• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

柴北缘托莫尔日特古元古代变质基底的发现——对早古生代缝合线位置的约束

付长垒, 闫臻, 王秉璋, 陈雷, 李隽辉

付长垒, 闫臻, 王秉璋, 陈雷, 李隽辉. 2021: 柴北缘托莫尔日特古元古代变质基底的发现——对早古生代缝合线位置的约束. 地质通报, 40(8): 1215-1230.
引用本文: 付长垒, 闫臻, 王秉璋, 陈雷, 李隽辉. 2021: 柴北缘托莫尔日特古元古代变质基底的发现——对早古生代缝合线位置的约束. 地质通报, 40(8): 1215-1230.
FU Changlei, YAN Zhen, WANG Bingzhang, CHEN Lei, LI Junhui. 2021: Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture. Geological Bulletin of China, 40(8): 1215-1230.
Citation: FU Changlei, YAN Zhen, WANG Bingzhang, CHEN Lei, LI Junhui. 2021: Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture. Geological Bulletin of China, 40(8): 1215-1230.

柴北缘托莫尔日特古元古代变质基底的发现——对早古生代缝合线位置的约束

基金项目: 

国家自然科学基金项目《拉脊山古洋盆初始俯冲的地质记录和时限研究》 42072266

《拉脊山增生楔结构、组成与古洋盆重建研究》 41872241

中国地质调查局项目《中央山系都兰、天水等地区基础地质调查》 DD20190006

青海省地质矿产勘查开发局项目《柴北缘托莫尔日特早古生代沟-弧体系及其与成矿关系研究》 [2021]61

中国博士后科学基金项目《拉脊山造山带古海山序列重建》 2021M691702

中国地质科学院地质研究所统筹科研项目《共和盆地沉积-构造演化》 S2007

详细信息
    作者简介:

    付长垒(1988-), 男, 博士, 副研究员, 从事蛇绿岩与古板块构造研究。E-mail: fucl815@126.com

  • 中图分类号: P534.3;P588.3

Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture

  • 摘要:

    柴北缘构造带东部托莫尔日特地区发现了古元古代片麻岩和斜长角闪岩,其构造归属对认识区域构造格局具有重要意义。托莫尔日特地区发育大量早古生代火山-沉积岩、蛇绿岩和侵入岩,片麻岩和其中透镜状斜长角闪岩仅出露于填图区东北侧,其原岩分别为花岗闪长岩和基性岩。用LA-ICP-MS技术测得片麻岩和斜长角闪岩中锆石的U-Pb年龄分别为2413±28 Ma(上交点年龄,n=29,MSWD=2.3)、1966±46 Ma(207Pb/206Pb年龄加权平均值,n=4,MSWD=1.7)和1922±22 Ma(上交点年龄,n=29,MSWD=1.3)。结合锆石特征认为,2413±28 Ma可代表片麻岩原岩岩浆的结晶年龄,1966±46 Ma和1922±22 Ma可分别代表片麻岩和斜长角闪岩的变质年龄。片麻岩具有典型埃达克岩高Sr低Y的地球化学特征,MgO、Cr和Ni含量较低,锆石εHft)值介于-0.8~+4.0之间,二阶段模式年龄为2704~2965 Ma,全岩εNdt)值介于+0.8~+1.6之间,显示其可能为加厚下地壳部分熔融成因。古元古代变质岩的岩石组合、地球化学特征、形成时代等均与北侧德令哈杂岩特征一致,表明其属于北侧欧龙布鲁克地块变质基底,而非柴北缘构造带。这一认识约束了柴北缘缝合线的位置,进一步将该地区缝合线限定在赛坝沟蛇绿岩和古元古代变质岩之间很窄的范围内。

    Abstract:

    The Paleoproterozoic gneiss and amphibolite were recognized in the Tuomoerrite area, eastern part of the North Qaidam ultra-high pressure metamorphic belt.Their tectonic affinities have significance for the understanding of regional tectonic framework.In the Tuomoerrite area, there are abundant early Paleozoic volcano-sedimentary rocks, ophiolitic rocks and intrusives, with minor gneiss and amphibolite lens discovered in the northeast part.The protoliths of gneiss and amphibolite are granidiorite and basic rock respectively.LA-ICP-MS U-Pb dating of zircon from gneiss and amphibolite yields ages of 2413±28 Ma(upper intercept age, n=29, MSWD=2.3), 1966±46 Ma(weighted mean 207Pb/206Pb age, n=4, MSWD=1.7), and 1922±22 Ma(upper intercept age, n=29, MSWD=1.3) respectively.Combined with cathodoluminescence images of zircon, 2413±28 Ma represents the magmatic crystallization age of the protolith of the gneiss.1966±46 Ma and 1922±22 Ma represent the metamorphic ages of the gneiss and amphibolite respectively.The gneiss shows typical adakitic geochemical feature, with high Sr, low Y, MgO, Cr, and Ni.The magmatic zircons have εHf(t) values between -0.8 and +4.0 and yield two-stage Hf model ages ranging from 2704 Ma to 2965 Ma.They also have positive εNd(t) ranging from +0.8 to +1.6.These geochemical and isotopic characteristics indicate that the gneisses were likely formed by partial melting of thickened mafic lower-crust.The rock assemblage, geochemical features and ages of these metamorphic rocks are consistent with those of the Delingha Complex to the north, indicating that they belong to the northern Oulongbuluke block rather than the North Qaidam belt.This understanding further constrains that the suture of the North Qaidam belt lies between the Saibagou ophiolite and the newly recognized Paleoproterozoic metamorphic rocks.

  • 致谢: 审稿专家对本文提出了建设性修改意见,成文过程中与中国地质科学院地质研究所路增龙博士进行了有益探讨,在此表示感谢。
  • 图  1   中央造山带大地构造格架和柴北缘位置(a)、柴北缘及邻区地质图(b) (蓝色虚线表示柴达木地块与欧龙布鲁克地块缝合线原位置)

    Figure  1.   Tectonic framework of the Central Orogenic Belt, location of the North Qaidam belt(a)and geological map of the North Qaidam belt and adjacent areas(b)

    图  2   托莫尔日特地区地质图(图中同位素年龄*为未发表数据)

    Figure  2.   Geological map of the Tuomoerrite area

    图  3   托莫尔日特地区片麻岩和斜长角闪岩野外及显微镜下照片

    a—片麻岩和斜长角闪岩野外关系;b—片麻岩;c—片麻岩镜下照片;d—斜长角闪岩镜下照片。Pl—斜长石;Qz—石英;Amp—角闪石

    Figure  3.   Field and microscope photographs of gneiss and amphibolite in the Tuomoerrite area

    图  4   托莫尔日特地区片麻岩(a)和斜长角闪岩(b)锆石阴极发光图像

    Figure  4.   Cathodoluminescence images of zircons from gneiss(a)and amphibolite(b) in the Tuomoerrite area

    图  5   托莫尔日特地区片麻岩(a)和斜长角闪岩(b)LA-ICP-MS锆石U-Pb谐和图

    Figure  5.   LA-ICP-MS U-Pb concordia diagrams of zircons from gneiss(a)and amphibolite(b) in the Tuomoerrite area

    图  6   托莫尔日特地区片麻岩主量和微量元素组成特征

    a—SiO2-K2O图解;b—A/CNK-A/NK图解;c—球粒陨石标准化稀土元素配分曲线;d—原始地幔标准化微量元素蛛网图

    Figure  6.   Major and trace elements compositions of gneiss in the Tuomoerrite area

    图  7   埃达克岩Y-Sr/Y(a)和YbN-(La/Yb)N(b)判别图解

    Figure  7.   Y-Sr/Y(a)and YbN-(La/Yb)N (b)discrimination diagrams for adakites

    图  8   托莫尔日特地区古元古代片麻岩锆石年龄-εHf(t)(a)和(87Sr/86Sr)tNd(t)(b)图解

    MORB—大洋中脊玄武岩

    Figure  8.   Zircon εHf(t)vs.age(a)and εNd(t)vs.(87Sr/86Sr)t(b)diagrams of the Paleoproterozic gneisses in the Tuomoerrite area

    图  9   古元古代片麻岩SiO2-(Cr+Ni)图解(全吉山片麻岩数据据参考文献[51])

