Late Jurassic magmatism in the Neo-Tethys Ocean: Evidence from zircon U-Pb ages and geochemistry of dolerites in the Bainang Terrane, southern Tibet
-
摘要:
藏南雅鲁藏布江缝合带代表印度板块和欧亚板块的碰撞界线,带中洋岛型基性岩构造归属还存在争议。雅鲁藏布江缝合带中段白朗地体为近北东—南西向展布的构造岩片,由放射虫硅质岩、硅质泥岩、泥页岩、凝灰岩、微晶灰岩、玄武岩、辉绿岩、辉长岩组成。辉绿岩和辉长岩呈岩脉或岩床侵入沉积地层中。测年结果显示,这些辉绿岩形成于晚侏罗世,锆石206Pb/238U年龄为150.3 ±0.8 Ma(n=39,MSWD=1.8)。地球化学特征表明,岩石富集轻稀土元素、大离子亲石元素(Rb、Sr、Pb)和高场强元素(Th、Nb、Ta、Zr、Hf和Ti),源区具有明显的石榴子石印记,是没有经历陆壳混染的洋岛型辉绿岩。这些特征与雅鲁藏布江缝合带晚侏罗世—早白垩世洋岛型基性岩相似。由此认为,这些洋岛型基性岩可能起源于新特提斯洋板内环境,代表了海山的残迹。结合区域地质资料,提出侏罗纪新特提斯洋地幔柱活动可能驱使大洋岩石圈向北俯冲到拉萨地体之下,并形成安第斯型大陆边缘,至早白垩世,先期俯冲的新特提斯大洋岩石圈与上覆板片解耦并向南后撤,诱发冈底斯弧前伸展形成现今保存在缝合带中的蛇绿岩。
Abstract:The Yarlung Zangbo suture zone(YZSZ) in southern Tibet marks the collision between the Eurasia plate and the Indian subcontinent, and the tectonic affinity of the ocean island-type(OIB-type) basaltic rocks within this suture remains controversial.The Bainang terrane in the middle segment of the YZSZ is a NE-SW-oriented tectonic slice, which is composed of radiolarian chert, siliceous mudstone, siliceous mudstone, shale, tuff, micritic limestone, basalt, dolerite and gabbro.The dolerite and gabbro are dikes or sills intruding into strata.The dolerites formed in the Late Jurassic, with a concordant zircon 206Pb/238U age of 150.3±0.8 Ma(n=39, MSWD=1.8).They are chemically characterized by LREE enrichment, variable enrichment of large ion lithophile elements(LILEs, e.g.Rb, Sr and Pb) and high field strength elements(HFSEs, Th, Nb, Ta, Zr, Hf, and Ti), indicating OIB affinity with little or no continental crust contamination.These features are similar to Late Jurassic-Early Cretaceous OIB in the YZSZ.It is suggested that these OIB rocks were derived from the intraplate environment within the Neo-Tethys and represented the remnants of seamounts.In combination with regional geological material, it is proposed that the Jurassic mantle plume in Neo-Tethys might drive the oceanic lithosphere northward subduction under the Lhasa terrane, and formed the Andean continental margin.During the Early Cretaceous, the Neo-Tethys oceanic lithosphere was decoupled from the overlying plate, and retreated southward to induce the Gangdese forearc extension to form the present ophiolites preserved in the YZSZ.
