• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志

李智佩, 白建科, 茹艳娇, 李婷, 李晓英

李智佩, 白建科, 茹艳娇, 李婷, 李晓英. 2021: 新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志. 地质通报, 40(6): 864-879. DOI: 10.12097/gbc.dztb-40-6-864
引用本文: 李智佩, 白建科, 茹艳娇, 李婷, 李晓英. 2021: 新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志. 地质通报, 40(6): 864-879. DOI: 10.12097/gbc.dztb-40-6-864
LI Zhipei, BAI Jianke, RU Yanjiao, LI Ting, LI Xiaoying. 2021: Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan. Geological Bulletin of China, 40(6): 864-879. DOI: 10.12097/gbc.dztb-40-6-864
Citation: LI Zhipei, BAI Jianke, RU Yanjiao, LI Ting, LI Xiaoying. 2021: Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan. Geological Bulletin of China, 40(6): 864-879. DOI: 10.12097/gbc.dztb-40-6-864

新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志

基金项目: 

中国地质调查局项目《天山-兴蒙成矿带火山岩浆作用对成矿制约的综合研究》 1212010050503

《西北地区重要成矿带基础地质综合研究》 1212010610319

《国家地质大数据汇聚与管理》 DD20190415

《国家地质大数据汇聚与管理(中国地质调查局西安地质调查中心)》 DD20190387

详细信息
    作者简介:

    李智佩(1962-), 男, 研究员, 从事岩石学、区域地质研究。E-mail: 476056388@qq.com

  • 中图分类号: P588.14+5;P591

Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan

  • 摘要:

    西天山乌孙山南坡赛克散萨依一带出露的早石炭世杜内阶大哈拉军山组火山岩,LA-ICP-MS锆石U-Pb年龄为355.1±4.0 Ma。火山岩岩石类型主要为玄武岩和少量钠质粗面玄武岩(夏威夷岩),SiO2含量为45.04%~49.84%,Na2O含量为2.36%~4.63%,K2O含量为0.35%~2.31%,Na2O/K2O值为2.00~8.69,表明均属钠质火山岩;Al2O3含量集中在16.01%~17.15%之间,以偏碱性的高铝质玄武岩为主,有少量碱性玄武岩。火山岩稀土元素总量为94.71×10-6~127.2×10-6,(La/Yb)N值为2.41~4.07,δEu值为0.99~1.15,具有轻、重稀土元素分馏明显的右倾式配分型式。大离子亲石元素较洋脊玄武岩富集,存在明显的Th-U槽和Nb-Ta槽。高场强元素多数与洋脊玄武岩接近,TiO2的亏损不显著,K2O明显富集。玄武岩的演化具有典型的拉斑质玄武岩经分离结晶作用形成的铁富集演化趋势,且以辉石和斜长石为主要的分离结晶矿物,橄榄石的分离结晶作用不明显。高铝质玄武岩的确定,是早石炭世伊犁地区中天山板块汇聚构造环境的标志,与现今高铝质火山岩产出构造环境对比认为,这些火山岩形成于大陆边缘岛弧,其构造位置可能为俯冲带上的第二火山链;火山岩浆则可能由俯冲带上流体交代的富集地幔部分熔融形成。

    Abstract:

    Basalts and sodic trachybasalts are the main rocks outcropped in the south of Wusunshan in western Tianshan Mountains.LA-ICP-MS analysis on the Early Carboniferous volcanic rocks of Dahalajunshan Group yields an U-Pb age of 355.1±4.0 Ma.These volcanic rocks are characterized by SiO2 45.04%~49.84%, Na2O 2.36%~4.63%, and K2O 0.35%~2.31%, high ratios of Na2O/K2O (2.00~8.69) and high contents of Al2O3 (16.01%~17.15%), suggesting that they are sodic and high alumina basalts with small amount of alkaline basalts.The total rare earth contents, (La/Yb)N and δEu of volcanic rocks range from 94.71×10-6to 127.2×10-6, from 2.41 to 4.07 and from 0.99 to 1.1 respectively.The REE patterns are characterized by enriched LREE and relatively depleted HREE, with weak positive Eu anomaly, which is in accordance with high sodic plagioclase contents in rocks.Enriched large-ion-lithophile elements (LILE), such as Ba and K, depleted high-field-strength elements (HFSE), such as Nb-Ta, Th-U and Ti, and the magmatic evolution trend suggest that these rocks belong to typical island arc tholeiitic series, which have experienced pyroxene and feldspar fractionation.The determination of high alumina basalts is the sign to convergent margin of early Carboniferous plate in West Tianshan.Therefore, it is considered that these basaltic rocks were formed at continental arc setting and could be in the second volcanic chain.And then, the basaltic magma might be formed by partial melting of enriched metasomatic mantle upon subduction zone.

  • 大兴安岭地区发育广泛花岗岩和火山岩,其岩石成因及构造背景一直是国内外地质学者研究的热点。最新的测年结果显示,这些花岗岩和火山岩主要形成于中生代,少数形成于新元古代和古生代,并对大兴安岭地区岩浆作用的年代学格架和地球化学属性有了一定的认识[1-3],但是由于大兴安岭地区植被覆盖严重,导致部分地区晚中生代岩浆岩的年代学和地球化学数据较缺乏,阻碍了对该区岩浆作用和区域构造演化的深刻认识。

    近年来,地质工作者按岩性、岩石组合特征及区域对比,将大兴安岭中部地区晚中生代火山岩划分为南、北两部分,北部主要包括七一牧场组、吉祥峰组、上库力组、伊列克得组,南部主要包括塔木兰沟组、满克头鄂博组、玛尼吐组、白音高老组、梅勒图组,南、北两部分火山岩岩石组合可进行对比,但是对于同一期火山岩不同岩石获得的年龄数据往往具有较大的变化范围,有的甚至相差几十百万年[4-8],表明这种划分方案的合理性仍值得商榷,或许直接用不同岩浆期次来表示不同时代的火山岩比较合理,即用晚侏罗世中基性火山岩、晚侏罗世酸性火山岩、早白垩世中性火山岩、早白垩世酸性火山岩等分别代表不同时代的火山岩。

    本次选取大兴安岭中部柴河—蘑菇气地区出露的早白垩世中性火山岩,在野外调查和岩相学研究的基础上,通过岩石学、年代学、岩石地球化学等的系统研究,确定大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的岩石成因特点,探讨其反映的区域构造背景。

    大兴安岭位于中亚造山带东段,大地构造位置处于西伯利亚板块和华北板块之间(图 1[9],其古生代经历了多个微陆块碰撞拼合时期[10-14],构造演化与古亚洲洋的闭合密切相关,中、新生代受太平洋构造域和蒙古-鄂霍茨克构造域的叠加和改造。

    图  1  研究区大地构造位置(据参考文献[9]修改)
    F1—牡丹江断裂;F2—敦化-密山断裂;F3—伊通-佳木斯断裂;F4—西拉木伦-长春-延吉断裂;F5—贺根山-扎兰屯-黑河断裂;F6—塔源-喜桂图断裂;F7—得尔布干断裂
    Figure  1.  Tectonic map of Chaihe-Moguqi area in central Da Hinggan Mountains

    柴河—蘑菇气地区位于大兴安岭中部,晚中生代侏罗纪—白垩纪以陆相火山岩地层和陆相碎屑沉积岩地层为主,主要包括中侏罗世万宝组、晚侏罗世塔木兰沟组、木瑞组、满克头鄂博组和早白垩世玛尼吐组、白音高老组、梅勒图组、大磨拐河组。其中早白垩世玛尼吐组以中性火山岩及火山碎屑岩为主,主要分布在天池、蛤蟆沟、柴河、新立屯、蘑菇气、中和、山泉等地区(图 2),主要岩性有灰绿色-灰紫色安山岩(图 3)、英安岩、安山质晶屑凝灰熔岩、凝灰角砾熔岩等。

    图  2  大兴安岭中部柴河—蘑菇气地区地质简图
    Figure  2.  Geological sketch map of the Chaihe-Moguqi area, central Da Hinggan Mountains
    图  3  早白垩世中性火山岩安山岩手标本(a)及显微照片(b)(Pl—斜长石)
    Figure  3.  Hand specimen(a) and microscopic photographs(b) for the Early Cretaceous intermediate volcanic rocks

    锆石用重液和磁选相结合从粉碎的岩石样品中分选出来,再在双目镜下提纯。锆石被嵌于树脂样靶中并抛光,之后渡上50nm厚的纯金。阴极发光(CL)图像在中国地质科学院北京离子探针中心制成,主要是查明锆石内部结构,以便准确选点。锆石U-Pb定年在天津地质矿产研究所完成。测试仪器为NEPTUNE多接收器电感耦合等离子体质谱仪(MC-ICP-MS)和氟化氩准分子激光剥蚀系统(NEW WAVE 193nm FX)联机[15]。激光剥蚀斑束直径为35μm,激光剥蚀样品的深度为20~40μm。实验中采用氦作为剥蚀物质的载气。锆石年龄计算采用源自澳大利亚Macquarie大学的标准锆石GJ-1作为外标,元素含量采用人工合成玻璃NIST SRM610作为外标[16]。具体实验操作流程见参考文献[17]。样品的同位素比值和元素含量处理采用Glitter(ver4.0)程序计算,普通Pb采用Anderson的3D坐标法校正[18],年龄加权平均值及谐和图采用Isoplot(v. 3.00)[19]绘制。单个测试点的同位素比值和同位素年龄误差为1σ,206Pb/238U年龄加权平均值置信度为95%。

