Zircon U-Pb age, geochemistry and Hf isotope of two types of Late Ordovician super-aluminum granites in the Caojian area of western Yunnan, and its indication to Pan-African movement
-
摘要:
滇西云龙县漕涧复式花岗岩体出露于保山地块北端东缘,由早奥陶世、晚奥陶世、晚白垩世、新近纪4期花岗岩组成。以晚奥陶世花岗质岩体为主体,主要岩性为中粒黑云二长花岗岩、似斑状中粗粒黑云二长花岗岩,岩石普遍发育片麻状构造。二者的LA-ICP-MS锆石U-Pb年龄分别为453.9±3.3 Ma和456.8±3.5 Ma。二者均属后碰撞环境的高钾钙碱性强过铝花岗岩,富集K、Rb等大离子亲石元素,亏损Zr、Ta、Nb、Th等高场强元素。在Sr-Yb图解上,前者属喜马拉雅型花岗岩,为下地壳环境较高压力条件下的部分熔融物;而后者属南岭型花岗岩,指示了中-上地壳环境较低压力条件下的部分熔融作用;在B-A图解上,前者显示白云母过铝花岗岩的趋势,岩浆的形成主要与隆升减压作用相关;而后者显示了含堇青石富黑云母过铝花岗岩的特点,岩浆的形成主要与深部地幔物质上涌导致的增温加热作用有关。锆石Hf同位素分析表明,前者εHf(t)=-11.65~0.28,平均为-6.36;后者εHf(t)=-11.61~-1.57,平均为-6.78,二者具有大致相当的源区,均为古老的地壳物质,但中粒黑云二长花岗岩中可能有少量地幔物质的加入。综合研究表明,在泛非运动的后碰撞阶段背景下,深部壳-幔物质相互作用的过程可能首先是隆升减压导致下地壳物质的低度部分熔融,随后地幔物质上涌,导致中-上地壳物质的增温加热的较高程度部分熔融。该两类晚奥陶世花岗岩属冈瓦纳大陆北缘的小地块之间相互挤压、碰撞的岩浆作用响应,也表明保山地块存在泛非运动。
Abstract:The Caojian complex granite located in Yunlong County of western Yunnan is exposed on the eastern edge of the northern end of the Baoshan block, which is composed of four period granites of Early Ordovician, Late Ordovician, Late Cretaceous and Neogene. The main Late Ordovician intrusive is lithologically made of medium grained biotite monzogranite and the porphyritic medium-coarse grained biotite monzogranite, in which gneissic structure is well developed. Zircon LA-ICP-MS U-Pb ages are 453.9±3.3 Ma and 456.8±3.5 Ma, respectively. Both belong to post-orogenic strongly-peraluminous high-K calcalkaline peraluminous granite with enrichment of K、Rb and other large ions lithophile element, but depletion of the high field strength element such as Zr, Ta, Nb, Th etc. According to the Sr-Yb diagram, the former belongs to the Himalayan granite, which is a partial melt under higher pressure in lower crust environment. The latter belongs to the Nanling granite, which indicates partial melting under the condition of lower pressure in the middle-upper crust environment. In the light of A-B diagram, the former shows the trend to muscovite peraluminous granite, and its magma is mainly related to uplift and decompression. The latter shows the characteristics of cordierite-bearing biotite-rich peraluminous granite, and its magma is mainly related to the warming and heating caused by upwelling of the deep mantle materials. Zircon Hf isotope analysis shows that the former yields εHf(t) value of 11.65~0.28, averaging -6.36. The latter gives εHf(t) value of 11.61~-1.57, averaging -6.78. Both share the roughly equivalent source regions, and are ancient crustal materials, with a small amount of mantle material added to the medium grained biotite monzogranite. It shows that the process of deep crust-mantle interaction may be firstly uplift and decompression leading to lower crust materials low-degree partial melting, not far behind, because to upwelling of mantle materials, warmed and heated medium-upper crust materials happened to higher-degree partial melting, in the background of the post-collision phase of thePan-African movement. The two types of the Late Ordovician granites are the magmatism responses of mutual extrusion and collision between small blocks on the northern edge of Gondwana continent, it shows that there is the Pan-African movement in Baoshan block.