-
致谢: 野外工作得到了西藏矿业公司教授级高工巴登珠指导和帮助,长安大学封铿、邵嘉坤、穆可斌和王昭阳同学参加了本论文的野外工作,论文撰写过程中与南京大学连东洋和吴魏伟博士进行了有益讨论,审稿专家为本文提供了宝贵的建议,在此一并致以诚挚的谢意。
-
图 6 纳如地区白朗地体辉绿岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b) (标准化值、OIB、E-MORB和N-MORB值据参考文献[36])
OIB—洋岛型玄武岩;E-MORB—富集型大洋中脊玄武岩;N-MORB—正常型大洋中脊玄武岩
Figure 6. Chondrite-normalized REE patterns(a)and primitive-mantle normalized spider diagrams(b)of the dolerite from the Bainang Terrane in the Naru area, Gyangze
图 8 纳如地区白朗地体辉绿岩Dy/Yb - Dy/Dy*(a)和La/Sm - Sm/Yb图解(b) (底图据参考文献[45, 50]修改)
DDM—亏损的大洋中脊玄武岩地幔;PM—原始地幔;MORB—大洋中脊玄武岩;OIB—洋岛型玄武岩;E-MORB—富集型大洋中脊玄武岩;N-MORB—正常型大洋中脊玄武岩;Sp—尖晶石二辉橄榄岩;Grt—石榴子石二辉橄榄岩
Figure 8. Dy/Yb vs.Dy/Dy*(a)and La/Sm vs.Sm/Yb (b) diagrams of the dolerite from the Bainang Terrane in Naru area, Gyangze
图 9 纳如地区白朗地体辉绿岩Nb/Yb-Th/Yb(a)和TiO2/Yb -Th/Nb判别图解(b, 底图据参考文献[51]修改)
MORB—大洋中脊玄武岩;OPB—大洋高原玄武岩;OIB—洋岛型玄武岩;IAB—岛弧玄武岩;CAB—陆弧玄武岩;SZLM—受俯冲改造的岩石圈地幔;EM-OIB—富含富集地幔的OIB
Figure 9. Nb/Yb vs.Th/Yb(a)and TiO2/Yb vs.Th/Nb(b) discrimination diagrams of the dolerite from the Bainang Terrane in the Naru area, Gyangze
表 1 纳如地区白朗地体辉绿岩锆石U-Th-Pb同位素测试结果
Table 1 Zircon U-Th-Pb isotope analytic results of the dolerite from the Bainang Terrane in the Naru area, Gyangze
点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ sam.1 38.5 1869 1390 1.3 0.0237 0.0003 0.1616 0.0030 0.0494 0.0008 151.3 1.7 152.1 2.8 165 40 sam.2 48.9 2754 1671 1.7 0.0239 0.0003 0.1789 0.0033 0.0543 0.0009 152.1 1.7 167.1 3.1 384 38 sam.3 21.1 1077 783 1.4 0.0239 0.0003 0.1669 0.0036 0.0507 0.0010 152.2 1.7 156.7 3.4 226 47 sam.4 21.3 1054 818 1.3 0.0236 0.0003 0.1651 0.0036 0.0507 0.0011 150.6 1.7 155.1 3.4 225 48 sam.5 25.9 1075 1016 1.1 0.0239 0.0003 0.1704 0.0037 0.0517 0.0010 152.2 1.7 159.7 3.5 273 46 sam.6 45.8 2167 1868 1.2 0.0235 0.0003 0.1771 0.0082 0.0546 0.0016 149.9 1.8 165.6 7.6 397 67 sam.7 36.0 1884 1504 1.3 0.0235 0.0003 0.1665 0.0039 0.0514 0.0011 149.7 1.7 156.4 3.7 259 49 sam.8 26.2 1112 1110 1.0 0.0236 0.0003 0.1606 0.0037 0.0494 0.0011 150.3 1.7 151.3 3.5 166 50 sam.9 53.0 3817 2066 1.9 0.0243 0.0003 0.1714 0.0034 0.0512 0.0009 154.7 1.7 160.7 3.2 250 41 sam.10 30.5 1215 1289 0.9 0.0233 0.0003 0.1614 0.0033 0.0501 0.0009 148.8 1.7 151.9 3.1 201 43 sam.11 32.2 1387 1292 1.1 0.0237 0.0003 0.1755 0.0037 0.0536 0.0010 151.1 1.7 164.1 3.4 356 43 sam.12 25.6 871 1069 0.8 0.0234 0.0003 0.1598 0.0032 0.0495 0.0009 149.1 1.7 150.5 3.0 173 43 sam.13 21.5 1327 848 1.6 0.0243 0.0003 0.1666 0.0039 0.0498 0.0011 154.5 1.7 156.5 3.7 186 52 sam.14 37.8 528 1667 0.3 0.0240 0.0003 0.1566 0.0030 0.0473 0.0008 152.9 1.7 147.7 2.9 65 42 sam.15 11.6 474 474 1.0 0.0237 0.0003 0.1626 0.0056 0.0497 0.0016 151.2 1.8 153 5.3 180 77 sam.16 25.3 1394 936 1.5 0.0242 0.0003 0.1705 0.0037 0.0512 0.0010 154.0 1.8 159.9 3.5 248 46 sam.17 14.1 528 563 0.9 0.0239 0.0003 0.1620 0.0044 0.0492 0.0012 152.1 1.9 152.5 4.2 159 57 sam.18 31.2 1738 1144 1.5 0.0235 0.0003 0.1726 0.0049 0.0533 0.0015 149.6 1.7 161.7 4.6 343 62 sam.19 18.7 831 692 1.2 0.0237 0.0003 0.1733 0.0043 0.0530 0.0013 151.0 1.8 162.2 4.1 330 54 sam.20 39.6 2305 1416 1.6 0.0233 0.0003 0.1560 0.0030 0.0486 0.0009 148.5 1.7 147.2 2.8 127 42 sam.21 50.4 3284 1662 2.0 0.0237 0.0003 0.1597 0.0031 0.0488 0.0009 151.3 1.7 150.4 2.9 137 42 sam.22 33.8 1653 1213 1.4 