    样品的主量和微量元素分析在天津地质矿产研究所和自然资源部哈尔滨矿产资源监督测试中心完成。挑选新鲜未风化样品洗净、烘干后,用玛瑙研钵研磨至200目的粉末,用于主量和微量元素分析。主量元素采用X射线荧光光谱分析(XRF),微量元素的分析采用等离子质谱法(ICP-MS)完成,详细的主量、微量元素分析实验原理和分析步骤见参考文献[20]。

    在LA-ICP-MS锆石U-Pb定年的基础上,进行了锆石原位Hf同位素测定工作。锆石原位Hf同位素分析在天津地质矿产研究所完成,测试仪器为NEPTUNE多接收器电感耦合等离子体质谱仪和氟化氩准分子激光剥蚀系统联机,激光束斑直径为50μm。详细的分析方法见参考文献[15]。分析过程中标准锆石GJ-1的176Hf/177Hf值为0.282000 ± 0.000040。用实验测得的176Hf/177Hf和176Lu/177Hf值计算初始176Hf/177Hf值。176Lu的半衰期采用1.865× 10-11/a[21]。计算εHf(t)值时采用的现在的(176Hf/177Hf)DM和(176Lu/177Hf)DM值分别为0.28325和0.0384[22]。Hf模式年龄的计算见参考文献[22-24]。

    样品Z11-84岩性为安山质角砾凝灰熔岩,共24个锆石分析点,分析结果见表 1。锆石多为短柱状和粒状,少数为长柱状,粒度为50~200μm,长宽比为1:1~3:1。CL图像显示(图 4-a),这些锆石内部具有典型的环带结构,Th/U值为0.65~1.10,指示这些锆石属于岩浆锆石。在锆石U-Pb谐和图(图 4-b)中,样品Z11-84的锆石U-Pb年龄测定数据点全部位于谐和线上及其附近,206Pb/238U年龄加权平均值为139±1Ma(MSWD=0.59),时代为早白垩世,代表了安山质角砾凝灰熔岩的形成年龄。

    表  1  研究区早白垩世中性火山岩测年结果
    Table  1.  Data of zircons for the Early Cretaceous intermediate volcanic rocks in study area
    样品号 岩性 年龄/Ma 采样位置 方法 数据来源
    Z11-84 安山质角砾凝灰熔岩 139±1 碾子山北 LA-ICP-MS A
    P010-5-2 英安岩 141±5 苏河屯 LA-ICP-MS B
    P9B2-2 安山岩 137±2 青年林场北山 SHRIMP C
    P11B11-3 角闪玄武安山岩 131±3 河中林场 SHRIMP C
    TW1 安山岩 133±7 哈布气林场 Rb-Sr D
    DH2011RZ27 安山岩 141±2 新立屯 LA-ICP-MS E
      注:A—本文数据;B—吉林省区域地质矿产调查所提供数据;C—吉林大学刘正宏教授提供数据;D—辽宁省地质矿产调查院提供数据;E—中国地质调查局沈阳地质调查中心提供数据;Z11-84采样点坐标为北纬47°39′51″、东经122°51′34″
    下载: 导出CSV 
    | 显示表格
    图  4  早白垩世中性火山岩锆石阴极发光(CL)图像(a)及U-Pb年龄谐和图(b)(实线圈表示U-Pb同位素打点位置,虚线圈表示Lu-Hf分析点位置)
    Figure  4.  CL images (a) and U-Pb concordia diagram(b) of zircons for the Early Cretaceous intermediate volcanic rocks

    结合笔者收集的年龄数据(表 2)可知,研究区早白垩世中性火山岩的形成年龄介于140~130Ma之间。

    表  2  早白垩世中性火山岩测年数据
    Table  2.  Age statistics for the Early Cretaceous intermediate volcanic rocks
    分析号 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma
    206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    Z11-84.1 26 33 0.80 0.021 0.0005 0.1767 0.0176 0.0608 0.0053 134 3 165 16 875 447
    Z11-84.2 46 42 1.10 0.0222 0.0004 0.1950 0.0161 0.0639 0.0047 141 2 181 15 1120 343
    Z11-84.4 27 39 0.69 0.0213 0.0006 0.1506 0.0182 0.0513 0.0033 136 4 142 17 146 598
    Z11-84.5 28 33 0.86 0.0217 0.0005 0.1719 0.0189 0.0574 0.0049 138 3 161 18 852 497
    Z11-84.6 20 26 0.78 0.0211 0.0006 0.1571 0.0197 0.0539 0.0069 135 4 148 19 181 625
    Z11-84.7 41 42 0.98 0.0216 0.0004 0.2040 0.0114 0.0685 0.0048 138 3 189 11 1662 207
    Z11-84.8 40 47 0.86 0.0219 0.0003 0.1742 0.0126 0.0576 0.0045 140 2 163 12 514 316
    Z11-84.9 33 43 0.78 0.0218 0.0003 0.1635 0.0125 0.0544 0.0042 139 2 154 12 755 322
    Z11-84.10 23 31 0.75 0.0219 0.0004 0.1714 0.0103 0.0567 0.0037 140 3 161 10 1997 220
    Z11-84.11 27 39 0.70 0.0218 0.0004 0.1474 0.0158 0.0490 0.0049 139 3 140 15 147 587
    Z11-84.12 27 32 0.83 0.0216 0.0005 0.2013 0.0115 0.0677 0.0058 138 3 186 11 2164 196
    Z11-84.13 40 50 0.79 0.0220 0.0003 0.1660 0.0099 0.0547 0.0030 140 2 156 9 1222 233
    Z11-84.14 27 36 0.75 0.0222 0.0004 0.1502 0.0176 0.0491 0.0039 142 2 142 17 152 565
    Z11-84.15 25 33 0.76 0.0217 0.0005 0.1671 0.0096 0.0558 0.0055 138 3 157 9 1787 208
    Z11-84.16 43 55 0.79 0.0215 0.0005 0.1815 0.0101 0.0611 0.0039 137 3 169 9 2076 194
    Z11-84.17 29 41 0.72 0.0219 0.0003 0.1750 0.0125 0.0579 0.0045 140 2 164 12 1447 281
    Z11-84.18 48 54 0.87 0.0220 0.0003 0.1899 0.0096 0.0625 0.0042 140 2 177 9 1329 199
    Z11-84.19 24 33 0.72 0.0219 0.0005 0.2673 0.0231 0.0887 0.0097 139 3 241 21 1398 365
    Z11-84.20 30 39 0.76 0.0215 0.0004 0.1525 0.0147 0.0514 0.0063 137 2 144 14 152 887
    Z11-84.21 28 36 0.77 0.0201 0.0008 0.1849 0.0132 0.0668 0.0063 128 5 172 12 1677 271
    Z11-84.22 29 40 0.71 0.0220 0.0007 0.1902 0.0174 0.0627 0.0074 140 4 177 16 697 377
    Z11-84.23 27 37 0.74 0.0220 0.0004 0.1838 0.0157 0.0607 0.0049 140 3 171 15 1502 339
    Z11-84.24 35 53 0.65 0.0220 0.0003 0.1636 0.0087 0.0539 0.0036 140 2 154 8 1034 216
    Z11-84.25 42 55 0.77 0.0217 0.0002 0.1806 0.0080 0.0602 0.0025 139 2 169 7 1203 177
    下载: 导出CSV 
    | 显示表格

    研究区早白垩世中性火山岩的主量和微量元素分析结果见表 3。早白垩世中性火山岩SiO2含量在55.1%~69.1%之间,TiO2含量介于0.39%~1.68%之间,Al2O3含量较高,在14.8%~18%之间,TFeO含量介于3.62% ~7.83%之间,MgO含量低,在0.45% ~ 3.74%之间,CaO含量较高,介于1.16%~6.57%之间,Na2O含量在1.73%~4.72%之间,K2O含量在1.66%~ 4.84%之间,整体为一套富钾钠、富铝,贫镁的岩石。在TAS图解(图 5)中,主要落在安山岩、粗面岩(标准矿物石英含量小于20%)内,属亚碱性系列,含铝指数A/CNK为0.80~1.13,属准铝质到弱过铝质岩石;在岩浆系列判别图解(图 6)中,主要落在高钾钙碱性系列。

