 0.87 2.37 1.69 Zr 56.20 63.30 68.40 45.60 41.33
    K2O+Na2O 2.2 2.94 2.5 2.88 3.03 Hf 1.90 1.80 1.94 1.55 1.22
    Mg# 50 56 51 57 65 Pb 1.44 3.83 1.32 6.41 0.84
    La 2.00 2.56 2.24 2.58 1.76 Sc 44.30 58.50 53.50 53.10 43.32
    Ce 6.12 6.67 6.70 6.39 5.04 Cr 118.00 155.00 129.00 133.00 238.95
    Pr 1.11 1.10 1.10 1.22 0.91 Ni 50.60 82.00 61.90 94.80 99.87
    Nd 7.34 6.27 6.45 6.68 4.85 Ga 16.80 16.30 17.00 17.20 14.95
    Sm 2.64 2.37 2.58 2.13 1.86 Ge 1.49 1.95 1.95 1.71 2.16
    Eu 1.02 0.88 0.99 0.78 0.77 ΣREE 38.26 36.93 39.29 34.62 28.68
    Gd 4.02 3.71 4.24 3.15 2.85 LREE/ 1.12 1.16 1.04 1.33 1.12
    Tb 0.79 0.70 0.78 0.60 0.54 HREE
    Dy 4.97 4.74 5.22 4.13 3.76 LaN/YbN 0.48 0.64 0.49 0.71 0.52
    Ho 1.18 1.01 1.17 0.89 0.80 LaN/SmN 0.49 0.70 0.56 0.78 0.61
    Er 3.10 3.16 3.58 2.66 2.40 δEu 0.96 0.91 0.92 0.92 1.02
      注: 主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  2   同卡变玄武岩角闪石40Ar-39Ar测试分析结果

    Table  2   40Ar-39Ar dating of amphibole from Tongka meta-basaltic sample

    T/℃ 40Ar/39Ar 36Ar/39Ar 37Ar0/39Ar 38Ar/39Ar 40Ar/% 39Ar/10-14mol 39Ar(Cum.)/% 年龄/Ma 1σ/Ma
    XC8-3-5角闪石 W=150 mg J=0.004488
    800 95.5860 0.2868 2.2548 0.0703 11.49 1.79 12.30 86.9 1.3
    860 49.7334 0.1197 2.2435 0.0359 29.19 1.96 25.82 114.1 1.4
    890 33.3277 0.0614 1.0834 1.1991 45.73 1.31 34.88 119.5 1.4
    920 28.7183 0.0423 0.9520 0.0219 56.65 1.06 42.20 127.2 1.8
    950 30.1886 0.0443 1.0317 0.0219 56.86 0.81 47.75 134.0 1.6
    990 30.7821 0.0471 2.0677 0.0231 55.21 0.65 52.22 132.8 1.5
    1040 25.7817 0.0187 2.3065 0.0172 79.18 1.57 63.05 158.4 1.6
    1080 24.9939 0.0143 2.9216 0.0161 83.95 2.54 80.54 162.7 1.6
    1120 31.0198 0.0349 2.6692 0.0220 67.33 0.58 84.55 162.0 1.6
    1180 41.7775 0.0568 4.0128 0.0293 60.51 1.43 94.39 194.5 1.9
    1260 55.8483 0.0878 4.6997 0.0386 54.12 0.60 98.52 230.3 2.3
    1400 80.3377 0.1327 0.9038 0.0400 51.26 0.21 100.00 306.2 3.5
    下载: 导出CSV
  • Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1029-1052.

    许志琴, 李海兵, 杨经绥. 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006, 13(4): 1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002

    Allegre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307: 17-22. doi: 10.1038/307017a0

    Girardeau J, Marcoux J, Allkgre C J, et al. Tectonic environment and geodynamic significance of the Neo Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307: 27-31. doi: 10.1038/307027a0

    赵文津, 刘葵, 蒋忠惕, 等. 西藏班公湖-怒江缝合带——深部地球物理给出的启示[J]. 地质通报, 2004, 23(7): 623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001
    夏斌, 刘维亮, 周国庆, 等. 西藏蓬湖西镁质榴辉岩中的出溶物及其地质意义[J]. 南京大学学报(自然科学), 2013, 49(3): 356-386.

