Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton
-
摘要:
长期以来,扬子克拉通北缘新元古代地质构造演化一直是地学界研究的热点。在南秦岭随州地区耀岭河组中新识别出一套双峰式变火山岩,对其开展锆石U-Pb年代学研究结果表明,变玄武岩中锆石较少,且多为捕获锆石,年龄组成特征与下伏武当岩群顶部岩石中碎屑锆石基本一致;白云母千枚岩中锆石年龄集中,获得的U-Pb年龄为623±3 Ma,代表了南秦岭随枣地区耀岭河组的形成时代,该结果与侵入武当岩群中的基性岩墙年龄650~600 Ma一致,两者应为同时期不同产出相的岩浆作用的产物。结合区域研究成果,扬子克拉通北缘裂解可能经历了更长期且复杂的地质构造过程,西部裂解较早,东部(现今方向)较晚,总体呈"拉链式"裂解模式。
Abstract:Neoproterozoic tectonic evolution of the northern Yangtze craton is of great significance to the Precambrian geological evolution of South China.Zircon samples collected from the newly recognized bimodal meta-volcanic rocks of the Yaolinghe Formation in the Suizhou area were dated by LA-ICP-MS U-Pb method.Most zircons in the matabasalts are inherited zircons, their ages are consistent with those of detrital zircons from the underlying Wudang Formation in the region.Geochronological results also indicate that the muscovite-phyllites (felsic rocks) were formed at 623±3 Ma, representing the sedimentary age of the Yaolinghe Formation, synchronous with the 650-600 Ma intrusive sills in the Suizao terrane.Combined with the new geochronological data recording rifting-related magmatic-sedimentary rocks during the Late Neoproterozoic in the northern margin of the Yangtze craton, it can be advocated that the breakup of the Rodinia supercontinent in the northern part of the Yangtze craton might have been a long-lasting process.An oblique diachronous rifting model is further hypothesized for the breakup process.
-
黄金是人类发现的第一种贵金属,是美好和富有的象征,一直受到人类的喜爱。胶东是中国最重要的黄金基地、世界闻名的黄金产区,也是全球金矿床勘查和研究的热点区域。胶东金矿的开采历史悠久,最早可上溯至唐代。新中国成立以来,国家对胶东金矿的勘查一直非常重视,部署了大量地质工作。胶东地区也不负众望,不断涌现新的找矿突破,由建国初期的仅20余吨金资源量,到现今金资源总量超过5000 t,成为世界第三大金成矿区。目前,中国的黄金产量连续十多年居世界第一,其中胶东的三山岛、焦家、玲珑和新城4座矿山建国以来累计生产黄金均超过100 t,胶东为中国的黄金产业乃至经济社会发展做出了重要贡献。