    表  3  早白垩世中性火山岩主量、微量和稀土元素分析结果
    Table  3.  Major, trace and rare earth elements analyses of the Early Cretaceous intermediate volcanic rocks
    样品号 B1068-1 B2005-2 B2010-1 B2022-1 B2034-1 B2082-2-1 B3007-1 B4063-1 B5049-3 HfP38-2-1
    SiO2 58.40 55.40 62.30 68.40 60.90 63.80 69.10 67.00 55.10 60.42
    T1O2 0.98 1.68 0.44 0.39 0.76 0.66 0.55 0.58 1.09 0.91
    Al2O3 16.90 15.70 15.30 15.70 16.35 16.60 14.80 15.10 16.90 18.00
    Fe2O3 3.62 6.65 2.36 1.78 2.29 3.41 2.47 1.99 3.46 2.90
    FeO 3.52 1.85 1.20 1.02 2.95 1.12 0.62 2.02 4.70 1.52
    MnO 0.10 0.11 0.07 0.04 0.10 0.07 0.06 0.08 0.13 0.11
    MgO 2.67 3.15 1.67 0.45 1.96 1.40 0.45 1.38 3.74 1.74
    CaO 5.28 6.57 4.06 2.08 5.06 2.74 1.16 2.29 5.78 3.81
    Na2O 4.27 3.25 1.73 4.56 3.05 4.50 3.99 3.75 3.37 4.72
    K2O 1.66 2.12 3.01 3.80 3.01 3.58 4.84 4.43 2.74 3.36
    P2O5 0.27 0.91 0.12 0.08 0.24 0.23 0.12 0.17 0.37 0.37
    烧失量 1.78 2.14 7.36 1.09 2.67 1.47 1.29 0.64 1.82 1.94
    总计 99.45 99.53 99.62 99.40 99.34 99.58 99.45 99.43 99.20 99.80
    σ 2.28 2.33 1.16 2.75 2.05 3.14 2.99 2.79 3.09 3.75
    A/CNK 0.92 0.80 1.13 1.02 0.93 1.02 1.06 1.00 0.89 0.98
    Na2O+K2O 5.93 5.37 4.74 8.36 6.06 8.08 8.83 8.18 6.11 8.08
    Cr 30.20 70.60 17.80 15.90 20.60 16.50 14.20 24.50 30.00 3.21
    Rb 24.8 32.4 100 94.9 64.1 86.1 115 76.4 39.4 101.4
    Sr 563 807 1480 388 668 571 491 400 671 664.4
    Ba 659 953 1190 1020 1020 979 1180 782 664 1065
    Th 4.14 3.48 6.02 6.75 4.84 7.32 6.58 8.26 3.6 9.69
    U 1.04 0.98 1.39 1.49 1.19 1.95 1.91 2.06 1.18 2.49
    Nb 6.76 17.2 6.81 7.34 6.34 9.18 9.25 9.42 6.78 7.69
    Ta 0.5 1.1 0.4 0.4 0.41 0.54 0.47 0.64 0.36 0.53
    Zr 224 405 235 290 190 247 271 210 158 194.8
    Hf 5.89 9.71 6.38 7.91 5.04 6.6 7.24 6.04 4.38 14.91
    La 24.2 60.4 26.2 26.3 24.1 32.6 30.6 27.8 19.3 32.62
    Ce 50 131 51.7 53.1 48.3 67.6 60.5 55.9 40 62.37
    Pr 6.99 16.8 6.6 6.1 5.96 8.1 8 7.21 5.98 7.19
    Nd 29.4 68.3 24.5 23.3 23 31.1 32.4 27.3 25.7 29.78
    Sm 6.01 12.2 4.44 4.11 4.22 5.51 6.09 4.98 5.4 5.75
    Eu 1.59 2.77 1.22 1.21 1.32 1.48 1.56 1.1 1.52 1.96
    Gd 4.84 9.27 3.63 3.32 3.62 4.43 4.79 4.08 4.43 4.15
    Tb 0.71 1.44 0.56 0.55 0.56 0.67 0.8 0.69 0.78 0.73
    Dy 4.15 6.74 3.04 3.03 2.9 3.72 4.76 3.79 4.13 3.67
    Ho 0.82 1.19 0.61 0.61 0.56 0.72 0.93 0.72 0.78 0.73
    Er 2.31 3.24 1.74 1.78 1.64 2.01 2.66 2 2.28 1.92
    Tm 0.35 0.44 0.27 0.28 0.25 0.32 0.4 0.31 0.33 0.3
    Yb 2.28 2.76 1.89 1.97 1.62 2.15 2.83 2.06 2.13 2.2
    Lu 0.35 0.42 0.31 0.31 0.26 0.34 0.44 0.32 0.32 0.27
    Y 22.2 31 16.8 16.6 15.4 20.2 24.9 18.8 21.6 20.3
    ∑REE 156.20 347.97 143.51 142.57 133.71 180.95 181.66 157.06 134.68 173.93
    LR/HR 7.48 11.43 9.52 9.63 9.37 10.19 7.90 8.90 6.45 9.99
    δEu 0.87 0.77 0.90 0.97 1.01 0.89 0.85 0.72 0.92 1.17
      注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV 
    | 显示表格
    图  5  早白垩世中性火山岩TAS图解
    Figure  5.  TAS diagram for the Early Cretaceous intermediate volcanic rocks
    图  6  早白垩世中性火山岩SiO2-K2O岩石系列判别图
    Figure  6.  SiO2-K2O diagram for the Early Cretaceous intermediate volcanic rocks

    早白垩世中性火山岩微量元素原始地幔标准化蛛网图(图 7-a)显示,样品主要富集大离子亲石元素(如Rb、K、LREE)和Ba、Sr元素,亏损高场强元素(如Ta、Nb、P、Ti),是壳源岩浆或岩浆被地壳物质混染的典型特征。

    图  7  早白垩世中性火山岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)
    (球粒陨石标准化值据参考文献[25];原始地幔标准化值据参考文献[26])
    Figure  7.  Primitive mantle-normalized trace element spider diagrams(a) and chondrite-normalized REE patterns(b) for the Early Cretaceous intermediate volcanic rocks

    稀土元素总量(ΣREE)在133.71 × 10-6~ 347.97×10-6之间,平均值为175.22×10-6,轻、重稀土元素比值LREE/HREE在6.45~11.43之间,平均值为9.09,轻、重稀土元素分馏明显,分馏系数(La/Yb)N介于6.50~15.70之间,平均值为9.89。球粒陨石标准化蛛网图(图 7-b)中,均呈右倾配分曲线模式,轻稀土元素富集、重稀土元素亏损,无明显Eu异常,δEu值介于0.72~1.17之间,平均值为0.91。

    在LA-ICP-MS锆石U-Pb定年的基础上,对早白垩世中性火山岩(Z11-84)进行了锆石原位Hf同位素分析,分析结果列于表 4

    表  4  早白垩世中性火山岩锆石原位Hf同位素分析结果
    Table  4.  In situ zircon Hf isotopic compositions of the Early Cretaceous intermediate volcanic rocks
    分析点 年龄/Ma 176Yb/l77Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hf (corr) εHf(0) εHf(t) TDM1(Hf)/Ma TDM2(Hf)/Ma fLu/Hf
    Z11-84.1 134 0.0300 0.0000 0.0008 0.0000 0.282977 0.000019 0.282981 0.000019 7.4 10.26 0.7 382 482 -0.98
    Z11-84.2 141 0.0430 0.0001 0.0011 0.0000 0.282859 0.000025 0.282863 0.000025 3.2 6.21 0.9 553 714 -0.97
    Z11-84.4 136 0.0446 0.0001 0.0012 0.0000 0.282941 0.000023 0.282944 0.000023 6.1 8.96 0.8 439 556 -0.96
    Z11-84.5 138 0.0347 0.0003 0.0010 0.0000 0.282971 0.000024 0.282975 0.000024 7.2 10.12 0.9 393 493 -0.97
    Z11-84.6 135 0.0359 0.0001 0.0011 0.0000 0.282975 0.000019 0.282979 0.000019 7.3 10.18 0.7 388 487 -0.97
    Z11-84.7 138 0.0458 0.0001 0.0015 0.0000 0.282979 0.000025 0.282983 0.000025 7.5 10.35 0.9 386 479 -0.96
    Z11-84.8 140 0.0249 0.0001 0.0007 0.0000 0.282949 0.000023 0.282953 0.000023 6.4 9.40 0.8 421 534 -0.98
    Z11-84.9 139 0.0204 0.0000 0.0006 0.0000 0.282965 0.000020 0.282968 0.000020 6.9 9.93 0.7 398 504 -0.98
    Z11-84.10 140 0.0224 0.0000 0.0007 0.0000 0.282954 0.000020 0.282958 0.000020 6.6 9.57 0.7 414 525 -0.98
    Z11-84.11 139 0.0447 0.0002 0.0012 0.0000 0.282904 0.000023 0.282907 0.000023 4.8 7.73 0.8 492 628 -0.96
    Z11-84.12 138 0.0301 0.0001 0.0008 0.0000 0.282932 0.000025 0.282936 0.000025 5.8 8.73 0.9 446 570 -0.98
    Z11-84.14 142 0.0297 0.0002 0.0008 0.0000 0.282883 0.000025 0.282886 0.000025 4.0 7.08 0.9 515 666 -0.98
    Z11-84.15 138 0.0318 0.0001 0.0008 0.0000 0.282917 0.000032 0.282921 0.000032 5.3 8.23 1.1 467 599 -0.97
    Z11-84.16 137 0.0301 0.0001 0.0008 0.0000 0.282994 0.000025 0.282997 0.000025 8.0 10.91 0.9 359 448 -0.98
    Z11-84.17 140 0.0411 0.0001 0.0011 0.0000 0.282963 0.000023 0.282967 0.000023 6.9 9.84 0.8 406 510 -0.97
    Z11-84.18 140 0.0367 0.0001 0.0010 0.0000 0.282894 0.000030 0.282897 0.000030 4.4 7.42 1.1 503 646 -0.97
    Z11-84.19 139 0.0351 0.0001 0.0011 0.0000 0.282991 0.000028 0.282995 0.000028 7.9 10.84 1.0 365 453 -0.97
    Z11-84.20 137 0.0341 0.0000 0.0010 0.0000 0.282976 0.000024 0.282980 0.000024 7.4 10.28 0.8 385 483 -0.97
    Z11-84.22 140 0.0354 0.0001 0.0010 0.0000 0.282966 0.000028 0.282970 0.000028 7.0 10.00 1.0 399 501 -0.97
    下载: 导出CSV 
    | 显示表格