-
Keywords:
- western Yunnan /
- Caojian complex granite /
- Late Ordovician /
- zircon U-Pb age /
- Hf isotope /
- Pan-African movement /
- Baoshan block
-
致谢: 项目组成员参加了野外调查和研究工作,锆石测年样品的制备和分析得到河北省廊坊市宇恒矿岩技术服务有限公司和湖北省地质实验室测试中心的大力支持,岩石地球化学方面的测试为自然资源部昆明矿产资源监督检测中心和湖北省地质实验室测试中心完成,锆石原位Hf同位素分析在武汉上谱分析科技有限责任公司实验室完成,成文过程中得到李静、张虎两位正高级工程师和审稿专家的悉心指导,在此一并表示衷心的感谢。
-
表 1 漕涧复式岩体晚奥陶世花岗岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 Results of LA-ICP-MS zircon U-Th-Pb analysis of Late Ordovician granites from Caojian complex
测点号 元素/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207 Pb/ 206 Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D0114-1-1(中粒二长花岗岩,ηγaO3):18个测点 年龄加权平均值为453.9±3.3 Ma(MSWD=0.49,n=14) 1 103.2 134.2 1435.0 0.10 0.0567 0.0010 0.5720 0.0127 0.0728 0.0011 479.7 37.0 459.3 8.2 453.1 6.9 2 64.4 134.7 420.5 0.35 0.0568 0.0011 0.5946 0.0133 0.0758 0.0012 483.4 42.6 473.8 8.5 471.3 7.3 3 79.1 194.0 618.0 0.35 0.0578 0.0011 0.5870 0.0130 0.0736 0.0012 520.4 40.7 468.9 8.3 457.7 7.0 4 71.4 221.3 291.5 0.82 0.0582 0.0016 0.5980 0.0231 0.0740 0.0014 538.9 59.3 476.0 14.7 459.9 8.5 5 125.1 317.9 1226.5 0.28 0.0568 0.0011 0.5676 0.0136 0.0723 0.0012 483.4 42.6 456.5 8.8 449.8 7.2 6 70.1 180.1 497.1 0.40 0.0599 0.0018 0.6031 0.0166 0.0731 0.0014 611.1 32.4 479.2 10.5 454.7 8.2 7 269.6 772.8 1396.9 0.56 0.0580 0.0012 0.5864 0.0125 0.0733 0.0010 527.8 44.4 468.6 8.0 455.8 6.3 8 78.1 167.0 782.1 0.17 0.0564 0.0015 0.5711 0.0119 0.0733 0.0010 477.8 59.3 458.8 7.7 456.2 6.0 9 67.5 134.5 826.5 0.15 0.0568 0.0012 0.5751 0.0114 0.0734 0.0010 483.4 48.1 461.3 7.4 456.3 6.0 10 86.6 132.3 1285.9 0.09 0.0571 0.0011 0.5781 0.0093 0.0734 0.0008 494.5 42.6 463.2 6.0 456.5 5.0 11 82.6 138.1 1179.0 0.10 0.0568 0.0010 0.6240 0.0123 0.0798 0.0013 483.4 40.7 492.3 7.7 494.6 7.8 12 69.3 119.2 970.2 0.11 0.0573 0.0010 0.5793 0.0113 0.0732 0.0010 505.6 38.9 464.0 7.2 455.7 5.8 13 134.1 381.4 869.8 0.38 0.0569 0.0010 0.6239 0.0137 0.0795 0.0013 487.1 34.3 492.3 8.5 493.4 7.7 14 124.8 193.6 2016.2 0.09 0.0569 0.0012 0.5540 0.0119 0.0708 0.0011 487.1 44.4 447.6 7.7 440.8 6.8 15 158.5 396.4 1350.2 0.25 0.0574 0.0009 0.5772 0.0112 0.0728 0.0010 505.6 35.2 462.7 7.2 453.2 5.8 16 93.8 129.8 1475.9 0.08 0.0584 0.0009 0.5881 0.0105 0.0730 0.0009 542.6 34.1 469.7 6.7 454.3 5.5 17 58.3 93.2 711.8 0.11 0.0578 0.0011 0.5744 0.0104 0.0721 0.0010 520.4 40.7 460.9 6.7 448.9 6.0 18 179.8 555.0 601.5 0.78 0.0581 0.0013 0.6253 0.0140 0.0782 0.0012 531.5 51.8 493.2 8.8 485.1 7.5 PM006-12-1(似斑状中粗粒二长花岗岩,ηγbO3):19个测点 年龄加权平均值为456.8±3.5 Ma(MSWD=1.2,n=16) 1 76.4 