胶东屡现金矿找矿奇迹,产生了找矿勘查的多项第一。1965年,首次在胶东三山岛断裂的破碎蚀变带中发现了金矿体;1966年,在焦家断裂带中发现破碎带蚀变岩型金矿体并肯定了其工业价值。1969年完成的三山岛金矿区勘探,提交金资源量63.56 t,是中国探明的第一个特大型蚀变岩型金矿床;其后于1972年完成了焦家金矿床勘探,提交金资源量70余吨。1977年,全国第二次金矿地质工作会议以纪要形式,将焦家式破碎带蚀变岩型金矿(简称焦家式金矿)确定为中国新发现的金矿床类型。焦家式金矿的发现,突破了当时地学界“大断裂只导矿不贮矿”的传统认识,指导地质人员将找矿方向由以往的石英脉型金矿转向破碎带蚀变岩型金矿,陆续发现和探明了新城、河西、河东、新立、仓上、大尹格庄、台上等大型金矿床,奠定了胶东作为中国第一黄金基地的地位,推动了中国黄金产业的发展。1985年,《焦家式新类型金矿的发现及其突出的找矿效果》荣获国家科技进步特等奖(图片1),焦家式金矿成矿和找矿理论为中国的金矿勘查提供了重要指导。
进入21世纪,中国的地下浅表部金矿资源严重枯竭,地质人员在胶东地区开展了深部找矿探索。于2006年首先探明了莱州寺庄深部特大型金矿床,实现了“攻深找盲”的率先突破;2008年,完成了莱州焦家深部金矿详查,提交金资源量105 t,是胶东地区第一个一次性提交详查资源量超过百吨的金矿床;其后,胶东地区陆续探明了10余个资源量超过100 t的超大型金矿床,尤其是探明了三山岛北部海域、西岭、纱岭3个资源量均超过300 t的金矿床。2014年,在莱州湾东侧的浅海海域探明的三山岛北部海域金矿床,勘探资源量470余吨,是中国和世界上最大的海域金矿。随着深部找矿的持续推进,胶东地区的勘查和钻探深度不断刷新纪录。目前,已施工1500~3000 m深度的钻孔300余个,其中,三山岛、焦家、水旺庄、大尹格庄等矿区控制矿体的深度均已超过2000 m,是国内平均勘查深度最大的金矿区;已施工超过3000 m深度的钻孔3个,在莱州三山岛金矿深部(西岭矿区)施工的4006.17 m深孔被誉为中国岩金勘查第一深钻,在焦家断裂带深部施工的3266.06 m深度的钻孔是该成矿带见矿深度最深的钻孔。2011年全国找矿突破战略行动以来,胶东作为全国重要的整装勘查区之一,深部找矿取得了新的重大突破,10年新增深部金资源量约2958 t,新增资源量约占全国同期的40%,超过了胶东历史上累计探明金资源量的总和,三山岛、焦家和招平3条成矿带的金资源量均已超过千吨。深部找矿的过程也是找矿理论认识和找矿方法不断提升的过程,胶东型金矿热隆-伸展成矿理论、阶梯成矿模式、阶梯找矿方法、先进的地球物理勘探技术、深孔和海域钻探方法等在深部找矿中发挥了重要作用。通过三维可视化分析发现,三山岛和焦家地区的多个原来认为独立的金矿床在深部合为一体,实际上是2个资源量均超过千吨的超巨型金矿床。2014年,《胶东金矿理论技术创新与深部找矿突破》成果获得国家科技进步二等奖。2017年5月3日,原国土资源部专门举行胶东地区深部金矿找矿成果新闻发布会指出:“胶东地区金矿深部勘查重大突破具有世界级影响”。
全国找矿突破战略行动的实施,为胶东深部找矿突破提供了重要机遇。本专辑撷取了找矿突破战略行动以来有关人员在胶东深部找矿中开展的部分工作和取得的部分成果予以展示,主要包括以下4方面内容:矿床三维地质建模及基于三维模型对深部矿床空间分布和成矿规律的新认识,稳定同位素、矿石微量元素和矿物微区地球化学分析测试结果及对金成矿的指示,流体包裹体测试结果及成因解释,地球物理方法及其在胶东深部找矿中的作用。期望本专辑阐述的成果能为深化胶东金成矿的认识及指导进一步找矿提供启发和帮助,也期望中国其他地区的深部找矿和相关研究能从中得到有益借鉴。
胶东地区金矿找矿不断取得新突破,得益于国家有关部门的高度重视和大力支持,得益于地勘队伍、科研院所和矿山企业的共同努力,得益于广大工程技术人员、基础理论研究人员的艰苦努力和无私奉献。山东省地质矿产勘查开发局第六地质大队无疑是胶东金矿找矿的突出贡献者,该队探获了胶东50%以上金资源量,发现并建立了焦家式金矿矿床式,创新了金矿成矿理论,提出了金矿找矿新方法,也因其突出的找矿贡献获得了崇高的荣誉:1992年10月19日国务院下达了《国务院关于表彰山东省地质矿产局第六地质队的决定》(国发〔1992〕59号),授予六队“功勋卓著无私奉献的英雄地质队”荣誉称号(图片2),于1992年12月10日在北京举行了隆重的命名大会,并授予奖旗;2009年9月19日,时任国务院总理温家宝在原国土资源部转呈的山东地矿六队胶东找矿成果汇报材料上亲笔批示“请国土资源部转告六队职工:祝贺他们在金矿勘探中取得的重大发现,向大家致以亲切的问候。”
2022年是山东地矿六队被国务院授予“功勋卓著无私奉献的英雄地质队”荣誉称号30周年,谨以此专辑纪念这一光荣的时刻,并向为胶东地区金矿勘查和找矿突破战略行动取得重大成果做出贡献的所有人致以崇高的敬意!