    碾子山北部早白垩世安山质角砾凝灰岩(Z11-84)中19颗锆石的初始176Hf/177Hf值为0.282863~ 0.282997,εHf(t)值介于+6.21~+10.91之间,其加权平均值为+8.96±0.71,单阶段模式年龄(TDM1)和二阶段模式年龄(TDM2)变化范围分别为359~553Ma和448~714Ma。

    由上可见,研究区早白垩世中性火山岩的锆石εHf(t)值均为正值,且具有年轻的二阶段模式年龄(TDM2),二阶段Hf模式年龄集中在新元古代和古生代。在t-εHf(t)图解(图 8)上[27],数据点全部落在球粒陨石演化线和亏损地幔演化线之间,同时落入兴蒙造山带东段范围内,说明早白垩世中性火山岩为地幔来源或来自新增生的年轻地壳物质,与中亚造山带内显生宙火成岩的Hf同位素组成相似[28-29]

    图  8  早白垩世火山岩t-εHf(t)图
    Figure  8.  t-εHf(t) diagrams for the Early Cretaceous intermediate volcanic rocks

    研究区早白垩世中性火山岩化学成分显示主要为安山岩、粗面岩等,主量元素总体呈现富钾钠、富铝、贫镁的特征,为准铝质-弱过铝质、高钾钙碱性岩石。研究表明,粗面质火山岩的成因主要包括玄武质岩浆的分异作用[30-32]、玄武质岩浆与流纹质岩浆的混合作用[33-34]和镁铁质地壳熔融[4, 35] 3种观点。研究区早白垩世中性火山岩中铁族元素Cr含量为3.21×10-6~30.20×10-6,远低于地幔橄榄岩源区部分熔融形成的原始玄武质岩浆(Cr=500×10-6~ 600×10-6),且在研究区缺乏同时期的基性岩,因此玄武质岩浆的分异作用很难解释本区大范围分布的中性火山岩。在La-La/Sm图解(图 9)中,早白垩世中性火山岩的La/Sm值与La呈正相关性,表明其为部分熔融形成。

    图  9  早白垩世中性火山岩La -La/Sm图解
    Figure  9.  La-La/Sm diagram for the Early Cretaceous intermediate volcanic rocks

    早白垩世中性火山岩富集大离子亲石元素(如Rb、K、LREE)和Ba、Sr元素,亏损高场强元素(如Ta、Nb、P、Ti);富集轻稀土元素(LREE)、亏损重稀土元素(HREE);Ce/Pb值主要介于2.87~4.10之间,平均值为3.36,与地壳平均值3.3相近[36];La/Nb值为2.85~4.24(平均值为3.52),明显高于原始地幔(0.94),接近陆壳的比值(2.2)。这些特征指示,早白垩世中性火山岩应该来源于下地壳岩石的部分熔融。研究区早白垩世安山质角砾凝灰岩(Z11-84)的锆石εHf(t)值均为正值(+6.21~+10.91),且具有年轻的二阶段模式年龄(TDM2=448~714Ma),二阶段Hf模式年龄集中在新元古代和古生代,与大兴安岭中部晚中生代安山岩的Sr-Nd同位素特征(具有低的Sr初始比值和正的εNd(t)值)一致[37],表明早白垩世中性火山岩的岩浆源区主要为地幔或新元古代和古生代期间从地幔新增生的地壳物质。Nb/Ta值集中在13.52~19.68(平均值为16.47),接近球粒陨石和原始地幔的平均值(17.5)[38-39],而高于地壳的Nb/Ta平均值(12~13)[40];Zr/Hf值集中在34.77~ 41.71(平均值为37.40),高于地壳的Zr/Hf平均值(33)[41],与地幔的平均值(37)接近[42],也反映了岩浆源区为从亏损地幔新增生的下地壳物质,所以保留了地幔的部分微量元素的特点。

    研究区早白垩世中性火山岩的SiO2含量为55.1%~69.1%,Al2O3为14.8%~18%,MgO为0.45%~ 3.74%,Y为15.4×10-6~31×10-6,Yb为1.62×10-6~ 2.83×10-6,Sr为388×10-6~1480×10-6,无负Eu异常,这些地球化学特征与埃达克岩接近[43-44]。在Yb-Sr/Yb图解(图 10[45]中,早白垩世中性火山岩部分样品也落入埃达克岩的区域内,结合其K2O的含量为1.66%~4.84%,平均值为3.26%,应为C型埃达克岩,而C型埃达克岩通常认为是玄武质岩浆底侵加厚的地壳底部引起下地壳部分熔融形成的[46]。早白垩世中性火山岩的Nb含量为6.34×10-6~17.20×10-6(平均值为8.68×10-6),Y含量为15.4×10-6~31×10-6(平均值为20.78×10-6),Zr/Y值为7.31~17.47(平均值为11.81),Rb/Sr值为0.04~0.24(平均值为0.13),Ba/Rb值主要集中在10.24~16.85(平均值为12.22),Ba/Sr值为0.80~2.63(平均值为1.60),这些微量元素特征均反映了研究区早白垩世中性火山岩与安第斯地区安山岩和大陆岛弧安山岩相似(表 5),可能与早先俯冲事件带来的流体影响有关[37]。综上所述,研究区早白垩世中性火山岩岩浆源区应为新元古代和古生代期间新增生的下地壳玄武质岩石的部分熔融,并可能受到早先俯冲事件带来的流体的影响。

    图  10  早白垩世中性火山岩Yb -Sr/Yb图解
    Figure  10.  Yb-Sr/Yb diagram for the Early Cretaceous intermediate volcanic rocks
    表  5  早白垩世中性火山岩微量元素特征与不同构造环境安山岩对比[37]
    Table  5.  Trace element characteristics of the Early Cretaceous intermediate volcanic rocks and a comparison with andesites
    安山岩类 Nb Y Zr/Y Rb/Sr Ba/Rb Ba/Sr
    研究区中性火山岩平均值 8.68 20.78 11.81 0.13 12.22 1.60
    安第斯安山岩平均值 10.0 15.0 14.6 0.11 10.0 1.05
    大陆岛弧安山岩平均值 9.4 22.0 5.4 0.09 8.2 1.16
    大洋岛弧低钾安山岩平均值 0.8 25.0 2.2 0.04 18.5 0.61
    大洋岛弧其他安山岩平均值 5.0 20.0 4.7 0.08 13.0 0.73
      注:Nb和Y的单位为10-6
    下载: 导出CSV 
    | 显示表格

    从侏罗纪开始,东北地区的构造格架与其前期历史相比发生了深刻的变化,由东西向构造转变为北东向和北北东向构造,进入环太平洋构造体系和蒙古-鄂霍茨克构造体系的演化阶段[47-48]。对于东北地区大面积晚中生代岩浆岩形成时的构造背景探讨也一直存在争议,主要观点有以下4种:①与地幔柱构造有关[49-51];②与蒙古鄂霍茨克洋的闭合和造山后垮塌有关[52-53];③与古太平洋板块的俯冲作用有关[7, 54];④与蒙古-鄂霍茨克洋闭合和古太平洋俯冲的共同作用有关[5, 55-56]

    研究发现,大兴安岭及其邻区并不存在环状火山岩带,同时中生代火山岩的形成时代范围较大,因此与喷发周期较短的地幔柱构造有关的作用模式很难解释中生代火山岩的时空分布问题[52, 57]。吉黑东部早—中侏罗世(173~190Ma)钙碱性火山岩组合的发现[58-59]和小兴安岭—张广才岭地区同时期双峰式火成岩组合的存在[55, 60-61],表明早侏罗世古太平洋板块向亚洲大陆斜向俯冲,吉黑东部早中侏罗世岩浆作用应该与本次俯冲事件有关。同时,对于吉黑东部火山岩的年代学研究显示,该区尚未发现164~140Ma的火山岩年龄,而145~130Ma的岩浆活动主要分布于松辽盆地以西的大兴安岭及满洲里地区[1, 4, 62-66],表明古太平洋板块的俯冲在中侏罗世晚期—早白垩世早期存在一个间歇期[47],暗示大兴安岭地区中侏罗世—早白垩世早期的岩浆作用与古太平洋板块的俯冲作用无关。早期由于蒙古-鄂霍茨克洋构造演化的研究程度较低,并且通常认为仅存在西伯利亚南缘的北向俯冲[67],而东北地区北缘则处于被动大陆边缘环境,因此很难将大兴安岭地区晚中生代的岩浆活动与蒙古-鄂霍茨克洋的演化联系到一起。近年来,随着蒙古-鄂霍茨克洋缝合带研究程度的提高,尤其是蒙古-鄂霍茨克洋存在向南俯冲的确定[68-70],越来越多的学者认为,大兴安岭地区晚中生代的岩浆活动应与蒙古-鄂霍茨克洋的闭合和造山后垮塌有关[53, 57]