122.6 608.6 0.19 0.0564 0.0010 0.5725 0.0117 0.0735 0.0011 464.9 38.9 459.6 7.6 457.4 6.8 2 120.1 255.3 941.8 0.26 0.0561 0.0009 0.5690 0.0100 0.0734 0.0010 457.5 33.3 457.4 6.5 456.5 6.0 3 81.1 152.5 711.7 0.21 0.0568 0.0009 0.5776 0.0103 0.0735 0.0010 483.4 33.3 462.9 6.7 457.4 6.0 4 94.0 141.1 1101.9 0.13 0.0575 0.0008 0.5756 0.0083 0.0724 0.0009 522.3 27.8 461.6 5.4 450.9 5.4 5 85.9 202.1 672.9 0.30 0.0565 0.0008 0.5914 0.0122 0.0755 0.0011 472.3 31.5 471.7 7.8 469.0 6.8 6 99.0 124.1 1489.0 0.08 0.0576 0.0008 0.5856 0.0088 0.0736 0.0009 522.3 31.5 468.1 5.7 457.9 5.4 7 71.3 138.0 684.7 0.20 0.0577 0.0009 0.5874 0.0112 0.0736 0.0010 520.4 35.2 469.2 7.2 457.6 6.0 8 61.8 105.4 761.8 0.14 0.0557 0.0009 0.5855 0.0114 0.0759 0.0011 442.6 35.2 468.0 7.3 471.7 6.4 9 67.7 123.3 800.6 0.15 0.0566 0.0009 0.5894 0.0108 0.0754 0.0011 476.0 35.2 470.5 6.9 468.7 6.8 10 131.1 158.3 2106.6 0.07 0.0571 0.0007 0.5717 0.0087 0.0723 0.0008 494.5 23.1 459.1 5.6 450.2 5.1 11 85.8 175.1 829.0 0.20 0.0569 0.0009 0.5779 0.0109 0.0736 0.0012 487.1 35.2 463.1 7.0 457.7 7.0 12 58.4 102.4 556.6 0.18 0.0575 0.0011 0.5838 0.0128 0.0735 0.0012 509.3 42.6 466.9 8.2 457.3 7.2 13 71.1 124.4 708.6 0.16 0.0562 0.0011 0.5697 0.0137 0.0735 0.0014 457.5 44.4 457.8 8.9 457.2 8.4 14 147.8 146.7 2760.7 0.05 0.0575 0.0010 0.5834 0.0147 0.0734 0.0016 509.3 38.9 466.6 9.4 456.4 9.3 15 98.5 145.6 1420.8 0.09 0.0572 0.0009 0.5728 0.0102 0.0725 0.0010 501.9 67.6 459.9 6.6 451.0 6.3 16 73.4 133.2 881.8 0.15 0.0591 0.0011 0.5743 0.0154 0.0702 0.0014 572.3 42.6 460.8 9.9 437.4 8.2 17 61.2 107.8 774.1 0.13 0.0569 0.0010 0.5788 0.0115 0.0737 0.0011 487.1 38.9 463.7 7.4 458.4 6.8 18 71.6 128.3 818.4 0.15 0.0572 0.0009 0.5714 0.0106 0.0724 0.0011 498.2 33.3 458.9 6.9 450.8 6.6 19 147.9 353.4 947.3 0.34 0.0578 0.0009 0.5847 0.0110 0.0733 0.0011 520.4 39.8 467.5 7.0 456.1 6.5 表 2 漕涧复式岩体晚奥陶世花岗岩主量、微量和稀土元素分析结果
Table 2 Analyical results of major, trace elements and REE of Late Ordovician granites from Caojian complex
元素 D0319- 1-1 D0114- 1-1-1 D0114- 1-1-2 PM006- 37-1 PM006- 33-1 D3016- 1-1-1 D3016- 1-1-2 D3017- 1-1-1 D3017- 1-1-2 PM012- 7-1 PM006 -4-2 PM006- 9-1 PM006- 10-1 PM006- 12-1 PM006- 27-1 PM006- 59-1 PM006- 6-1 PM006- 19-1 中粒二长花岗岩(ηγaO3) 似斑状中粗粒二长花岗岩(ηγbO3) SiO2 76.17 74.42 75.33 73.6 76.09 75.52 75.83 76.06 76.16 73.81 72.49 70.35 70.12 71.38 70.69 72.22 75.32 70.86 TiO2 0.17 0.17 0.17 0.17 0.21 0.10 0.07 0.13 0.12 0.33 0.43 0.57 0.52 0.62 0.51 0.51 0.4 0.55 Al2O3 12.52 13.29 13.19 13.2 12.67 13.64 13.43 12.80 12.81 12.69 13.62 13.15 13.32 13.41 13.49 13.46 