致谢: 野外工作期间得到了中国地质调查局武汉地质调查中心彭练红教授级高级工程师、邓新博士及湖北地质调查院杨成工程师的大力协助;锆石U-Pb定年测定过程中得到了中国冶金地质总局山东局测试中心林培军主任的热情帮助,在此表示感谢。 -
表 1 随枣地块耀岭河组白云母千枚岩LA-ICP-MS锆石U-Th-Pb同位素测试结果
Table 1 LA-ICP-MS zircon U-Th-Pb dating results from the muscovite-phyllite of the Yaolinghe Formation in the Suizao terrane
点号 元素/10-6 Th/U 同位素比值 表面年龄/Ma 谐和度 Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 17GC-11-01 242 250 0.97 0.05983 0.00083 0.83520 0.01428 0.10124 0.00133 598 30 616 8 622 8 99% 17GC-11-02 244 225 1.08 0.06306 0.00095 0.87453 0.01513 0.10056 0.00125 709 31 638 8 618 7 96% 17GC-11-03 135 178 0.76 0.06042 0.00089 0.83539 0.01423 0.10032 0.00128 618 31 617 8 616 7 99% 17GC-11-05 341 297 1.15 0.06260 0.00089 0.87015 0.01378 0.10075 0.00119 694 30 636 7 619 7 97% 17GC-11-06 159 179 0.88 0.06121 0.00101 0.86187 0.01464 0.10225 0.00133 656 37 631 8 628 8 99% 17GC-11-07 253 240 1.06 0.06329 0.00086 0.89117 0.01547 0.10195 0.00136 717 29 647 8 626 8 96% 17GC-11-08 165 224 0.74 0.06224 0.00071 0.85821 0.01160 0.09983 0.00112 683 24 629 6 613 7 97% 17GC-11-10 325 292 1.11 0.06262 0.00084 0.89443 0.01618 0.10325 0.00147 694 29 649 9 633 9 97% 17GC-11-11 160 192 0.83 0.06194 0.00090 0.87721 0.01389 0.10270 0.00137 672 31 639 8 630 8 98% 17GC-11-12 125 149 0.83 0.05960 0.00106 0.84735 0.01557 0.10324 0.00136 591 39 623 9 633 8 98% 17GC-11-13 198 236 0.84 0.06150 0.00088 0.86900 0.01594 0.10216 0.00122 657 27 635 9 627 7 98% 17GC-11-14 294 285 1.03 0.06060 0.00071 0.84505 0.01063 0.10130 0.00123 633 26 622 6 622 7 99% 17GC-11-15 104 140 0.74 0.06336 0.00091 0.89639 0.01498 0.10264 0.00123 720 25 650 8 630 7 96% 17GC-11-16 339 294 1.15 0.06137 0.00069 0.84974 0.01157 0.10049 0.00112 654 24 625 6 617 7 98% 17GC-11-17 302 250 1.21 0.06173 0.00084 0.84711 0.01383 0.09970 0.00128 665 30 623 8 613 8 98% 17GC-11-18 392 427 0.92 0.06216 0.00073 0.85267 0.01030 0.09993 0.00133 680 26 626 6 614 8 98% 17GC-11-19 300 271 1.11 0.06529 0.00112 0.92414 0.01631 0.10308 0.00132 783 37 665 9 632 8 95% 17GC-11-20 120 145 0.83 0.06299 0.00099 0.87753 0.01550 0.10109 0.00109 709 34 640 8 621 6 97% 17GC-11-22 313 300 1.04 0.06237 0.00081 0.87670 0.01493 0.10190 0.00120 687 32 639 8 626 7 97% 17GC-11-23 216 216 1.00 0.06167 0.00090 0.86816 0.01409 0.10234 0.00130 661 31 635 8 628 8 98% 17GC-11-25 228 259 0.88 0.06256 0.00099 0.86331 0.01536 0.10020 0.00123 694 34 632 8 616 7 97% 17GC-11-27 151 178 0.85 0.06054 0.00095 0.84546 0.01662 0.10129 0.00137 633 33 622 9 622 8 99% 表 2 随枣地块耀岭河组变玄武岩LA-ICP-MS锆石U-Th-Pb同位素测试结果
Table 2 LA-ICP-MS zircom U-Th-Pb analysis results from the metabasalt of the Yaolinghe Formation in the Suizao terrane