    在(Y+Nb)-Rb构造环境判别图解(图 11)中[71],早白垩世中性火山岩落入后碰撞构造环境。早白垩世早期中性火山岩中部分样品具有C型埃达克岩的特点,表明研究区经历了陆壳加厚的过程。综上所述,大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的形成与蒙古-鄂霍茨克洋闭合陆壳加厚之后的岩石圈伸展环境有关。

    图  11  早白垩世中性火山岩(Y+Nb)-Rb构造环境判别图
    VAG—火山弧花岗岩;ORG—洋中脊花岗岩;WPG—板内花岗岩;syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩
    Figure  11.  (Y+Nb)-Rb discrimination diagram for the Early Cretaceous intermediate volcanic rocks

    通过对大兴安岭中部柴河—蘑菇气地区中性火山岩的岩相学、锆石U-Pb年代学、岩石地球化学和锆石原位Hf同位素研究,可以得出如下结论:大兴安岭中部柴河—蘑菇气地区早白垩世中性火山岩的形成年龄介于140~130Ma之间,岩浆源区应为新元古代和古生代期间新增生的下地壳玄武质岩石的部分熔融,并可能受到早先的俯冲事件带来的流体的影响,形成于蒙古-鄂霍茨克洋闭合陆壳加厚之后的岩石圈伸展环境。

    致谢: 在成文过程中得到西北大学地质学系张成立教授、第五春荣教授和中国地质调查局发展研究中心李仰春教授级高工的指导和帮助,在此表示衷心感谢。
  • 图  1   乌孙山一带地质简图(据参考文献[43]修改)

    图 a:1—早石炭世早期火山岩;2—早石炭世晚期火山岩;3—晚石炭世火山岩;4—蛇绿岩;①—中天山北缘缝合带;②—博罗科努山南坡断裂带;③—阿吾拉勒南缘断裂;④—乌孙山北部断裂;⑤—那拉提北部断裂;⑥—中天山南缘缝合带;⑦—塔里木北缘断裂带;Ⅰ—准噶尔盆地和北天山;Ⅱ—中天山造山带;Ⅱ-1—博罗科努构造-火山岩带;Ⅱ-2—阿吾拉勒山构造-火山岩带;Ⅱ-3—乌孙山-塔斯巴山构造- 火山岩带;Ⅱ-4—那拉提山构造-火山岩带;Ⅲ—古生代南天山增生楔和塔里木北缘被动陆缘;Ⅳ—塔里木板块;
    图 b:1—下石炭统大哈拉军山组;2—下石炭统阿克沙克组;3—上石炭统伊什基里克组;4—下二叠统乌郎组;5—上二叠统晓山萨依组;6—下-中侏罗统水西沟群;7—石炭纪花岗岩;8—二叠纪花岗岩;9—二叠纪石英闪长岩;10—剖面位置

    Figure  1.   Simplified geologic map of the Wusunshan district

    图  2   昭苏县赛克散萨依大哈拉军山组火山岩剖面

    1—玄武岩;2—杏仁状玄武岩;3—砾岩;4—砂岩;5—沙质泥岩;6—产状;7—地质点、地球化学样品点及其编号;8—锆石同位素采样点;9—下石炭统大哈拉军山组;10—上二叠统晓山萨依组

    Figure  2.   Section of Dahalajunshan Group from Saikesayi river of Zhaosu County

    图  3   昭苏县赛克散萨依大哈拉军山组火山岩显微照片

    a—无斑玄武岩,呈间粒结构,由斜长石、单斜辉石组成,见橄榄石假象(正交偏光);b—斑状玄武岩,呈斑状结构,斜长石斑晶略显定向排列,基质由隐晶质和微晶长石组成(正交偏光)。Pl—斜长石;Px—辉石

    Figure  3.   Microphotographs of typical basalts outcropped in the section of Dahalajunshan Group from Saikesayi river of Zhaosu County

    图  4   赛克散萨依剖面玄武岩(11LK02-1)锆石阴极发光(CL)图像(图中数值为206Pb/238U表面年龄)

    Figure  4.   Zircon CL images of basalt(11LK02-1)from Saikesayi section

    图  5   赛克散萨依剖面玄武岩(11LK02-1)LA-ICP-MS锆石U-Pb年龄谐和图

    Figure  5.   LA-ICP-MS zircon U-Pb histogram of weighted average ages and concordia diagram for zircon from basalt of Saikesayi section

    图  6   赛克散萨依剖面火山岩岩石化学图解(a~c据参考文献[65];d据参考文献[66])

    a—Nb/Y-SiO2图解;b—Zr/TiO2*0.0001-SiO2图解;c—Nb/Y-Zr/TiO2*0.0001图解;d—AFM图解。A—碱性玄武岩;B—粗面安山岩

    Figure  6.   Geochemical diagrams for volcanic rocks from Saikesayi section

    图  7   赛克散萨依剖面火山岩稀土元素配分图(a)和微量元素蛛网图(b) (稀土元素标准化数据据参考文献[67];N-MORB据参考文献[68])

    Figure  7.   Chondrite-normalized REE patterns(a) and N-MORB-normalized spidergrams(b) for basalts from Saikesayi sectionn

    图  8   赛克散萨依剖面火山岩构造环境判别图(底图据参考文献[95-98])

    MORB—洋中脊玄武岩;WPB—板内玄武岩

    Figure  8.   Tectonic discrimination diagrams of volcanic rocks from Saikesayi section

    图  9   赛克散萨依大哈拉军山组火山岩构造环境判别图[123]

    N-MORB—正常洋中脊玄武岩

    Figure  9.   Discrimination diagrams for tectonic settings of volcaninc rocks from Saikesayi section

    表  1   昭苏赛克散萨依剖面玄武岩LA-ICP-MS锆石U-Th-Pb同位素年龄分析结果

    Table  1   LA-ICP-MS U-Th-Pb analyses of zircon from basalt in Saikesayi section

    测点编号 元素含量/10-6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    11LK02-1-03 378 427 0.88 0.0572 0.0015 0.4455 0.0106 0.0564 0.0004 0.0180 0.0002 501 56 374 7 354 3 360 4
    11LK02-1-04 243 318 0.76 0.0580 0.0015 0.4540 0.0108 0.0568 0.0005 0.0185 0.0002 530 56 380 8 356 3 371 4
    11LK02-1-05 193 298 0.65 0.0566 0.0021 0.4491 0.0160 0.0575 0.0006 0.0192 0.0004 477 81 377 11 360 4 384 7
    11LK02-1-06 169 268 0.63 0.0560 0.0014 0.4346 0.0104 0.0563 0.0004 0.0176 0.0002 450 56 366 7 353 3 353 5
    11LK02-1-07 243 368 0.66 0.0564 0.0014 0.4384 0.0097 0.0564 0.0004 0.0177 0.0002 466 53 369 7 354 3 354 4
    11LK02-1-08 236 362 0.65 0.0560 0.0013 0.4262 0.0093 0.0552 0.0004 0.0178 0.0002 452 52 360 7 346 3 357 4
    11LK02-1-09 158 282 0.56 0.0562 0.0012 0.4428 0.0088 0.0572 0.0004 0.0175 0.0002 458 48 372 6 358 2 350 4
    11LK02-1-10 126 216 0.59 0.0551 0.0018 0.4169 0.0130 0.0549 0.0005 0.0170 0.0003 417 72 354 9 344 3 341 6
    11LK02-1-13 181 274 0.66 0.0563 0.0013 0.4488 0.0096 0.0579 0.0004 0.0177 0.0002 462 51 376 7 363 3 354 4
    11LK02-1-14 339 637 0.53 0.0555 0.0012 0.4292 0.0081 0.0561 0.0004 0.0185 0.0002 431 46 363 6 352 2 371 4
    11LK02-1-15 99.1 200 0.49 0.0564 0.0020 0.4509 0.0150 0.0580 0.0006 0.0184 0.0004 466 76 378 10 364 4 370 8
    11LK02-1-16 169 253 0.67 0.0544 0.0013 0.4354 0.0093 0.0581 0.0004 0.0174 0.0002 387 51 367 7 364 3 349 4
    11LK02-1-17 132 213 0.62 0.0609 0.0018 0.4787 0.0136 0.0570 0.0005 0.0182 0.0003 635 64 397 9 358 3 365 6
    11LK02-1-18 108 208 0.52 0.0556 0.0019 0.4349 0.0140 0.0567 0.0006 0.0174 0.0003 437 74 367 10 356 3 348 7
    11LK02-1-19 129 222 0.58 0.0568 0.0015 0.4380 0.0106 0.0560 0.0004 0.0167 0.0002 482 57 369 8 351 3 334 5
    11LK02-1-21 135 243 0.55 0.0641 0.0017 0.4994 0.0126 0.0565 0.0005 0.0196 0.0003 746 56 411 9 354 3 392 6
    11LK02-1-22 190 382 0.50 0.0586 0.0015 0.4543 0.0108 0.0562 0.0004 0.0179 0.0003 552 55 380 8 353 3 358 5
    11LK02-1-24 122 200 0.61 0.0630 0.0019 0.4960 0.0140 0.0570 0.0005 0.0188 0.0003 710 63 409 10 358 3 376 6
    11LK02-1-25 100 208 0.48 0.0564 0.0018 0.4433 0.0135 0.0570 0.0005 0.0181 0.0003 466 70 373 10 358 3 363 7
    11LK02-1-26 39.1 69.9 0.56 0.0581 0.0023 0.4680 0.0181 0.0584 0.0006 0.0191 0.0004 533 86 390 12 366 4 382 8
    11LK02-1-27 166 257 0.65 0.0599 0.0013 0.4847 0.0096 0.0587 0.0004 0.0191 0.0002 598 47 401 7 368 3 383 4
    11LK02-1-29 108 222 0.49 0.0601 0.0014 0.4716 0.0101 0.0569 0.0004 0.0191 0.0002 608 50 392 7 357 3 382 5
    11LK02-1-30 146 285 0.51 0.0576 0.0013 0.4491 0.0092 0.0566 0.0004 0.0179 0.0002 514 49 377 6 355 3 358 5
    11LK02-1-31 99.1 196 0.51 0.0562 0.0015 0.4336 0.0108 0.0560 0.0005 0.0178 0.0003 458 58 366 8 351 3 357 5
    11LK02-1-32 198 380 0.52 0.0556 0.0011 0.4382 0.0076 0.0571 0.0004 0.0171 0.0002 437 43 369 5 358 3 343 4
    下载: 导出CSV