0.0228 0.0003 0.1576 0.0030 0.0501 0.0009 145.4 1.7 148.6 2.8 200 40 sam.23 22.9 839 831 1.0 0.0232 0.0003 0.1573 0.0037 0.0492 0.0011 147.8 1.7 148.4 3.5 157 52 sam.24 23.5 1186 845 1.4 0.0231 0.0003 0.1598 0.0034 0.0502 0.0010 147.2 1.7 150.5 3.2 203 46 sam.25 38.1 1853 1356 1.4 0.0232 0.0003 0.1541 0.0028 0.0481 0.0008 147.9 1.7 145.5 2.6 106 39 sam.26 42.4 2512 1438 1.8 0.0240 0.0003 0.1712 0.0030 0.0517 0.0008 152.9 1.7 160.4 2.8 273 37 sam.27 31.7 1563 1160 1.4 0.0241 0.0003 0.1739 0.0033 0.0522 0.0009 153.8 1.7 162.8 3.1 296 40 sam.28 48.9 3716 1683 2.2 0.0234 0.0003 0.1743 0.0031 0.0540 0.0009 149.2 1.7 163.1 2.9 371 37 sam.29 16.1 929 607 1.5 0.0243 0.0003 0.1710 0.0048 0.0511 0.0014 154.5 1.8 160.2 4.5 246 63 sam.30 25.4 1279 970 1.3 0.0234 0.0003 0.1759 0.0037 0.0544 0.0011 149.4 1.7 164.5 3.4 388 44 sam.31 20.5 917 837 1.1 0.0234 0.0003 0.1700 0.0037 0.0527 0.0011 149.1 1.7 159.4 3.4 316 46 sam.32 21.9 895 895 1.0 0.0235 0.0003 0.1611 0.0035 0.0497 0.0010 149.7 1.7 151.7 3.3 183 48 sam.33 23.2 893 962 0.9 0.0231 0.0003 0.1599 0.0032 0.0502 0.0009 147.1 1.7 150.6 3 206 43 sam.34 39.9 1613 1574 1.0 0.0231 0.0003 0.1657 0.0029 0.0521 0.0008 147 1.7 155.7 2.7 291 36 sam.35 23.6 959 930 1.0 0.0235 0.0003 0.1672 0.0033 0.0517 0.0010 149.6 1.7 157 3.1 270 43 sam.36 44.3 2411 1678 1.4 0.0233 0.0003 0.1758 0.0034 0.0547 0.0010 148.5 1.7 164.5 3.2 401 40 sam.37 19.4 918 741 1.2 0.0232 0.0003 0.1658 0.0044 0.0519 0.0013 147.8 1.7 155.8 4.1 279 58 sam.38 17.8 758 708 1.1 0.0232 0.0003 0.1736 0.0042 0.0542 0.0013 148.1 1.7 162.6 4 379 52 sam.39 23.0 919 876 1.1 0.0230 0.0003 0.1635 0.0040 0.0515 0.0012 146.9 1.7 153.7 3.7 261 53 表 2 纳如地区白朗地体辉绿岩主量、微量和稀土元素测试数据
Table 2 Major, trace element and REE data for dolerite from the Bainang Terrane in the Naru area, Gyangze
样品号 Y19R- 27-21 Y19R- 27-23 Y19R- 27-24 Y19R- 27-25 Y19R- 27-26 样品号 Y19R- 27-21 Y19R- 27-23 Y19R- 27-24 Y19R- 27-25 Y19R- 27-26 岩性 辉绿岩 辉绿岩 辉绿岩 辉绿岩 辉绿岩 岩性 辉绿岩 辉绿岩 辉绿岩 辉绿岩 辉绿岩 SiO2 46.95 46.95 46.35 46.38 46.36 Cs 1.11 0.55 0.49 0.43 0.80 TiO2 3.66 3.80 3.20 3.26 3.70 Ba 287 114 315 351 258 Al2O3 12.41 12.62 14.07 13.98 12.91 La 24.9 30.1 18.3 18.2 17.7 TFe2O3 15.28 15.68 14.50 14.71 13.89 Ce 54.9 67.2 43.4 42.2 39.2 MnO 0.21 0.23 0.25 0.24 0.21 Pr 7.02 8.85 5.85 5.73 5.00 MgO 6.03 6.25 6.72 6.86 6.12 Nd 30.7 37.3 26.2 25.8 21.2 CaO 9.03 7.47 7.09 6.72 9.88 Sm 7.33 8.98 6.55 6.23 5.17 Na2O 3.21 3.10 2.97 2.90 3.00 Eu 2.23 2.65 2.06 1.97 1.85 K2O 0.93 0.47 1.63 1.82 0.89 Gd 7.40 8.89 6.92 6.61 5.37 P2O5 0.30 0.40 0.26 0.27 0.13 Tb 1.21 1.38 1.10 1.05 0.90 烧失量 1.92 2.53 2.60 2.77 2.31 Dy 6.89 8.12 6.33 6.21 5.28 总计 99.92 99.47 99.63 99.92 99.39 Ho 1.37 1.47 1.20 1.17 1.05 Mg# 43.86 44.13 47.88 48.03 46.60 Er 3.75 4.05 3.23 3.14 2.94 Li 12.5 14.8 19.6 19.7 12.7 Tm 0.53 0.55 0.44 0.43 0.42 Be 1.18 1.24 0.99 0.86 1.09 Yb 3.20 3.38 2.78 2.66 2.64 Sc 38.7 34.7 35.9 35.2 38.7 Lu 0.45 0.46 0.38 0.38 0.38 V 516 391 402 378 524 Hf 5.35 6.43 4.96 4.75 4.90 Cr 110 92.6 156 129 134 Ta 1.80 2.07 1.45 1.40 1.60 Co 50.1 47.9 51.3 49.8 46.3 Tl 0.092 0.044 0.098 0.10 0.042 Ni 75.0 70.0 92.8 85.4 74.3 Pb 2.87 1.77 3.80 2.25 1.87 Cu 219 208 250 246 124 Th 2.84 3.93 2.03 1.99 2.43 Zn 118 136 109 103 115 U 0.81 1.01 0.55 0.55 0.67 Ga 19.7 22.5 22.2 21.0 19.2 ΣREE 152 183 125 122 109 Rb 19.8 9.75 26.3 29.6 16.6 (La/Yb)N 5.58 6.38 4.72 4.93 4.81 Sr 330 702 251 225 194 (Ce/Yb)N 4.76 5.53 4.33 4.41 4.13 Y 37.4 41.7 33.2 32.5 29.0 (La/Sm)N 2.20 2.16 1.81 1.89 2.21 Zr 218 257 194 187 191 (Gd/Yb)N 1.91 2.18 2.06 2.06 1.68 Nb 31.1 35.4 24.4 23.4 27.4 δEu 0.92 0.90 0.93 0.93 1.07 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6; N为球粒陨石标准化,标准化值据参考[36],δEu=2EuN/(SmN+GdN) 表 3 雅鲁藏布江缝合带OIB型基性岩地球化学和年代学资料