点号 元素/10-6 Th/U 同位素比值 表面年龄/Ma 谐和度 Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 17GC-13-01 97.6 58.9 1.66 0.07367 0.00203 1.33552 0.04012 0.13147 0.00200 1032 56 861 17 796 11 92% 17GC-13-02 214 345 0.62 0.20696 0.00191 15.9222 0.19504 0.55840 0.00603 2883 10 2872 12 2860 25 99% 17GC-13-03 146 164 0.89 0.06808 0.00103 1.21670 0.02150 0.13009 0.00189 872 31 808 10 788 11 97% 17GC-13-04 101 146 0.69 0.12448 0.00111 6.16464 0.08084 0.35935 0.00400 2021 17 1999 12 1979 19 98% 17GC-13-05 27.8 27.8 1.00 0.12484 0.01304 2.71459 0.43474 0.13303 0.00416 2028 191 1332 119 805 24 50% 17GC-13-06 164 232 0.71 0.11220 0.00105 5.00605 0.07068 0.32385 0.00399 1836 18 1820 12 1808 19 99% 17GC-13-07 191 176 1.08 0.06656 0.00088 1.14021 0.01572 0.12476 0.00165 833 27 773 7 758 9 98% 17GC-13-08 223 130 1.72 0.06619 0.00094 1.14075 0.01945 0.12505 0.00148 813 30 773 9 760 8 98% 17GC-13-09 150 151 1.00 0.07624 0.00645 0.66382 0.06970 0.05985 0.00096 1102 170 517 43 375 6 68% 17GC-13-10 40.8 41.7 0.98 0.06313 0.00153 1.07244 0.02693 0.12383 0.00219 722 52 740 13 753 13 98% 17GC-13-11 519 422 1.23 0.12868 0.00605 2.56614 0.28455 0.13325 0.00527 2080 83 1291 81 806 30 53% 17GC-13-12 63.2 116 0.55 0.18423 0.00187 12.5917 0.14965 0.49604 0.00610 2691 17 2650 11 2597 26 97% 17GC-13-13 50.9 61.5 0.83 0.16282 0.00162 10.2759 0.15144 0.45730 0.00605 2487 17 2460 14 2428 27 98% 17GC-13-14 1043 626 1.66 0.08597 0.00218 0.75286 0.01658 0.06408 0.00090 1339 50 570 10 400 5 65% 17GC-13-15 255 318 0.80 0.07046 0.00170 1.02346 0.02514 0.10640 0.00192 943 45 716 13 652 11 90% 17GC-13-16 50.7 88.5 0.57 0.06706 0.00124 1.13528 0.02557 0.12260 0.00171 839 161 770 12 746 10 96% 17GC-13-17 1004 744 1.35 0.07105 0.00341 0.65102 0.02996 0.06688 0.00073 959 98 509 18 417 4 80% 17GC-13-18 94.0 417 0.23 0.18636 0.00394 13.0734 1.79294 0.48566 0.05204 2710 36 2685 129 2552 22 94% 17GC-13-19 77.8 80.2 0.97 0.06736 0.00097 1.23889 0.02053 0.13304 0.00149 850 30 818 9 805 8 98% 17GC-13-20 133 214 0.62 0.17942 0.00207 9.97593 0.14193 0.40208 0.00455 2647 19 2433 13 2179 21 88% -
Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 108: 16-42. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=abull&resid=109/1/16
Gaucher C, Sial A N, Halverson G P, et al. The Neoproterozoic and Cambrian: a time of upheavals, extremes and innovations[C]//Gaucher C, Sial A N, Halverson G P, et al. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwestern Gondwana, Developments in Precambrian Geology. Amsterdam, Elsevier, 2009, 16: 3-11.