    Figure  9.   (Cr+Ni)vs.SiO2 diagram of the Paleoproterozic gneisses

    表  1   托莫尔日特地区片麻岩和斜长角闪岩LA-ICP-MS锆石U-Th-Pb同位素数据

    Table  1   LA-ICP-MS zircon U-Th-Pb data of gneiss and amphibolite in the Tuomoerrite area

    测试点 含量/10-6 Th/U 同位素比值 年龄/Ma 谐和度/%
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 误差相关系数 207Pb/206Pb 207Pb/235U 206Pb/238U
    19DLH1:片麻岩
    1 286 68 256 0.27 0.15 0.0015 7.8 0.13 0.38 0.0058 0.90 2339 23 2204 15 2064 27 88
    2 266 53 217 0.24 0.16 0.0015 9.7 0.21 0.45 0.0084 0.89 2440 17 2410 20 2374 38 97
    3 281 23 462 0.05 0.16 0.0016 8.4 0.12 0.39 0.0042 0.77 2417 18 2280 13 2131 19 87
    4 695 193 363 0.53 0.16 0.0014 9.2 0.14 0.43 0.0054 0.86 2420 15 2359 13 2290 24 94
    5 338 91 238 0.38 0.15 0.0016 8.5 0.17 0.40 0.0067 0.83 2369 18 2281 18 2181 31 92
    6 347 89 246 0.36 0.15 0.0016 8.4 0.20 0.40 0.0087 0.89 2353 19 2273 22 2184 40 93
    7 93 5 235 0.02 0.12 0.0014 5.2 0.08 0.32 0.0038 0.76 1922 22 1849 13 1794 19 93
    8 495 166 176 0.94 0.15 0.0018 8.6 0.15 0.42 0.0060 0.81 2354 21 2299 16 2239 27 95
    9 225 36 202 0.18 0.15 0.0019 9.0 0.24 0.43 0.0105 0.92 2351 20 2336 24 2318 47 99
    10 348 65 368 0.18 0.16 0.0017 9.5 0.22 0.44 0.0086 0.85 2406 19 2389 21 2365 39 98
    11 408 98 332 0.30 0.15 0.0018 8.5 0.16 0.41 0.0065 0.84 2348 20 2285 17 2215 30 94
    12 126 43 101 0.43 0.12 0.0015 5.5 0.11 0.33 0.0054 0.82 1983 22 1904 17 1832 26 92
    13 80 10 122 0.08 0.15 0.0024 8.9 0.42 0.42 0.0147 0.73 2350 27 2327 43 2272 67 97
    14 256 53 178 0.30 0.15 0.0020 8.9 0.25 0.42 0.0088 0.73 2366 23 2328 26 2272 40 96
    15 771 190 575 0.33 0.16 0.0014 9.1 0.16 0.43 0.0068 0.90 2413 15 2352 16 2284 31 95
    16 182 46 236 0.20 0.12 0.0014 5.5 0.11 0.33 0.0054 0.79 1976 21 1901 18 1833 26 92
    17 161 36 130 0.28 0.16 0.0018 9.4 0.15 0.44 0.0057 0.80 2417 19 2375 15 2329 26 96
    18 501 79 660 0.12 0.15 0.0015 8.3 0.13 0.40 0.0045 0.76 2354 18 2264 14 2167 21 92
    19 520 159 298 0.54 0.15 0.0019 8.2 0.16 0.39 0.0058 0.77 2355 22 2252 17 2142 27 91
    20 262 43 228 0.19 0.15 0.0020 9.0 0.26 0.43 0.0106 0.83 2354 22 2336 27 2314 48 98
    21 609 137 436 0.32 0.15 0.0017 9.1 0.23 0.43 0.0094 0.86 2385 19 2346 23 2301 42 96
    22 404 91 277 0.33 0.15 0.0017 8.9 0.16 0.42 0.0065 0.83 2391 18 2330 17 2264 29 95
    23 415 117 186 0.63 0.15 0.0016 9.8 0.29 0.47 0.0120 0.86 2350 19 2419 27 2501 52 94
    24 509 117 435 0.27 0.15 0.0015 8.7 0.15 0.42 0.0063 0.87 2365 17 2308 16 2249 29 95
    25 644 152 418 0.36 0.15 0.0016 8.9 0.19 0.42 0.0072 0.80 2377 18 2328 20 2272 33 95
    26 745 188 501 0.37 0.15 0.0017 8.9 0.16 0.42 0.0064 0.86 2395 18 2333 16 2266 29 94
    27 636 131 356 0.37 0.16 0.0021 9.6 0.29 0.45 0.0106 0.78 2413 23 2401 28 2382 47 99
    28 230 26 323 0.08 0.15 0.0017 7.9 0.18 0.39 0.0077 0.87 2306 20 2217 20 2124 36 92
    29 367 97 216 0.45 0.16 0.0019 9.8 0.20 0.45 0.0067 0.76 2454 20 2418 18 2377 30 97