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    王希斌, 鲍佩声, 邓万明, 等. 西藏蛇绿岩[M]. 北京: 地质出版社, 1987.
    史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016

    Dewey J F, Shackelton R M, Chang C F, et al. The tectonic development of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, A327: 379-413.

    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312. http://www.sciencedirect.com/science/article/pii/S0009254109003878

    Matte P, Taponnie P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarims andIndus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6

    雍永源, 贾宝江. 板块剪式汇聚加地体拼贴——中特提斯消亡的新模式[J]. 沉积与特提斯地质, 2000, 20(1): 85-89. doi: 10.3969/j.issn.1009-3850.2000.01.007

    Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melanges along Bangong-Nujiang suture, centralTibet[J]. Journal of Asian Earth Science, 2008, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022

    Zhang Z M, Dong X, Liu F, et al. Tectonic evolution of the Amdo terrane, central Tibet: petrochemistry and zircon U-Pb geochronology[J]. Journal of Geology, 2012, 120: 431-451. doi: 10.1086/665799

    Chen S S, Shi R D, Zou H B, et al. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone(centralTibet): Geological, geochemical and chronological evidence from volcanic rocks[J]. Lithos, 2015, 230: 30-45. doi: 10.1016/j.lithos.2015.05.009

    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.
    邓万明, Pearce J A. 拉萨至格尔木(1985) 和拉萨至加德曼都(1986) 的蛇绿岩[C]//中-英青藏高原综合科学考察队, 青藏高原地质演化. 北京: 科学出版社, 1990: 175-241.

    Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in theLhasa block(Tibet): A geochronological study[J]. Journal of Geology, 1985, 93: 41-57. doi: 10.1086/628918

    Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    Guynn J H, Kapp P, Pullen A, et al. Tibetan terranerocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34: 505-508. doi: 10.1130/G22453.1

    Zhang X R, Shi R D, Huang Q S, et al. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites[J]. Gondwana Research, 2014, 26: 975-985. doi: 10.1016/j.gr.2013.08.003

    张修政, 董永胜, 解超明, 等. 安多地区高压麻粒岩的发现及其意义[J]. 岩石学报, 2010, 26(7): 2106-2112.
    解超明, 李才, 苏犁, 等. 青藏高原安多高压麻粒岩同位素年代学研究[J]. 岩石学报, 2013, 29(3): 912-922.

    Li H Q, Xu Z Q, Webb A A G, et al. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: implications for an archipelago-accretion orogenic model[J]. Tectonophysics, 2017, 702: 29-41. doi: 10.1016/j.tecto.2017.02.016

    Tao Y, Bi X W, Li C S, et al. Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China[J]. Lithos, 2014, 184/187: 314-323. doi: 10.1016/j.lithos.2013.10.031

    谢尧武, 李林庆, 强巴扎西, 等. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义[J]. 地质通报, 2009, 28(9): 1244-1252. doi: 10.3969/j.issn.1671-2552.2009.09.012
    李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9): 1178-1180. doi: 10.3969/j.issn.1671-2552.2009.09.002
    周详, 王根厚, 普布次仁, 等. 西藏东部嘉玉桥拆离系核部杂岩构造特征及其大地构造意义[J]. 沉积和特提斯地质, 1997, 21: 56-61.
    王根厚. 藏东他念他翁山链变质杂岩系变形特征及表露机制[D]. 中国地质大学(北京) 博士学位论文, 2006.

    Zhang K J, Zhang Y X, Tang X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20: 302-308. doi: 10.1111/j.1365-3121.2008.00821.x

    张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 中国科学院研究生院博士学位论文, 2007.
    董永胜, 谢尧武, 李才, 等. 西藏东部八宿地区发现退变质榴辉岩[J]. 地质通报, 2007, 26(8): 1018-1020. doi: 10.3969/j.issn.1671-2552.2007.08.015
    李才, 谢尧武, 沙绍礼, 等. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2008, 27(1): 64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005

    Xu W C, Zhang H F, Chen L R, et al. Transition from the lithospheric to asthenospheric mantle-derived magmatism in the Early Jurassic along eastern Bangong-Nujiang Suture, Tibet: Evidence for continental arc extension induced by slab rollback[J]. GSA Bulletin, 2021, 133(1/2): 134-148.