    表  2   赛克散萨依剖面火山岩主量、微量和稀土元素化学组成及CIPW标准矿物含量

    Table  2   Major, trace and rare earth element contents and CIPW norm of volcanic rocks from Saikesayi section

    元素 粗面玄武岩 玄武岩 玄武岩 玄武岩 粗面玄武岩 玄武岩 玄武岩 玄武岩 玄武岩
    11LK01-1 11LK01-2 11LK01-3 11LK01-4 11LK01-5 11LK01-6 11LK01-7 11LK02-1 11LK02-3
    SiO2 49.52 45.06 45.14 45.04 46.1 45.96 45.46 45.93 45.84
    TiO2 1.22 1.83 1.85 1.89 1.61 1.75 1.50 1.57 1.41
    Al2O3 16.32 16.58 17.15 16.76 15.27 17.00 16.41 16.01 16.74
    Fe2O3 6.25 11.02 10.73 9.03 10.64 9.87 9.22 8.75 5.28
    FeO 3.02 2.13 2.62 3.98 1.17 2.3 1.97 2.37 4.72
    MnO 0.16 0.15 0.13 0.19 0.18 0.14 0.16 0.16 0.18
    MgO 7.71 6.28 5.7 6.3 6.91 5.97 7.54 7.06 8.94
    CaO 6.05 9.23 9.27 9.01 7.42 9.57 9.62 7.28 8.25
    Na2O 3.93 2.81 3.04 2.77 3.96 3.1 2.67 4.00 2.36
    K2O 1.06 0.35 0.35 0.35 1.22 0.6 0.44 0.65 0.36
    P2O5 0.34 0.39 0.39 0.4 0.4 0.43 0.37 0.38 0.29
    烧失量 4.39 4.1 3.59 4.29 5.09 3.26 4.56 5.8 5.6
    总计 99.97 99.93 99.96 100.01 99.97 99.95 99.92 99.96 99.97
    Alk 4.99 3.16 3.39 3.12 5.18 3.7 3.11 4.65 2.72
    Mg# 0.62 0.48 0.46 0.48 0.54 0.49 0.57 0.55 0.63
    Pb 3.5 2.75 2.5 2.63 0.68 4.85 2.24 3.44 1.32
    Zn 79.4 94.8 101 95.8 95.5 86.7 84.9 84.4 78.8
    Cr 170 52.4 49.1 48.7 122 151 166 164 175
    Ni 113 96.1 102 93.6 105 114 130 132 131
    Co 37 46 46.9 45.5 42.4 40.8 42.4 43.3 43.7
    Li 16.9 8.17 8.62 11.6 28 21.5 29.2 48.9 41.2
    Rb 20.4 4.07 4.37 3.44 25.2 10.1 6.95 17.2 3.83
    Cs 0.36 0.12 0.14 0.24 0.28 0.14 0.093 0.27 0.26
    Mo 0.63 0.69 0.68 0.61 0.97 0.84 0.62 0.75 0.31
    Sr 615 388 415 434 910 497 441 1090 320
    Ba 256 126 149 135 297 254 130 194 116
    V 153 230 244 237 118 239 199 212 224
    Sc 22.8 25.4 27.7 24.4 28.1 32.3 26.4 27.1 28.3
    Nb 4.99 4.46 4.79 4.38 4.26 4.73 4.20 4.64 3.11
    Ta 0.43 0.42 0.44 0.41 0.39 0.38 0.33 0.35 0.26
    Zr 129 143 150 144 120 127 115 128 103
    Hf 2.68 3.03 3.18 3.05 2.53 2.75 2.29 2.71 2.29
    Ga 16.8 17.2 19.9 17.6 14.9 17.5 17.6 15.8 17
    U 0.35 0.19 0.18 0.16 0.11 0.17 0.13 0.13 0.2
    Th 1.45 0.82 0.55 0.48 0.39 0.45 0.61 0.58 0.54
    La 13.4 10.3 11 10.4 8.68 11.2 10.4 11 8.41
    Ce 31 28.1 29.1 27.8 24.8 28.8 25.8 28.2 21
    Pr 4.45 4.34 4.38 4.27 3.66 4.42 3.79 4.09 3.13
    Nd 19.3 20.5 22 21 18.1 21 18.6 20.2 15.3
    Sm 4.61 5.36 5.66 5.73 4.96 5.57 4.42 4.99 4.32
    Eu 1.51 1.84 1.98 1.9 1.63 1.89 1.7 1.68 1.55
    Gd 4.58 5.44 5.72 5.65 4.83 5.53 4.5 4.83 4.28
    Tb 0.74 0.87 0.91 0.87 0.76 0.82 0.67 0.81 0.67
    Dy 4.53 5.67 5.72 5.72 4.87 5.43 4.65 5.12 4.74
    Ho 0.99 1.14 1.26 1.13 1.04 1.18 0.95 1.12 0.96
    Er 2.54 3.23 3.28 3.18 2.81 3.12 2.52 2.95 2.51
    Tm 0.37 0.48 0.52 0.47 0.43 0.43 0.39 0.42 0.37
    Yb 2.22 2.86 3.08 2.88 2.4 2.71 2.32 2.6 2.32
    Lu 0.37 0.44 0.5 0.47 0.38 0.37 0.36 0.39 0.35
    Y 24.5 29.4 32.1 29.8 26.5 28.6 25.1 27.2 24.8
    ∑REE 115.1 120.0 127.2 121.3 105.9 121.1 106.2 115.6 94.7
    (La/Yb)N 4.07 2.43 2.41 2.43 2.44 2.79 3.02 2.85 2.44
    (La/Sm)N 1.83 1.21 1.22 1.14 1.10 1.26 1.48 1.39 1.22
    (Gd/Yb)N 1.66 1.53 1.50 1.58 1.62 1.65 1.57 1.50 1.49
    δEu 0.99 1.03 1.05 1.01 1.01 1.03 1.16 1.03 1.09
    Q 0.00 1.86 1.28 2.16 0.00 0.39 0.35 0.00 0.52
    An 24.82 32.93 33.28 33.66 21.35 31.71 32.98 25.25 36.01
    Ab 34.75 24.78 26.66 24.46 35.05 27.1 23.66 35.9 21.14
    Or 6.56 2.16 2.15 2.16 7.61 3.67 2.73 4.08 2.26
    Ne 0 0 0 0 0.12 0 0 0 0
    Di 3.50 9.71 9.40 8.25 11.66 11.51 11.51 8.36 4.38
    Hy 18.21 11.89 10.44 12.64 0 10.11 14.44 4.87 24.07
    Ol 0.23 0 0 0 8.97 0 0 7.00 0
    Il 2.43 3.63 3.65 3.75 0 3.44 2.99 3.17 2.84
    Mt 7.03 2.14 3.63 8.32 4.59 2.89 2.64 3.83 8.11
    he 1.69 10.03 8.63 3.7 8.05 8.22 7.85 6.65 0
    Ap 0.78 0.89 0.88 0.91 0.92 0.97 0.85 0.88 0.67
    sum 100.00 100.02 100.00 100.01 98.32 100.01 100.00 99.99 100.00
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • Seng r A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoiccrustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    Jahn B M, Wu F Y, Chen B. Massive Granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23: 82-92. doi: 10.18814/epiiugs/2000/v23i2/001

    Jahn B M, Griffin W L, Wingley B F. Continental growth in the Phanerozoic: evidence from Central Asia[J]. Tectonophysics(special issue), 2020, 328: 1-227. http://www.sciencedirect.com/science/article/pii/S0040195100001748

    肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992: 1-11, 90-103.