    30 254 59 185 0.32 0.15 0.0018 8.9 0.21 0.42 0.0079 0.80 2386 20 2326 21 2255 36 94
    31 110 27 128 0.21 0.12 0.0015 5.6 0.11 0.33 0.0059 0.87 1981 22 1917 17 1860 28 94
    32 267 21 450 0.05 0.15 0.0015 8.1 0.13 0.40 0.0053 0.81 2335 18 2246 15 2148 24 92
    33 343 84 210 0.40 0.16 0.0022 9.0 0.20 0.41 0.0072 0.79 2439 24 2335 20 2217 33 90
    19DLH7:斜长角闪岩
    1 59 17 59 0.29 0.13 0.0043 5.0 0.15 0.28 0.0046 0.54 2143 57 1825 26 1569 23 69
    2 63 21 78 0.27 0.11 0.0021 4.4 0.10 0.28 0.0041 0.61 1852 35 1708 20 1594 21 85
    3 152 56 152 0.37 0.11 0.0017 4.1 0.12 0.27 0.0062 0.77 1798 27 1658 24 1545 31 85
    4 80 22 78 0.28 0.12 0.0018 5.4 0.12 0.34 0.0060 0.80 1900 28 1887 19 1879 29 99
    5 52 16 61 0.26 0.11 0.0021 4.8 0.10 0.31 0.0047 0.71 1865 33 1790 18 1730 23 93
    6 55 18 72 0.25 0.11 0.0024 4.2 0.11 0.28 0.0047 0.67 1833 39 1676 21 1567 24 84
    7 32 11 45 0.24 0.11 0.0030 3.9 0.11 0.26 0.0037 0.52 1809 45 1615 22 1478 19 80
    8 52 15 59 0.25 0.12 0.0022 5.2 0.14 0.33 0.0060 0.67 1933 34 1846 23 1827 29 94
    9 123 51 139 0.37 0.11 0.0021 3.7 0.07 0.24 0.0024 0.50 1856 32 1578 16 1389 13 71
    10 57 21 77 0.27 0.11 0.0019 4.1 0.12 0.27 0.0053 0.70 1831 25 1655 23 1518 27 81
    11 63 18 81 0.22 0.12 0.0019 4.8 0.10 0.30 0.0038 0.64 1894 28 1793 17 1710 19 90
    12 54 19 70 0.27 0.11 0.0020 4.0 0.09 0.26 0.0042 0.71 1839 32 1636 19 1487 21 79
    13 147 63 164 0.39 0.11 0.0014 3.6 0.08 0.24 0.0048 0.92 1759 (8) 1548 17 1401 25 77
    14 41 11 49 0.23 0.12 0.0023 5.2 0.16 0.32 0.0068 0.69 1928 37 1857 26 1793 33 93
    15 50 13 57 0.24 0.12 0.0019 5.4 0.12 0.33 0.0057 0.79 1924 30 1886 19 1855 28 96
    16 50 14 55 0.25 0.12 0.0019 5.4 0.17 0.33 0.0083 0.79 1922 29 1885 27 1849 40 96
    17 63 18 70 0.26 0.12 0.0020 5.1 0.11 0.31 0.0047 0.73 1918 31 1831 18 1759 23 91
    18 45 13 48 0.26 0.11 0.0021 5.2 0.13 0.33 0.0055 0.67 1856 33 1853 21 1861 26 100
    19 90 38 118 0.32 0.11 0.0016 3.5 0.07 0.24 0.0036 0.75 1740 23 1520 16 1367 19 76
    20 134 49 159 0.30 0.11 0.0018 4.1 0.10 0.27 0.0041 0.65 1839 62 1662 19 1524 21 81
    21 52 19 68 0.27 0.11 0.0022 4.0 0.10 0.27 0.0042 0.63 1791 37 1643 20 1529 21 84
    22 48 17 61 0.28 0.12 0.0021 4.3 0.10 0.27 0.0038 0.62 1881 37 1696 19 1550 19 81
    23 65 19 66 0.28 0.12 0.0019 5.4 0.13 0.33 0.0062 0.75 1920 28 1889 21 1859 30 97
    24 93 28 95 0.29 0.12 0.0018 5.4 0.11 0.33 0.0047 0.69 1918 22 1881 18 1847 23 96
    25 168 61 157 0.39 0.12 0.0015 4.5 0.08 0.28 0.0033 0.67 1910 23 1735 15 1593 17 82
    26 75 21 74 0.29 0.12 0.0017 5.4 0.13 0.34 0.0062 0.80 1906 27 1886 20 1868 30 98
    27 86 26 84 0.30 0.12 0.0020 5.1 0.14 0.31 0.0060 0.72 1910 31 1832 23 1761 30 92
    28 36 11 50 0.22 0.11 0.0018 4.6 0.11 0.29 0.0058 0.80 1858 29 1753 20 1666 29 89
    29 33 13 57 0.24 0.11 0.0025 3.3 0.09 0.22 0.0036 0.59 1781 47 1477 22 1274 19 67
    30 45 15 54 0.27 0.11 0.0021 4.5 0.11 0.29 0.0057 0.82 1818 35 1724 20 1653 28 90
    下载: 导出CSV