11.65 13.13 Fe2O3 1.82 1.02 0.81 1.67 1.48 0.37 0.35 0.38 0.39 0.45 0.91 1.40 1.43 2.33 1.36 1.61 1.07 1.66 FeO 0.92 0.72 0.69 0.75 0.96 0.92 0.82 1.02 1.05 2.33 2.45 2.57 2.52 2.17 2.66 2.68 2.08 2.9 MnO 0.03 0.02 0.02 0.032 0.036 0.05 0.05 0.05 0.06 0.04 0.05 0.06 0.056 0.064 0.058 0.055 0.048 0.058 MgO 0.32 0.46 0.37 0.29 0.36 0.26 0.17 0.28 0.28 0.58 0.83 1.09 0.99 1.24 0.97 0.89 0.76 1.08 CaO 0.73 0.82 0.79 0.75 0.73 0.18 0.20 0.43 0.44 1.40 1.65 1.82 1.61 1.96 1.41 1.54 1.41 1.90 Na2O 3.13 3.26 3.08 2.94 2.6 2.69 2.69 2.84 2.83 2.46 2.77 2.82 2.82 2.35 2.27 2.50 2.00 2.85 K2O 4.48 5.44 5.05 5.3 4.89 4.52 4.56 4.72 4.71 4.46 4.77 3.23 3.55 3.15 5.19 5.17 3.67 3.26 P2O5 0.18 0.16 0.17 0.15 0.11 0.16 0.17 0.16 0.16 0.25 0.16 0.17 0.15 0.18 0.21 0.16 0.13 0.17 H2O+ 0.32 0.40 0.42 1.03 0.36 1.26 1.33 0.64 0.66 0.91 0.22 0.91 0.73 1.36 0.55 0.35 0.59 0.64 H2O- 0.10 0.07 0.04 0.22 0.13 0.34 0.26 0.21 0.17 0.21 0.05 0.26 0.15 0.29 0.13 0.15 0.18 0.18 CO2 0.03 0.05 0.02 0.16 0.26 0.025 0.049 0.025 0.025 0.048 0.25 0.30 0.24 0.36 0.20 0.15 0.28 0.22 烧失量 0.37 0.56 0.63 0.94 0.84 1.32 1.20 0.86 0.72 0.71 0.50 1.18 0.90 1.68 0.87 0.43 0.90 0.90 La 16.7 13.4 12.9 17.6 21.0 5.20 5.67 10.96 12.01 41.0 34.6 45.7 40.0 58.5 37.6 33.3 33.1 46.2 Ce 40.3 27.9 26.7 35.1 43.4 10.49 11.10 22.43 24.82 85.5 72.0 93.4 83.7 108 78.1 69.3 66.4 93.4 Pr 4.20 3.32 3.25 4.60 5.37 1.44 1.62 2.91 3.16 10.2 8.91 11.4 10.4 14.9 9.84 8.70 8.28 11.6 Nd 16.1 12.5 12.2 17.7 19.8 5.87 5.82 10.56 11.12 38.3 34.5 43.8 40.6 57.7 38.2 33.4 31.8 44.5 Sm 4.05 2.90 2.93 4.19 4.67 1.73 1.82 2.98 3.08 8.49 7.20 9.01 8.44 11.7 8.21 7.04 6.74 9.01 Eu 0.35 0.37 0.35 0.49 0.43 0.17 0.11 0.23 0.26 1.17 1.02 1.07 1.19 1.59 0.99 1.10 0.79 1.09 Gd 3.56 2.91 2.84 4.14 4.58 1.91 1.84 3.28 3.44 8.10 6.75 8.46 7.91 10.9 7.68 6.67 6.29 8.25 Tb 0.70 0.55 0.55 0.86 0.97 0.35 0.35 0.60 0.65 1.51 1.15 1.46 1.34 1.86 1.38 1.19 1.07 1.39 Dy 4.18 3.32 3.26 5.28 6.01 2.27 2.39 4.24 4.23 9.91 6.38 8.50 7.91 10.5 7.99 7.15 6.05 7.69 Ho 0.75 0.59 0.60 0.95 1.10 0.49 0.47 0.84 0.86 1.98 1.19 1.68 1.53 1.94 1.52 1.42 1.13 1.43 Er 1.98 1.62 1.68 2.56 2.91 1.35 1.27 2.29 2.33 5.71 3.28 4.79 4.20 5.24 3.97 4.10 2.94 3.99 Tm 0.32 0.24 0.25 0.34 0.39 0.21 0.20 0.32 0.32 0.78 0.45 0.67 0.56 0.69 0.51 0.55 0.39 0.53 Yb 2.03 2.03 2.11 2.05 2.27 1.31 1.22 1.79 1.88 4.72 2.77 4.15 3.45 4.08 2.96 3.50 2.28 3.19 Lu 0.25 0.25 0.25 0.28 0.31 0.18 0.18 0.25 0.26 0.70 0.39 0.58 0.50 0.57 0.42 0.49 0.32 0.46 Y 21.0 21.9 22.1 27.2 31.5 13.46 13.11 24.42 24.56 51.8 30.2 43.5 38.0 50.6 39.0 36.8 29.2 36.9 ∑REE 116.4 93.8 92.0 123.3 144.7 46.4 47.2 88.1 93.0 270.5 210.7 278.1 249.7 338.3 238.4 214.8 196.8 269.7 Zr 78.2 81.2 80.6 88.0 95.6 44.6 43.2 66.1 68.2 195.0 151.7 211.6 196.2 255.6 185.9 182.1 136.3 211.4 Zn 45.9 20.2 17.1 30.88 32.79 39.71 39.78 29.96 28.14 59.2 44.81 57.87 55.23 63.35 57.87 47.80 44.13 56.13 V 12.2 22.3 24.3 35.53 36.69 11.6 4.7 9.2 9.3 20.5 47.15 60.23 58.08 59.37 52.77 55.25 50.85 56.84 Th 16.9 11.4 9.9 14.03 17.19 6.24 6.20 11.15 8.74 18.6 22.31 28.59 26.03 30.96 25.06 22.56 21.18 27.25 Sc 7.15 4.82 5.37 6.26 6.38 5.00 4.19 4.32 3.89 6.21 7.95 10.33 9.58 10.71 9.13 8.95 7.72 9.81 Sr 39.2 66.0 65.9 76.39 61.61 30.3 23.6 29.8 28.0 84.2 76.96 78.86 81.57 70.48 68.47 88.37 55.75 76.11 Rb 357 259 258 283.4 278.2 481.7 516.1 373.1 350.8 176 221.5 162.1 299.4 189.3 263.0 227.8 189.4 197.3 Ni 4.94 3.16 3.25 5.41 4.34 3.1 2.0 2.5 2.1 5.76 8.16 9.60 8.68 12.79 10.20 9.48 7.63 11.88 Nb 15.0 13.5 13.6 14.21 16.90 12.80 13.93 10.16 9.19 17.0 15.26 19.11 16.90 19.43 19.28 16.12 14.04 18.05 Cu 5.94 4.61 4.11 14.97 25.63 9.76 4.79 3.44 3.40 5.32 57.00 73.44 67.05 105.2 82.71 25.22 70.61 52.75 Cr 16.2 6.16 6.60 7.76 7.37 4.4 2.7 4.1 3.6 10.9 15.94 22.92 22.77 21.20 18.90 19.55 17.27 24.60 Co 2.56 21.6 25.6 2.52 2.74 2.01 0.95 1.80 1.56 3.69 5.57 7.81 6.87 8.45 5.77 6.99 5.99 7.22 Ba 172 268 237 252.3 196.5 37 33.7 78 68 609 645.4 473.3 716.8 352.7 626.2 839.9 286.1 365.1 Hf 5.11 4.19 3.50 4.72 7.29 4.7 4.7 4.1 4.2 4.7 9.75 15.35 6.52 18.87 7.97 9.62 8.96 11.37 Ta 1.48 1.99 2.29 1.57 2.52 4.44 5.27 1.84 1.94 1.73 1.50 1.68 1.38 1.56 1.68 1.23 1.34 1.61 U 6.05 3.81 3.00 5.87 7.05 3.91 3.21 3.29 5.68 2.76 2.28 2.53 3.15 3.46 4.75 2.82 2.58 3.60 Pb 31.5 11.0 13.2 31.43 28.77 13.05 12.91 24.70 22.90 29.5 32.19 26.32 29.85 21.52 32.41 35.17 25.34 22.90 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 漕涧复式岩体晚奥陶世花岗岩锆石Lu-Hf同位素组成
Table 3 Zircon Lu-Hf isotopic compositions of Late Ordovician granites from Caojian complex
测点号 176Hf/177Hf 1σ 176Lu/177Hf 176Yb/177Hf 年龄/Ma εHf(t) tDM2/Ma 样品:D0114-1-1(中粒二长花岗岩,ηγaO3),16个测点 1 0.282272 0.000012 0.003362 0.113807 453.1 -8.74 1476 2 0.282400 0.000011 0.001557 0.052312 471.3 -3.28 1223 3 0.282331 0.000011 0.002963 0.099929 457.7 -6.44 1373 5 0.282274 0.000013 0.002898 0.089091 449.8 -8.59 1454 6 0.282311 0.000010 0.001915 0.064862 454.7 -6.89 1363 7 0.282349 0.000017 0.003410 0.107901 455.8 -5.97 1363 8 0.282313 0.000011 0.002516 0.085391 456.2 -6.97 1382 9 0.282323 0.000009 0.002115 0.074838 456.3 -6.49 1353 10 0.282297 0.000014 0.002369 0.071411 456.5 -7.48 1400 11 