    Gao J, Klemd R. Formation of HP LT rocks and theirtectonic implications in the western Tianshan Orogen. NW China: geochemical and age constraints[J]. Lithos, 2003, 66: 1-22. doi: 10.1016/S0024-4937(02)00153-6

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304: 370-395. doi: 10.2475/ajs.304.4.370

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117. doi: 10.1016/j.jseaes.2007.10.008

    董云鹏, 张国伟, 周鼎武, 等. 中天山北缘冰达坂蛇绿混杂岩的厘定及其构造意义[J]. 中国科学(D辑), 2005, 35(6): 552-560. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506007.htm
    董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501004.htm
    陈丹玲, 刘良, 车自成, 等. 中天山骆驼沟火山岩的地球化学特征及其构造环境[J]. 岩石学报, 2001, 17(3): 378-384 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103004.htm

    Heinhorst J, Lehmann B, Ermolov P, et al. Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan[J]. Tectonophysics, 2000, 328: 69-87. doi: 10.1016/S0040-1951(00)00178-5

    张芳荣, 程春华, 余泉, 等. 西天山乌孙山一带大哈拉军山组火山岩LA-ICP-MS锆石U-Pb定年[J]. 新疆地质, 2009, 27(3): 231-235. doi: 10.3969/j.issn.1000-8845.2009.03.007

    Shen P, Shen Y C, Li X H, et al. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach[J]. Lithos, 2012, 140/141: 103-118. http://www.sciencedirect.com/science/article/pii/S0024493712000485

    Chen J F, Han B F, Jia J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152. doi: 10.1016/j.lithos.2009.11.014

    Han B F, Wang S G, Jahn B M, et al. Depleted-mantle magma source for the Ulungur River A-type granites from north Xinjiang, China: Geochemisitry and Nd-Sr isotopic evidence, and implication for Phanerozoic crustal growth[J]. Chemical Geology, 1994, 138: 135-159.

    Zhou T F, Yuan F, Fan Y, et al. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106: 191-206. doi: 10.1016/j.lithos.2008.06.014

    Dong Y P, Zhang G W, Neubauer F, et al. Syn-and post-collisional granitoids in the Central Tianshan orogen: geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research, 2011, 20: 568-581. doi: 10.1016/j.gr.2011.01.013

    Neubauer F, Liu X M, Hauzenberger C. Syn- and post-collisional granitoids in the Central Tianshan orogen: geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research, 2011, 20: 568-581. doi: 10.1016/j.gr.2011.01.013

    Tang G J, Wang Q, Wyman D A, et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting[J]. Lithos, 2010, 119: 393-411. doi: 10.1016/j.lithos.2010.07.010

    车自成, 刘洪福, 刘良, 等. 中天山造山带的形成与演化[M]. 北京: 地质出版社, 1994: l-135.
    车自成, 刘良, 刘洪福, 等. 论伊犁裂谷[J]. 岩石学报, 1996, 12(3): 478-490. doi: 10.3321/j.issn:1000-0569.1996.03.014
    夏林圻, 夏祖春, 徐学义, 等. 天山石炭纪大火成岩省与地幔柱[J]. 地质通报, 2004, 23(9/10): 903-910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2011.htm
    夏林圻, 李向民, 夏祖春, 等. 天山石炭纪-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001

    Xia L Q, Xu X Y, Xia Z C, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin, 2004, 116(3-4): 419-433. http://adsabs.harvard.edu/abs/2004GSAB..116..419X

    白建科, 李智佩, 徐学义, 等. 西天山乌孙山地区大哈拉军山组碎屑锆石U-Pb定年及其地质意义[J]. 中国地质, 2015, 42(1): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201501006.htm
    白建科, 李智佩, 徐学义, 等. 西天山早石炭世构造环境: 大哈拉军山组底部沉积地层学证据[J]. 沉积学报, 2015, 33(3): 459-470. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201503004.htm
    高山林, 李云新. 西天山尼勒克水泥厂大哈拉军山组形成时代与构造背景[J]. 新疆地质, 2017, 33(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201504005.htm
    姜常义, 吴文奎, 张学仁, 等. 从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J]. 岩石矿物学杂志, 1995, 14(4): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW504.000.htm
    朱永峰, 张立飞, 古丽冰, 等. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报, 2005, 50: 2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014
    王博, 舒良树, Cluzel D, 等. 新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J]. 中国地质, 2006, 33(3): 498-508. doi: 10.3969/j.issn.1000-3657.2006.03.006
    安芳, 朱永峰. 西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究[J]. 岩石学报, 2008, 24(12): 2741-2748. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812009.htm
    龙灵利, 高俊, 钱青, 等. 西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J]. 岩石学报, 2008, 24(4): 699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804010.htm
    李永军, 李注苍, 佟丽莉, 等. 论天山古洋盆关闭的地质时限——来自伊犁地块石炭系的新证据[J]. 岩石学报, 2010, 26(10): 2905-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010003.htm
    李永军, 吴乐, 李书领, 等. 伊宁地块石炭纪火山岩及其对构造演化的约束[J]. 岩石学报, 2017, 33(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201701001.htm
    李继磊, 钱青, 高俊, 等. 西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征、时代和构造环境[J]. 岩石学报, 2010, 26(10): 2913-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010004.htm
    茹艳娇, 徐学义, 李智佩, 等. 西天山乌孙山地区大哈拉军山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境[J]. 地质通报, 2012, 31(1): 50-62. doi: 10.3969/j.issn.1671-2552.2012.01.006
    李大鹏, 杜杨松, 庞振山, 等. 西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究[J]. 地球学报, 2013, 34(2): 176-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302006.htm
    李鸿. 西天山尼勒克一带大哈拉军山组火山岩地球化学特征及构造意义[J]. 新疆地质, 2017, 35(2)145-150. doi: 10.3969/j.issn.1000-8845.2017.02.006
    周翔, 余心起, 王宗秀, 等. 西天山大哈拉军山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 2015, 34(5): 845-860. doi: 10.3969/j.issn.1671-2552.2015.05.005
    钱青, 高俊, 熊贤明, 等. 西天山昭苏北部石炭纪火山岩的地球化学特征、成因及形成环境[J]. 岩石学报, 2006, 22(5): 1307-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605021.htm
    李春昱, 王荃, 刘雪亚, 等. 亚洲大地构造图(1: 8 000 000)[M]. 北京: 地图出版社, 1982.
    李春昱, 王荃. 中国北部边陲及邻区的古板块构造与欧亚大陆的形成[C]//蔡文俊(主编). 中国北方板块构造文集, 第1集[M]. 北京: 地质出版社, 1983: 3-16.
    王洪亮, 徐学义, 何世平, 等. 天山及邻区地质图(1: 1 000 000)[M]. 北京: 地质出版社, 2007.

    Kwon S T, Tilton G R, Coleman, R G, et al. Isotopic studies bearing on the tectonics of the west Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 719-727. doi: 10.1029/TC008i004p00719

    Xiao X C, Tang Y Q, Wang J, et al. Tectonic evolution of the Northern Xinjiang, N.W. China: an introduction to the tectonics of the southern part of the Paleo-Asian Ocean[C]//Coleman, R G. Reconstruction of the Paleo-Asian Ocean. Proceeding of the 29th International Geological Congress, Part B. VSP, Utrecht, 1994: 6-25.

    徐学义, 夏林圻, 马中平, 等. 天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601009.htm
    徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J]. 地质学报, 2006, 50(8): 1168-1176. doi: 10.3321/j.issn:0001-5717.2006.08.010
    李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 39(6): 783-817. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200602&flag=1
    汤耀庆, 高俊, 赵民. 西南天山蛇绿岩和蓝片岩[M]. 北京: 地质出版社, 1995.
    杨经绥, 徐向珍, 李天福, 等. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据[J]. 岩石学报, 2011, 27(1): 77-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101006.htm
    夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 2002, 21(2): 55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002

    Gao J, Li M S, Xiao X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 1998, 287: 213-231. doi: 10.1016/S0040-1951(97)00211-4

    Gao J, Zhang L F, Liu S W. The 40Ar/39Ar age record of formation and uplift of the blueschists and eclogites in the western Tianshan Mountains[J]. Chinese Science Bulletin, 2000, 45: 1047-1051. http://www.cqvip.com/QK/86894X/200011/4000624701.html