    表  2   托莫尔日特古元古代片麻岩全岩主量、微量和稀土元素组成

    Table  2   Major, trace and rare earth elements compositions of the Paleoproterozoic gneisses in the Tuomoerrite area

    样品号 19DLH1 19DLH2 样品号 19DLH1 19DLH2
    SiO2 63.71 62.80 Tm 0.10 0.11
    TiO2 0.52 0.57 Yb 0.60 0.67
    Al2O3 16.73 17.07 Lu 0.09 0.10
    Fe2O3 2.44 2.65 Eu/Eu* 1.16 1.08
    FeO 2.41 2.53 LREE 172.30 202.38
    MnO 0.06 0.07 HREE 7.30 7.83
    MgO 1.61 1.75 LREE/HREE 23.59 25.85
    CaO 4.14 4.34 (La/Yb)N 48.30 51.61
    Na2O 4.50 4.50 Li 11.53 8.07
    K2O 1.34 1.27 Sc 4.89 5.27
    P2O5 0.24 0.25 V 65.68 67.60
    烧失量 1.90 1.86 Cr 21.10 17.02
    总量 99.60 99.64 Ni 10.22 9.59
    Mg# 38 39 Co 8.79 9.72
    TFeO 4.61 4.92 Cu 5.00 8.26
    TFeO/MgO 2.86 2.81 Pb 9.79 10.40
    A/CNK 1.02 1.02 Cs 1.05 1.14
    La 40.54 48.44 Ga 20.07 20.25
    Ce 82.28 96.78 Rb 42.39 41.19
    Pr 9.41 11.13 Ba 627 575
    Nd 33.46 38.74 Sr 832 868
    Sm 5.08 5.73 Th 2.20 3.25
    Eu 1.53 1.56 U 0.57 0.78
    Gd 3.23 3.41 Nb 5.45 5.89
    Tb 0.36 0.39 Ta 0.17 0.22
    Dy 1.80 1.92 Zr 194.11 201.95
    Ho 0.32 0.35 Hf 5.03 5.17
    Er 0.80 0.87 Y 7.24 7.85
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  3   托莫尔日特古元古代片麻岩(19DLH1)锆石Lu-Hf同位素组成

    Table  3   Zircon Lu-Hf isotopic compositions of the Paleoproterozoic gneiss in the Tuomoerrite area