Stern R J. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 2015, 14: 33-50. http://www.sciencedirect.com/science/article/pii/S1342937X07001761
Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China[J]. Geology, 1991, 19: 815-818. doi: 10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2
Li Z X, Kinny P D. Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30: 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151: 79-100. doi: 10.1016/j.precamres.2006.08.002
Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159: 117-131. doi: 10.1016/j.precamres.2007.06.005
Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39: 299-302. doi: 10.1130/G31701.1
Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191: 101-119. doi: 10.1016/j.precamres.2011.09.011
Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemistry of Grenville-aged(1063±16 Ma)metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57: 76-96. doi: 10.1080/00206814.2014.991949
Qiu X F, Zhao X M, Yang H M, et al. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J]. Geological Magazine, 2018, 155: 1263-1276. doi: 10.1017/S0016756817000048
Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21: 577-594. doi: 10.1016/j.gr.2011.07.010
Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200: 26-37. http://www.sciencedirect.com/science/article/pii/S0301926812000046
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11: 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855. Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002
Dong Y P, Safonova I, Wang T. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 2016, 30: 1-5. doi: 10.1016/j.gr.2015.12.001
Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 2000, 323: 183-196. doi: 10.1016/S0040-1951(00)00106-2
Ling W L, Ren B F, Duan R C, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 2008, 53: 2192-2199. http://www.cnki.com.cn/Article/CJFDTotal-JXTW200814014.htm
薛怀民, 马芳, 宋永勤. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27: 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm 薛怀民, 马芳. 桐柏山造山带南麓随州群变沉积岩中碎屑锆石的年代学及其地质意义[J]. 岩石学报, 2013, 29: 564-580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302016.htm Yang Y A, Wang X C, Li Q L, et al. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ 18 O magmas in the South China Block[J]. Precambrian Research, 2016, 273: 151-164. doi: 10.1016/j.precamres.2015.12.008
Liu H, Zhao J H, Cawood P A, et al. South China in Rodinia: Constrains from the Neoproterozoic Suixian volcano-sedimentary group of the South Qinling Belt[J]. Precambrian Research, 2018, 314: 170-193. doi: 10.1016/j.precamres.2018.05.018
洪吉安, 马斌, 黄琦. 湖北枣阳大阜山镁铁/超镁铁杂岩体与金红石矿床成因[J]. 地质科学, 2009, 44: 231-244. Wang M X, Wang Y, Bo W. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of the~635 Ma mafic intrusions in the northern margin of the Yangtze Block: a link of metasomatized subcontinental lithospheric mantle and Ni-Cu-(PGE)sulfide mineralization[J]. Precambrian Research, 2017, 309: 325-342. http://www.sciencedirect.com/science/article/pii/S0301926816303503
Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc-and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59: 1811-1844. doi: 10.1093/petrology/egy080
Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016
Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017
Ludwig K R. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel(Berkeley Geochronology Center, Berkeley, California)[M]. BGC Special Publication 1a, Berkeley, 2003: 55.
Hu J, Liu X C, Chen L Y, et al. A~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564-3579. doi: 10.1007/s11434-013-5904-1
Nie H, Yao J, Wan X, et al. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks[J]. Precambrian Research, 2016, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005
陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑错石年龄谱研究[J]. 岩石学报, 2009, 25: 2195-2208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909013.htm 卢山松, 江拓, 彭三国, 等. 武当地块与扬子陆核区新元古代早期沉积岩碎屑锆石U-Pb年代学对比及其地质意义[J]. 岩石矿物学杂志, 2017, 36: 646-654. doi: 10.3969/j.issn.1000-6524.2017.05.005 Deng Q Wang J, Wang Z J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block-implications for the breakup of Rodinia[J]. International Geology Review, 2013, 55: 1865-1884. doi: 10.1080/00206814.2013.799257
Xu Y, Yang K G, Polat A, et al. The~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research, 2016, 275: 310-331. doi: 10.1016/j.precamres.2016.01.021
朱江, 彭三国, 彭练红, 等. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义[J]. 地球科学, 2019, 44: 355-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902001.htm Chaves A D O, Neves J M C. Magmatism, rifting and sedimentation related to Late Paleoproterozoic mantle plume events of Central and Southeastern Brazil[J]. Journal of Geodynamics, 2005, 39: 197-208. doi: 10.1016/j.jog.2004.10.003
祝禧艳, 陈福坤, 王伟, 等. 豫西地区秦岭造山带武当岩群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报, 2008, 29: 817-829. doi: 10.3321/j.issn:1006-3021.2008.06.025 李建华, 张岳桥, 徐先兵, 等. 北大巴山凤凰山岩体锆石U-Pb LA-ICP-MS年龄及其构造意义[J]. 地质论评, 2012, 58: 581-593. doi: 10.3969/j.issn.0371-5736.2012.03.019