Table 3 The geochemical and chronological data for the OIB-type basic rocks from the YZSZ
样品号 岩性 地区 产状 测试方法 年龄/Ma 数据来源 X71-7 玄武岩 普兰 硅质岩层间 LA-ICP-MS 137±2 [11] JYM-24 辉绿岩 普兰 侵入地幔橄榄岩 LA-ICP-MS 138.5±2.0 [13] 16Y-558-1 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-2 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-6 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-7 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-9 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-10 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-11 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] 16Y-558-12 辉长岩 普兰 侵入硅质岩 LA-ICP-MS 144.2±2.1 [19] ZEOS-4-04 辉绿岩 仲巴 地幔岩和玄武岩之间 LA-ICP-MS 125.7±0.9 [17] PM021-11H2 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H3 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H4 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H5 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H6 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H8 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H10 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H11 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H13 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H14 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] PM021-11H15 辉绿岩 仲巴 硅质泥页岩中岩体 LA-ICP-MS 160.5±1.3 [18] 2010TW036 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2010TW198 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2010TW199 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2010TW201 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2010TW204 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2011TW003 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2011TW024 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2011TW025 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2011TW026 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] 2011TW027 基性片岩 桑桑 硅质岩板岩中岩块 LA-ICP-MS 149.2 ± 2.2 [12] RB49 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB50 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB55 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB56 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB58 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB61 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB63 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB70 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB73 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB74 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB141 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB143 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB145 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB146 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB147 