    测试编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf (176Hf/177Hf)i fLu/Hf εHf(0) εHf(t) TDM1/Ma TDM2/Ma
    4 2413 0.073112 0.001669 0.001776 0.000048 0.281435 0.000019 0.281353 -0.95 -47.3 3.9 2594 2708
    6 2413 0.025404 0.001080 0.000647 0.000028 0.281304 0.000015 0.281274 -0.98 -51.9 1.1 2695 2888
    7 1922 0.024353 0.000143 0.000631 0.000002 0.281422 0.000015 0.281399 -0.98 -47.7 -5.7 2534 2942
    8 2413 0.047405 0.000670 0.001214 0.000010 0.281313 0.000016 0.281257 -0.96 -51.6 0.5 2723 2927
    9 2413 0.050770 0.005023 0.001216 0.000119 0.281401 0.000017 0.281345 -0.96 -48.5 3.6 2602 2727
    11 2413 0.051653 0.000499 0.001249 0.000015 0.281354 0.000014 0.281296 -0.96 -50.2 1.9 2669 2838
    13 2413 0.024829 0.000648 0.000632 0.000016 0.281331 0.000015 0.281302 -0.98 -51.0 2.1 2658 2825
    24 2413 0.066743 0.000996 0.001611 0.000029 0.281405 0.000015 0.281331 -0.95 -48.3 3.1 2624 2759
    25 2413 0.075465 0.001225 0.001788 0.000032 0.281425 0.000017 0.281343 -0.95 -47.6 3.5 2608 2731
    30 2413 0.021669 0.000326 0.000548 0.000009 0.281371 0.000018 0.281345 -0.98 -49.6 3.6 2598 2726
    下载: 导出CSV

    表  4   托莫尔日特古元古代片麻岩全岩Rb-Sr和Sm-Nd同位素组成

    Table  4   Whole-rock Rb-Sr and Sm-Nd isotopic compositions of the Paleoproterozoic gneisses in the Tuomoerrite area

    样品号 原岩年龄/Ma 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)t 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)t εNd(0) εNd(t) fSm/Nd
    19DLH1 2413 0.1476 0.709491 0.000004 0.70435 0.0918 0.511010 0.000004 0.509550 -31.8 0.8 -0.53
    19DLH2 2413 0.1374 0.709186 0.000005 0.70440 0.0893 0.511011 0.000006 0.509590 -31.7 1.6 -0.55
    下载: 导出CSV
  • 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11.
    许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    Yin A, Manning C E, Lovera O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure(UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 2007, 49: 681-716. doi: 10.2747/0020-6814.49.8.681

    张雪亭, 杨生德. 青海省板块构造研究1: 100万青海省大地构造说明书[M]. 北京: 地质出版社, 2007.
    张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554.

    Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011

    杨经绥, 张建新, 孟繁聪, 等. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J]. 地学前缘, 2003, 10(3): 291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026
    张贵宾, 宋述光, 张立飞, 等. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J]. 岩石学报, 2005, 21(4): 1049-1058.
    陈丹玲, 孙勇, 刘良, 等. 柴北缘野马滩超高压地体的成因——年代学研究结果的约束[J]. 西北大学学报(自然科学版), 2009, 39(4): 631-638.
    张建新, 孟繁聪, 李金平, 等. 柴达木北缘榴辉岩中的柯石英及其意义[J]. 科学通报, 2009, (5): 618-623.

    Zhang J X, Yu S Y, Mattinson C G. Early Paleozoic polyphase metamorphism in northern Tibet, China[J]. Gondwana Research, 2017, 41: 267-289. doi: 10.1016/j.gr.2015.11.009

    Song S G, Niu Y L, Zhang G B, et al. Two epochs of eclogite metamorphism link 'cold' oceanic subduction and 'hot' continental subduction, the North Qaidam UHP belt, NW China[C]//Zhang L F, Zhang Z M, Schertl H P, et al. HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. London: Geological Society of London, Special Publications, 2019, 474: 275-289.

    Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002

    陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703.