0.282436 0.000010 0.001755 0.060555 494.6 -1.57 1178 12 0.282218 0.000014 0.003458 0.115773 455.7 -10.63 1561 13 0.282407 0.000013 0.001540 0.048189 493.4 -2.55 1212 15 0.282357 0.000010 0.002110 0.074469 453.2 -5.35 1303 16 0.282191 0.000017 0.003608 0.114469 454.3 -11.65 1608 17 0.282247 0.000014 0.002337 0.072042 448.9 -9.40 1471 18 0.282500 0.000011 0.002446 0.075493 485.1 0.28 1106 样品:PM006-12-1(似斑状中粗粒二长花岗岩,ηγbO3),15个测点 1 0.282297 0.000010 0.002356 0.073152 457.4 -8.65 1399 2 0.282362 0.000009 0.002054 0.065267 456.5 -6.46 1294 3 0.282324 0.000009 0.002651 0.085745 457.4 -8.44 1371 4 0.282316 0.000008 0.003263 0.101955 450.9 -6.97 1406 5 0.281986 0.000029 0.001519 0.046398 471.3 -3.28 1807 6 0.282005 0.000016 0.002484 0.075600 457.9 -5.93 1827 7 0.282282 0.000008 0.002059 0.065822 457.6 -6.94 1409 8 0.282398 0.000009 0.002280 0.069062 494.6 -1.57 1250 9 0.282341 0.000009 0.000895 0.026983 493.4 -2.55 1284 10 0.282274 0.000009 0.003569 0.115270 450.2 -6.62 1482 11 0.282309 0.000009 0.001934 0.062157 457.7 -7.46 1366 12 0.282334 0.000009 0.001692 0.054063 457.3 -10.59 1322 13 0.282254 0.000009 0.001064 0.034355 457.2 -5.27 1411 14 0.282194 0.000009 0.002602 0.084404 456.4 -11.61 1559 15 0.282308 0.000009 0.002888 0.094373 451.0 -9.36 1404 -
钟大赉. 川滇西部古特提斯造山带[M]. 北京: 科学出版社, 1998. 李兴振, 刘文均, 王义昭, 等. 西南三江地区特提斯构造演化与成矿(总论)[M]. 北京: 地质出版社, 1999. 莫宣学, 沈上越, 朱勤文, 等. 三江中南段火山岩-蛇绿岩与成矿[M]. 北京: 地质出版社, 1998. 刘本培, 冯庆来, 方念乔, 等. 滇西昌宁-孟连和澜沧江带古特提斯多岛洋构造演化[J]. 地球科学, 1993, 18(5): 529-539. 刘本培, 冯庆来, Chonglakmani C, 等. 滇西古特提斯多岛洋的结构及其南北延伸[J]. 地学前缘, 2002, 9(3): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200203027.htm 李文昌, 潘桂棠, 侯增谦, 等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010: 1-490. 许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非-古生代造山事件年龄纪录[J]. 岩石学报, 2005, 21(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501001.htm Cawood P A, Johnson M R W, Mchin N E. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planerary Science Letter, 2007, 255(1/2): 70-84. http://www.sciencedirect.com/science/article/pii/S0012825207000463
张泽明, 王金丽, 沈昆, 等. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迎巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24(7): 1627-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807020.htm 胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004021.htm 李才, 李彦旺, 王明, 等. 青藏高原泛非-早古生代造山事件研究重大进展[J]. 地质通报, 2010, 29(1/2): 1733-1736. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20101201&flag=1 Wang X X, Zhang J J, Santosh M, et al. Andean-type orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 2012, 154: 248-262. doi: 10.1016/j.lithos.2012.07.011
Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(18): 290-308.
熊昌利, 贾小川, 杨学俊, 等. 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境[J]. 地质通报, 2012, 31(2/3): 277-286. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020309&flag=1 林仕良, 丛峰, 高永娟, 等. 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 258-263. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020307&flag=1 潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 2004, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004 孙载波, 胡绍斌, 周坤, 等. 滇西南勐海布朗山奥陶纪花岗岩锆石U-Pb年代学、Hf同位素组成特征及其构造意义[J]. 地质通报, 2018, 37(11): 2044-2054. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181110&flag=1 鲁慧, 孙载波, 张虎, 等. 云南西盟曼亨花岗岩锆石U-Pb年龄与地质意义[J]. 矿物学报, 2015, (4): 515-521. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201504016.htm 李再会, 林仕良, 丛峰, 等. 滇西腾冲-保山地块早古生代岩浆作用和地球化学: 岩石成因和构造背景[J]. 矿物岩石地球化学通报, 2013, 32(6): 689-703. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306004.htm 陈吉琛. 滇西花岗岩类时代划分及同位素年龄值选用的讨论[J]. 云南地质, 1987, 6(2): 101-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD198702000.htm 黄勇, 郝家栩, 白龙, 等. 滇西施甸地区晚泛非运动的地层学和岩石学响应[J]. 地质通报, 2012, 31(2/3): 306-313. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020312&flag=1 吕伯西, 王增, 张能德, 等. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1993: 1-328. 董美玲, 董国臣, 莫宣学, 等. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1453-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205011.htm 郝家栩, 邹立志, 陈刚, 等. 滇西施甸地区卧牛寺组火山岩的地质时代及喷发环境[J]. 中国地质调查, 2015, 2(7): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201507008.htm 董美玲, 董国臣, 莫宣学, 等. 滇西保山地块中-新生代岩浆作用及其构造意义[J]. 岩石学报, 2013, 29(11): 3901-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311021.htm 禹丽, 李龚健, 王庆飞, 等. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J]. 岩石学报, 2014, 30(9): 2709-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm 孙柏东, 王晓林, 黄亮, 等. 保山地块漕涧复式岩体晚白垩世花岗岩地球化学特征及锆石U-Pb年代学意义[J]. 地质通报, 2018, 37(11): 2099-2111. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181116&flag=1 周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201704003.htm 张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(27): 2683-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711003.htm Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 9-44. http://www.sciencedirect.com/science/article/pii/S0024493798000243