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB151 玄武岩 仁布 硅质泥岩中岩块 — — [15] RB44 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB45 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB48 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB49 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB50 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB51 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB52 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB64 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB65 辉绿岩 仁布 硅质泥岩中岩块 — — [16] RB66 辉绿岩 仁布 硅质泥岩中岩块 — — [16] LX03-1 变玄武岩 朗县 板岩千枚岩中岩块 SHRIMP 147.2±3.4 [31] LX03-3 变玄武岩 朗县 板岩千枚岩中岩块 SHRIMP 147.8±3.3 [31] QS01-1 变辉绿岩 朗县 板岩千枚岩中岩块 SHRIMP 145.7±2.5 [31] 注:—表示无数据 表 4 白朗地体岩石构造单元特征[25]
Table 4 Characteristics of lithotectonic units in the Bainang Terrane
岩石单元 岩石组合 化石(时代) 北带 帮岗 红色放射虫硅质岩为主,少量硅质泥岩 硅质岩(208.5~139.8 Ma);硅质泥岩(125.0~113.0 Ma) 宗下 灰绿色、杂色硅质泥岩,少量红色放射虫硅质泥岩 硅质岩(208.5~201.3 Ma);硅质泥岩(125.0~113.0 Ma) 纳如 红色放射虫硅质岩和硅质泥岩为主,少量凝灰质泥岩 南带 玛尼岗 杂色凝灰质硅质岩和泥岩为主,少量红色放射虫硅质岩,含铁硅质岩、浊积岩和微晶灰岩 硅质泥岩(227~170.3 Ma); 微晶灰岩(190.8~182.7 Ma); 凝灰质硅质岩(170.3~163.5 Ma); 硅质岩(166.1~145.0 Ma) 亚龙 杂色钙质页岩、硅质页岩为主,少量钙质浊积岩和微晶灰岩 仁钦岗 灰色、黄色钙质页岩为主,少量红色放射虫硅质岩 纳如 灰色凝灰质泥岩和凝灰岩为主,少量红色放射虫硅质岩 -
Isozaki Y, Maruyama S, Furuoka F. Accreted Oceanic Materials in Japan[J]. Tectonophysics, 1990, 181: 179-205. doi: 10.1016/0040-1951(90)90016-2
Wakita K, Metcalfe I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asia Earth Sciences, 2005, 24: 679-702. doi: 10.1016/j.jseaes.2004.04.004
付长垒, 闫臻, 王秉璋, 等. 造山带中古海山残片的识别——以拉脊山缝合带青沙山和东沟地质填图为例[J]. 地质通报, 2021, 40(1): 31-40. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210104&flag=1 Safonova I, Maruyama S, Kojima S, et al. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry[J]. Gondwana Research, 2016, 33: 92-114. doi: 10.1016/j.gr.2015.06.013
闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020301&flag=1 张克信, 李仰春, 王丽君, 等. 造山带混杂岩及相关术语[J]. 地质通报, 2020, 39(6): 765-782. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200601&flag=1 Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Ann. Rev. Earth Planet., 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2): 377-397. doi: 10.1016/j.gr.2011.10.013
Wang J G, Wu F Y, Garzanti E, et al. Upper Triassic turbidites of the northern Tethyan Himalaya(Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen[J]. Gondwana Research, 2016, 34: 84-98. doi: 10.1016/j.gr.2016.03.005
Liu Y M, Dai J G, Wang C S, et al. Provenance and tectonic setting of Upper Triassic turbidites in the eastern Tethyan Himalaya: Implications for early-stage evolution of the Neo-Tethys[J]. Earth-Science Reviews, 2020, 200: 103030(1-17). DOI: 10.1016/j.earscirev.2019.103030
Liu F, Yang J S, Dilek Y, et al. Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet[J]. Gondwana Research, 2015, 27(2): 701-718. doi: 10.1016/j.gr.2014.08.002
Wang H Q, Ding L, Cai F L, et al. The latest Jurassic protoliths of the Sangsang mafic schists in southern Tibet: Implications for the spatial extent of Greater India[J]. Gondwana Research, 2020, 79: 248-262. doi: 10.1016/j.gr.2019.10.008
Zheng H, Huang Q T, Kapsiotis A, et al. Coexistence of MORB-and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle[J]. GSA Bulletin, 2019;131(7/8): 1276-1294.