    Ren Y F, Chen D L, Kelsey D E, et al. Metamorphic evolution of a newly identified Mesoproterozoic oceanic slice in the Yuka terrane and its implications for a multi-cyclic orogenic history of the North Qaidam UHPM belt[J]. Journal of Metamorphic Geology, 2018, 36(4): 463-488. doi: 10.1111/jmg.12300

    Yu S Y, Li S Z, Zhang J X, et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews, 2019, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016

    Yu S Y, Li S Z, Zhang J X, et al. Linking high-pressure mafic granulite, TTG-like(tonalitic-trondhjemitic) leucosome and pluton, and crustal growth during continental collision[J]. Geological Society of America Bulletin, 2019, 131(3/4): 572-586.

    Zhou G S, Zhang J X, Yu S Y, et al. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China: Constraints from phase equilibrium modeling[J]. Journal of Asian Earth Sciences, 2019, 173: 161-175. doi: 10.1016/j.jseaes.2019.01.017

    Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 323-333.

    Xia L Q, Li X M, Yu J Y, et al. Mid-late Neoproterozoic to early paleozoic volcanism and tectonic evolution of the Qilianshan, NW China[J]. Geo. Res. J., 2016, 9/12: 1-41.

    Fu D, Kusky T, Wilde S A, et al. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis[J]. GSA Bulletin, 2019, 131(5/6): 1031-1056.

    Fu C L, Yan Z, Wang Z Q, et al. Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt[J]. Tectonics, 2018, 37(5): 1321-1346. doi: 10.1029/2017TC004740

    Fu C L, Yan Z, Aitchison J C, et al. Multiple subduction processes of the Proto-Tethyan Ocean: Implication from Cambrian intrusions along the North Qilian suture zone[J]. Gondwana Research, 2020, 87: 207-223. doi: 10.1016/j.gr.2020.06.007

    Yan Z, Fu C L, Aitchison J C, et al. Retro-foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau[J]. Tectonics, 2019, 38(12): 4229-4248. doi: 10.1029/2019TC005560

    高延林. 青藏高原古洋壳恢复与重建问题讨论[J]. 青海地质, 2000, 9(1): 1-8.
    潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(1): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002
    潘彤, 王福德. 初论青海省金矿成矿系列[J]. 黄金科学技术, 2018, 26(4): 423-430.
    青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991: 1-662.
    庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191104&flag=1
    林成贵, 郑有业, 程志中, 等. 柴北缘鱼卡榴辉岩型金红石矿床成矿物理条件[J]. 地质通报, 2019, 38(5): 866-883. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190516&flag=1
    赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(1): 18-28.
    史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004
    王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(7): 487-493. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20030794&flag=1
    赵凤清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20030105&flag=1
    吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑), 2008, 38(8): 930-949. doi: 10.3321/j.issn:1006-9267.2008.08.002
    李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012
    高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(9): 1452-1463.
    夏文静, 牛漫兰, 闫臻, 等. 柴北缘牦牛山地区牦牛山组沉积相组合特征[J]. 地质学报, 2014, 88(5): 943-955.
    张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(1): 18-26. doi: 10.3969/j.issn.1007-2802.2015.01.002
    宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(7): 916-940.
    朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成发展和消亡[J]. 地质学报, 2015, 89(2): 234-251.

    Lu Z L, Zhang J X, Mattinson C. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China[J]. Journal of Metamorphic Geology, 2018, 36: 653-666. doi: 10.1111/jmg.12305

    Li X C, Niu M L, Yakymchuk C, et al. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China[J]. Journal of Metamorphic Geology, 2019, 37(4): 479-508. doi: 10.1111/jmg.12468

    陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘"达肯大坂群"的再厘定[J]. 地质通报, 2002, 21(1): 19-23. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20020106&flag=1
    李怀坤, 陆松年, 王惠初, 等. 青海柴北缘新元古代超大陆裂解的地质记录-全吉群[J]. 地质调查与研究, 2003, 26(1): 27-37. doi: 10.3969/j.issn.1672-4135.2003.01.006
    陈能松, 夏小平, 李晓彦, 等. 柴北缘花岗片麻岩的岩浆作用计时和前寒武纪地壳增长的锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 501-512.
    郝国杰, 陆松年, 辛后田, 等. 青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件[J]. 吉林大学学报(地球科学版), 2004, 34(4): 495-501.