Barbarin B, 张健奕. 两种主要过铝质花岗岩的成因[J]. 地质科学译丛, 1997, 14(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199702002.htm 林广春, 马昌前. 过铝花岗岩的成因类型与构造环境研究综述[J]. 华南地质与矿产, 2003, (1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200301012.htm 葛文春, 李献华, 李正祥, 等. 桂北新元古代两类过铝花岗岩的地球化学研究[J]. 地球化学, 2001, 30(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101003.htm 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm 李静, 孙载波, 徐桂香, 等. 滇西双江县勐库地区榴闪岩的发现与厘定[J]. 矿物学报, 2015, 35(4): 421-424. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201504001.htm 李静, 孙载波, 黄亮, 等. 滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义[J]. 岩石学报, 2017, 33(7): 2285-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707022.htm 徐桂香, 曾文涛, 孙载波, 等. 滇西双江县勐库地区(退变质)榴辉岩的岩石学、矿物学特征[J]. 地质通报, 2016, 35(7): 1036-1045. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160701&flag=1 孙载波, 李静, 周坤, 等. 滇西双江县勐库地区退变质榴辉岩的锆石U-Pb年代学及其地质意义[J]. 地质通报, 2018, 37(11): 2032-2043. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181109&flag=1 刘桂春, 孙载波, 曾文涛, 等. 滇西双江县勐库地区湾河蛇绿混杂岩的厘定、地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2017, 36(2): 163-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702003.htm Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36: 168-182. http://www.sciencedirect.com/science/article/pii/S1367912009001072
蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306020.htm Wang Y J, Xing X W, Peter A, et al. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos, 2013, 182/183: 67-85.
毛晓长, 尹福光, 唐渊, 等. 保山地块西缘早古生代增生造山作用[J]. 地球科学-中国地质大学学报, 2014, 39(8): 1129-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408014.htm 郇雅棋, 李向东, 雷浩. 滇西石缸河-平河地区早古生代花岗岩锆石U-Pb年龄及其地球化学特征[J]. 矿产与地质, 2017, 31(1): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201701025.htm 李三忠, 赵淑娟, 李玺瑶, 等. 东亚原特提斯洋(Ⅰ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 2016, 32(9): 2609-2627. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609003.htm 李三忠, 赵淑娟, 余珊, 等. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 2016, 32(9): 2628-2644. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609003.htm Metcalfe I. Gondwana land dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43: 605-623.
Ueno K. Permian fusulinacean faunas of the Sibumasu and Baoshan blocks: Implications for the paleogeographic reconstruction of the Cimmerian continent[J]. Geoscience Journal, 2000, 4: 160-163.
云南省地质调查局. 云南省成矿地质背景研究报告. 2013. 云南省地质调查院. 1: 25万腾冲县、潞西市幅区域地质调查报告. 2008. 云南省地质调查院. 1: 25万大理幅区域地质调查报告. 2008. 云南省地质调查院. 云南省1: 5万归州、宝丰、漕涧、功果街幅区域地质调查报告. 2019. 云南省地质调查院. 云南省1: 5万乌木寨、玉明珠、勐捧、尖山、勐稳、罗胡山6幅区域地质矿产调查报告. 2016. 重庆市地质矿产勘查开发局川东南地质大队. 云南省1: 5万头道水、涌宝、蚂蚁堆、大寨幅幅区域地质调查报告. 2016. 云南省地质科学院. 东南亚中南半岛五国地质矿产图. 2015. 云南省地质调查院. 云南省1: 5万曼彦、章凤街、户那街、遮放幅区域地质调查报告. 2019.