Yang G X, Dilek Y. OIB-and P-type ophiolites along the Yarlung-Zangbo Suture Zone(YZSZ), Southern Tibet: Poly-Phase melt history and mantle sources of the Neotethyan oceanic lithosphere[J]. Episodes, 2015, 38: 250-265. doi: 10.18814/epiiugs/2015/v38i4/82420
Xia B, Chen G W, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 396-405. doi: 10.1016/j.jseaes.2007.11.008
王冉, 夏斌, 胡敬仁, 等. 仁布蛇绿混杂带洋岛型辉绿岩地球化学: 藏南特提斯洋内热点[J]. 地球化学, 2006, 35(1): 41-54. doi: 10.3321/j.issn:0379-1726.2006.01.006 Dai J G, Wang C S, Li Y L. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53: 25-37. doi: 10.1016/j.jseaes.2011.12.024
He J, Li Y L, Wang C S, et al. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet[J]. Journal of Asian Earth Sciences, 2016, 121: 34-55. doi: 10.1016/j.jseaes.2016.01.022
Xiong F H, Meng Y K, Yang J S, et al. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet[J]. Geoscience Frontiers, 2020, 11(1): 276-291. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GSFT202001018
朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世-早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802006.htm Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm Ma X X, Xu Z Q, Zhao Z B, et al. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Hima-laya, southern Tibet[J]. Geosphere, 2020, 16: 407-434. doi: 10.1130/GES02154.1
Metcalf K, Kapp P. History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet[J]. Geological Society London Special Publications, 2019, 483: 517-554. doi: 10.1144/SP483.12
Ziabrev S V, Aitchison J C, Abrajevitch A V, et al. Bainang Terrane, Yarlung-Tsangpo suture, southern Tibet(Xizang, China): a record of intra-Neotethyan subduction-accretion processes preserved on the roof of the world[J]. Journal of the Geological Society, 2004, 161(3): 523-539. doi: 10.1144/0016-764903-099
Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69. http://www.sciencedirect.com/science/article/pii/S0009254104002074
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501
Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X
李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm Raczek I, Stoll B, Hofmann A W, et al. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS[J]. Geostandards and Geoanalytical Research, 2001, 25(1): 77-86. doi: 10.1111/j.1751-908X.2001.tb00789.x
张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 538-548. doi: 10.3969/j.issn.1671-9727.2011.05.010 Tatsumi Y, Eggins S. Subduction zone magmatism[M]. Oxford: Blackwell Science, 1995: 1-95.
Wilson M. Igneous Petrogenesis[M]. London: Unwin Hyman. 1989.