    Gong S L, Chen N S, Wang Q Y, et al. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry[J]. Gondwana Research, 2012, 21: 152-166. doi: 10.1016/j.gr.2011.07.011

    Gong S L, He C, Wang X C, et al. No plate tectonic shutdown in the early Paleoproterozoic: Constraints from the ca. 2.4 Ga granitoids in the Quanji Massif, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 221-242. doi: 10.1016/j.jseaes.2018.09.011

    Wang C, Li R S, Li M, et al. Palaeoproterozoic magmatic-metamorphic history of the Quanji Massif, Northwest China: implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?[J]. International Geology Review, 2015, 57(13): 1-19.

    路增龙, 张建新, 毛小红, 等. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩: 岩石学、锆石U-Pb年代学和Lu-Hf同位素证据[J]. 岩石学报, 2017, 33(12): 3815-3828.

    Yu S Y, Zhang J X, Li S Z, et al. Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent[J]. Precambrian Research, 2017, 291: 42-62. doi: 10.1016/j.precamres.2017.01.016

    He C, Gong S L, Wang L, et al. Protracted post-collisional magmatism during plate subduction shutdown in early Paleoproterozoic: Insights from post-collisional granitoid suite in NW China[J]. Gondwana Research, 2018, 55: 92-111. doi: 10.1016/j.gr.2017.11.009

    张建新, 万渝生, 许志琴, 等. 柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代[J]. 岩石学报, 2001, 17(3): 453-458.
    王勤燕, 陈能松, 李晓彦, 等. 全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年[J]. 科学通报, 2008, 53(14): 1693-1701.

    Chen N S, Gong S L, Sun M, et al. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376.

    Chen N S, Liao F X, Wang L, et al. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 102-116. doi: 10.1016/j.precamres.2013.01.013

    张璐, 廖梵汐, 巴金, 等. 全吉地块花岗片麻岩中镁铁质岩包体的矿物演化和锆石定年与古元古代区域变质作用[J]. 地学前缘, 2011, 18(2): 79-84.
    于凤池, 魏刚锋, 孙继东. 黑色岩系同构造金矿床成矿模式——以滩间山金矿床为例[M]. 西安: 西北大学出版社, 1994: 130.
    辛后田, 郝国杰, 王惠初, 等. 柴北缘前震旦纪地质系统的新认识[J]. 前寒武纪研究进展, 2002, 25(2): 113-119.
    曹泊, 闫臻, 付长垒, 等. 柴北缘赛坝沟增生杂岩组成与变形特征[J]. 岩石学报, 2019, 35(4): 1015-1032.

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt peridotite interactions in the trans-North China Orogen: U-Pb Dating, Hf Isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-77.

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    Sláma J, Košler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

    Blichert Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252-255. doi: 10.1038/20426

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9): 959-965. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409170&flag=1

    Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897. doi: 10.1038/nature03162

    Gong S L, Chen N S, Geng H Y, et al. Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-Y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications[J]. Journal of Earth Science, 2014, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2

    肖庆辉, 卢欣祥, 王菲, 等. 柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J]. 中国科学(D辑), 2003, 33(12): 1193-1200.
    陆松年, 于海峰, 李怀坤, 等. "中央造山带"早古生代缝合带及构造分区概述[J]. 地质通报, 2006, 25(12): 1368-1380. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2006012258&flag=1

    Chen N S, Zhang L, Sun M, et al. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history[J]. Journal of Asian Earth Sciences, 2012, 54/55: 110-130. doi: 10.1016/j.jseaes.2012.04.006

    黄婉, 张璐, 巴金, 等. 柴达木地块北缘全吉地块钾长石浅粒岩碎屑锆石LA-ICP-MS U-Pb定年——对达肯大坂岩群时代的约束[J]. 地质通报, 2011, 30(9): 1353-1359. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110903&flag=1
    于胜尧, 张建新. 柴北缘都兰地区片麻岩的起源及形成时代: 锆石U-Pb年代学、REE和Hf同位素的证据[J]. 岩石学报, 2010, 26(7): 2083-2098.
图(9)  /  表(4)
计量
  • 文章访问数:  2600
  • HTML全文浏览量:  378
  • PDF下载量:  1608
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 修回日期:  2021-06-08
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-08-14

目录

    /

    返回文章
    返回