    陈文, 郭彦如, 崔彬, 等. 基于MM 1200B质谱系统的MDD模式40Ar-39Ar实验技术及其在阿尔金山中生代冷却中研究中的应用[J]. 质谱学报, 2001, 22(3): 7-14.

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Müller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study[J]. Mineralogy and Petrology, 1992, 46: 259-289. doi: 10.1007/BF01173568

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological. Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982, 528-548.

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. doi: 10.1007/BF00375192

    张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001.
    史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据[J]. 岩石矿物学杂志, 2005, 24(5): 397-408. doi: 10.3969/j.issn.1000-6524.2005.05.008
    韦振权, 夏斌, 徐力峰, 等. 西藏蓬湖西蛇绿岩地球化学及构造背景研究[J]. 地质论评, 2009, 55(6): 785-794. doi: 10.3321/j.issn:0371-5736.2009.06.003
    陈晓坚, 杨经绥, 董玉飞, 等. 西藏东巧蛇绿岩中玄武质岩石成因和构造背景探讨[J]. 地质学报, 2019, 93(10): 2509-2530.
    赖绍聪, 刘池阳. 青藏高原安多岛弧型蛇绿岩地球化学及成因[J]. 岩石学报, 2003, 19(4): 675-682.

    Zhou M F, Malpas J, Robinson P T, et al. The Dynamo-thermal aureole of the Donqiao ophiolite(northern Tibet)[J]. Canadian Journal of Earth Science, 1997, 34(1): 59-65. doi: 10.1139/e17-005

    Ma A, Hu X, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang basin: implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4790-4813. doi: 10.1002/2017JB014211

    Ma A, Hu X, Kapp P, et al. Pre-Oxfordian(>163 Ma) ophiolite obduction in Central Tibet[J]. Geophysical Research Letters, 2020, 47: https://doi.org/10.1029/2019GL086650.

    Chen S S, Shi R D, Fan W M, et al. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4172-4190.

    Zhang X Z, Wang Q, Dong Y S, et al. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction[J]. Tectonics, 2017, 36: 2918-2935. doi: 10.1002/2017TC004774

    韦少港, 宋扬, 唐菊兴, 等. 西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征: 班公湖-怒江洋晚二叠世洋内俯冲的证据[J]. 岩石学报, 2019, 35(2): 505-522.

    Fan J J, Niu Y L, Luo A B, et al. Timing of the Meso-Tethys Ocean opening: Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane, Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: https://doi.org/10.1016/j.palaeo.2021.110265

    Wu H, Xie C M, Li C, et al. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle-Late Jurassic magmatism in Southern Qiangtang, China[J]. Gondwana Research, 2016, 39: 1-13. http://www.sciencedirect.com/science/article/pii/S1342937X16301307

    Li S, Guilmette C, Yin C Q, et al. Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet[J]. Gondwana Research, 2019, 71: 179-193.

    Chen S S, Shi R D, Fan W M, et al. Middle Triassic ultrapotassic rhyolites from the Tanggula Pass, southern Qiangtang, China: A previously unrecognized stage of silicic magmatism[J]. Lithos, 2016, 264: 258-276. http://www.sciencedirect.com/science/article/pii/S0024493716302699

    张开均, 唐显春. 青藏高原腹地榴辉岩研究进展及其地球动力学意义[J]. 科学通报, 2009, 54(13): 1804-1814.
    曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(8): 1123-1128. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100803&flag=1
    王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用: 类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27(9): 2752-2762.

    Guynn J H, Kapp P, George E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Science, 2012, 43: 23-50.

    Zhai Q G, Jahn B M, Wang J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. GSA Bulletin, 2016, 128: 355-373.

    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349-350: 54-70.

    王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄、Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200502&flag=1
图(7)  /  表(2)
计量
  • 文章访问数:  2388
  • HTML全文浏览量:  433
  • PDF下载量:  1657
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 修回日期:  2021-06-24
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-08-14

目录

    /

    返回文章
    返回