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299
Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and source processes[J]. Geological Society of London, Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Hofmann A W. Mantle geochemistry: The message from oceanic volcanism[J]. Nature, 1997, 385(6613): 218-229. doi: 10.1038/385218a0
Zhu D C, Mo X X, Pan G T, et al. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 2008, 100(1/4): 147-173. http://www.sciencedirect.com/science/article/pii/S0024493707001430
Belay I G, Tanaka R, Kitagawa H, et al. Origin of ocean island basalts in the West African passive margin without mantle plume involvement[J]. Nature Communications, 2019, 10: 1-12. doi: 10.1038/s41467-018-07882-8
Conrad C P, Wu B, Smith E I, et al. Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism[J]. Physics of the Earth & Planetary Interiors, 2010, 178(3/4): 162-175. http://www.sciencedirect.com/science/article/pii/S003192010900209X
Foulger G R, Natland J H. Is "hotspot" volcanism a consequence of plate tectonics?[J]. Science, 2003, 300: 921-922. doi: 10.1126/science.1083376
Humphreys E R, Niu Y L. On the composition of ocean island basalts(OIB): The effects of lithospheric thickness variation and mantle metasomatism[J]. Lithos, 2009, 112(1/2): 118-136. http://www.sciencedirect.com/science/article/pii/S002449370900187X
Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth & Planetary Science Letters, 1981, 53(2): 189-202. http://www.sciencedirect.com/science/article/pii/0012821X81901539
Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise Geochem., 2003, 3: 1-64. http://www.sciencedirect.com/science/article/pii/B9780080959757003016
Wang B, Xie C M, Fan J J, et al. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane[J]. Lithos, 2019, 324/325: 429-438. http://www.sciencedirect.com/science/article/pii/S0024493718304304
Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7
Mckenzie D, O'Nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32(6): 1453-1453. http://petrology.oxfordjournals.org/content/32/5/1021.abstract
Saccani E, Allahyari K, Beccaluva L, et al. Geochemistry and petrology of the Kermanshah ophiolites(Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean[J]. Gondwana Research, 2013, 24(1): 392-411. doi: 10.1016/j.gr.2012.10.009
Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle(DMM)[J]. Earth & Planetary Science Letters, 2005, 231(1/2): 53-72. http://www.sciencedirect.com/science/article/pii/S0012821X04007101
Davidson J, Turner S, Plank T. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes[J]. Journal of Petrology, 2013, 54(3): 525-537. doi: 10.1093/petrology/egs076
Pearce J A, Ernst R E, Peate D W, et al. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record[J]. Lithos, 2021: 106068. http://www.sciencedirect.com/science/article/pii/S0024493721001043
Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1): 244-256. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.8867&rep=rep1&type=pdf
赵慧, 杨经绥, 刘飞, 等. 西藏雅鲁藏布江缝合带萨嘎碱性玄武岩地球化学和年代学研究[J]. 中国地质, 2015, 42(5): 1242-1256. doi: 10.3969/j.issn.1000-3657.2015.05.006 Ji W Q, Wu F Y, Chung S L, et al. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 2016, 44: 283-286. doi: 10.1130/G37612.1
Liu F, Dilek Y, Yang J S, et al. A middle Triassic seamount within the western Yarlung Zangbo suture zone, Tibet: The earliest seafloor spreading record of Neotethys to the North of East Gondwana[J]. Lithos, 2021, 388/389: 106062. doi: 10.1016/j.lithos.2021.106062
范建军, 李才, 牛耀龄, 等. 造山带板内洋岛-海山残片的识别及地质意义[J]. 地球科学, 2021, 46(2): 381-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102001.htm Metcalfe I. Multiple Tethyan Ocean basins and orogenic belts in Asia[J]. Gondwana Research, 2021, https://doi.org/10.1016/j.gr.2021.01.012.
Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1
Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005
Chatterjee S, Goswami A, Scotese C R. The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 2013, 23: 238-267. doi: 10.1016/j.gr.2012.07.001
Zhang K J, Zhang, Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114: 236-249. doi: 10.1016/j.earscirev.2012.06.001
Xiong Q, Griffin W L, Zheng J P, et al. Southward trench migration at~130-120 Ma caused accretion of the NeoTethyan forearc lithosphere in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 2016, 438: 57-65. doi: 10.1016/j.epsl.2016.01.014
Wang C S, Li X H, Liu Z F, et al. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone[J]. Gondwana Research, 2012, 22: 415-433. doi: 10.1016/j.gr.2011.09.014
杨胜标, 李源, 杨经绥, 等. 西藏日喀则白马让蛇绿岩: 亚洲大陆边缘的小洋盆[J]. 岩石学报, 2017, 33(12): 3766-3782. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201712006.htm Wang J G, Hu X M, Garzanti E, et al. The birth of the Xigaze forearc basin in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 38-47. doi: 10.1016/j.epsl.2017.02.036
Maffione M, van Hinsbergen D J J, Koornneef L M T, et al. Forearc hyperextension dismembered the south Tibetan ophiolites[J]. Geology, 2015, 43: 475-478. doi: 10.1130/G36472.1
Butler J P, Beaumont C. Subduction zone decoupling/retreat modeling explains south Tibet(Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 2017, 463: 101-117. doi: 10.1016/j.epsl.2017.01.025