    姜常义, 穆艳梅, 白开寅, 等. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境[J]. 岩石学报, 1999, 15(2): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.017.htm
    赵振华, 王强, 熊小林, 等. 新疆北部的两类埃达克岩[J]. 岩石学报, 2006, 22(5): 1249-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605016.htm
    王作勋, 邹继易, 吕喜朝, 等. 天山多旋回构造演化及成矿[M]. 北京: 科学出版社, 1990: 129-133。
    高长林, 黄泽光, 叶德燎, 等. 中国早古生代三大古海洋及其对盆地的控制[J]. 石油实验地质, 2005, 27(5): 439-448. doi: 10.3969/j.issn.1001-6112.2005.05.003
    李智佩, 白建科, 茹艳娇, 等. 西天山地区早石炭世火山岩形成时代、地层清理及其地质意义[C]//第四届全国地层会议论文摘要, 2013: 599.
    朱永峰, 周晶, 宋彪, 等. 新疆"大哈拉军山组"火山岩形成时代问题及其解题方案[J]. 中国地质, 2006, 33(3): 487-497. doi: 10.3969/j.issn.1000-3657.2006.03.005
    翟伟, 孙晓明, 高俊, 等. 新疆阿希金矿床赋矿围岩-大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 2006, 22(5): 1399-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605029.htm
    李永军, 李注苍, 周继兵, 等. 西天山阿吾拉勒一带石炭系岩石地层单位厘定[J]. 岩石学报, 2009, 25(6): 1332-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906005.htm
    汪帮耀, 姜常义. 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因[J]. 地质科技情报, 2011, 30(6): 18-27. doi: 10.3969/j.issn.1000-7849.2011.06.003
    沈立军, 王怀洪, 李大鹏, 等. 新疆西天山智博铁矿床地球化学及同位素特征[J]. 地质通报, 2020, 39(5): 698-711. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200511&flag=1

    Liu X, Gao S, Diwu C, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 mu m spot size[J]. Chinese Science Bulletin, 2007, 52: 1257-1264. http://www.cqvip.com/QK/86894X/200709/24544826.html

    Winchester J A, Floyd P A. Geochemicaldiscrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Irvine T N, Baragar W R A. A guide to the chemica classification of the common volcanic rocks[J]. Can. Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    Boynton W V. Cosmochemistry of the rare earth elements[C]//Henderson P. Rare earth element geochemistry, 1984: 63-114.

    Sun S S, MCDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[M]. Geological Society of London, Special Publication, 1989, 42: 313-334.

    Tilley C E. Some aspects of magmatic evolution[J]. Quarterly Journal of Geological Society, 1950, 106: 37-50. doi: 10.1144/GSL.JGS.1950.106.01-04.04

    Kuno H. High-alumina basalt[J]. Journal of Petrology, 1960, 1: 121-145. doi: 10.1093/petrology/1.2.121

    Ewart A E. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: With special reference to the andesitic-basaltic compositional range[C]//Thorpe R S. Andesites: Orogenic andesites and related rocks: New York, John Wiley & Sons, 1982: 25-95.

    王德滋, 周新民. 火山岩岩石学[M]. 北京: 科学出版社, 1982.

    Perfit M R, Gust D A, Bence A E, et al. Chemical Characteristics of Island-Arc Basalts: Implications for Mantle Sources[J]. Chemical Geology, 1980, 30: 227-256. doi: 10.1016/0009-2541(80)90107-2

    Ozerov A Y. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions[J]. Journal of Volcanology and Geothermal Research, 2000, 95: 65-79. doi: 10.1016/S0377-0273(99)00118-3

    Green T H, Green D H, Ringwood A E. The origin of high-alumina basalts and their relationships to quartz tholeiites and alkali basalts[J]. Earth and Planetary Science Letters, 1967, 2: 41-51. doi: 10.1016/0012-821X(67)90171-9

    Marsh B D, Carmichael I S E. Benioff zone magmatism[J]. Jounal of Geophysical Research, 1974, 79: 1196-1206. doi: 10.1029/JB079i008p01196

    Brophy J G, Marsh B D. On the origin of high-alumina arc basalt and the mechanics of melt extraction[J]. Journal of Petrology, 1986, 27: 763-789. doi: 10.1093/petrology/27.4.763

    Crawford A J, Falloon T J, Eggins S. The Origin of island arc high-alumina basalts[J]. Contributions to Mineralogy and Petrology, 1987, 97: 417-430. doi: 10.1007/BF00372004

    Kay S M, Kay, R W. Aleutian tholeiitic and calc-alkaline magma series 1: The mafic phenocrysts[J]. Contributions to Mineralogy and Petrology, 1985, 90: 276-290. doi: 10.1007/BF00378268

    Kadik A A, Rozenhauer M, Lukanin O A. Experimental study of pressure influence on the crystallization of Kamchatka magnesian and aluminous basalts[J]. Geochemistry, 1989, 12: 1748-1762.

    Albarède F, Luais B, Futon G, et al. The Geochemical regimes of Piton de la Fournaise volcano (Reunion) during the last 530 000 years[J]. Journal of Petrology, 1997, 38(2): 171-201. doi: 10.1093/petroj/38.2.171

    Geist D, Naumann T, Larson P. Evolution of Galapagos magmas: mantle and crustal fractionation without assimilation[J]. Journal of Petrology, 1998, 39(5): 953-971. doi: 10.1093/petroj/39.5.953

    Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth and planetary Science Letters, 1973, 19: 218-224. doi: 10.1016/0012-821X(73)90118-0

    新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表[M]. 北京: 地质出版社, 1981: 177-208.
    朱永峰, 安芳, 薛云兴, 等. 西南天山特克斯科桑溶洞火山岩的锆石U-Pb年代学研究[J]. 岩石学报, 2010, 26(8): 2255-2263. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008004.htm
    李婷, 徐学义, 李智佩, 等. 西天山科克苏河大哈拉军山组火山岩形成年代和岩石地球化学特征[J]. 地质通报, 2012, 31(12): 1929-1938. doi: 10.3969/j.issn.1671-2552.2012.12.002
    冯金星, 石品福, 汪帮耀, 等. 西天山阿吾拉勒成矿带火山岩型铁矿[M]. 北京: 地质出版社, 2010: 1-132.
    高山林, 李云新. 西天山尼勒克水泥厂大哈拉军山组形成时代与构造背景[J]. 新疆地质, 2017, 33(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201504005.htm
    韩琼, 弓小平, 马华东, 等. 西天山阿吾拉勒成矿带大哈拉军山组火山岩时空分布规律及其地质意义[J]. 中国地质, 2015, 42(3): 570-586. doi: 10.3969/j.issn.1000-3657.2015.03.013
    孙林华, 彭头平, 王岳军. 新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征: 岩石成因和构造背景探讨[J]. 大地构造与成矿学, 2007, 31(3): 372-379. doi: 10.3969/j.issn.1001-1552.2007.03.016
    郭璇, 朱永峰. 新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究[J]. 高校地质学报, 2006, 12(1): 62-73. doi: 10.3969/j.issn.1006-7493.2006.01.007
    茹艳娇, 李智佩, 白建科, 等. 西天山乌孙山地区大哈拉军山组火山岩岩石组合与喷发序列研究进展[J]. 西北地质, 2018, 51(4): 33-42. doi: 10.3969/j.issn.1009-6248.2018.04.005
    李注苍, 李永军, 李景宏, 等. 西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J]. 新疆地质, 2006, 24(2): 120-124. doi: 10.3969/j.issn.1000-8845.2006.02.005
    孙吉明, 马中平, 徐学义, 等. 西天山伊宁县北琼阿希河谷火山岩地球化学特征及构造背景探讨[J]. 岩石矿物学杂志, 2012, 31(3): 335-347. doi: 10.3969/j.issn.1000-6524.2012.03.004
    从柏林. 岩石化学研究及其意义[C]//叶大年, 从柏林. 岩矿实验室工作方法手册. 北京: 地质出版社, 1981: 293-322.

    Miyashiro. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83(2): 249-281. doi: 10.1086/628085

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]//Hawkesworth C J, Norry M J. Nantwich, Continental Basalts and Mantle Xenoliths. UK: Shiva, 1983: 230-249.

    王润三, 王居里, 周鼎武, 等. 南天山榆树沟遭受麻粒岩相变质改造的蛇绿岩套研究[J]. 地质科学, 1999, 34(2): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX902.003.htm
    郝杰, 刘小汉. 南天山蛇绿混杂岩形成时代及大地构造意义[J]. 地质科学, 1993, 28(1): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199301011.htm
    龙灵利, 高俊, 熊贤明, 等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报, 2006, 22(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601007.htm
    马中平, 夏林圻, 徐学义, 等. 南天山库勒湖蛇绿岩形成环境及构造意义基性熔岩的地球化学证据[J]. 岩石矿物学杂志, 2006, 25(5): 387-400. doi: 10.3969/j.issn.1000-6524.2006.05.003
    何国琦, 李茂松. 中亚蛇绿岩带研究进展及区域构造连接[J]. 新疆地质, 2000, 18(3): 193-202. doi: 10.3969/j.issn.1000-8845.2000.03.001
    舒良树, 王博, 朱文斌. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J]. 地质学报, 2007, 81(9): 1161-1168. doi: 10.3321/j.issn:0001-5717.2007.09.001

    Klemd R, Br cker M, Hacker B R, et al. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China[J]. The Journal of Geology, 2005, 113: 157-168. doi: 10.1086/427666

    Kr ner A, Alexeiev D V, Hegner E, et al. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan[J]. Gondwana Research, 2012, 21(4): 901-927. doi: 10.1016/j.gr.2011.05.010

    Lomize M G, Demina L I, Zarshchikov A A. The Kyrgyz-Terskei Paleoceanic Basin, Tien Shan[J]. Geotectonics, 1997, 31: 463-482. http://www.researchgate.net/publication/284478250_The_Kyrgyz-Terskei_paleoceanic_basin_in_the_Tien_Shan

    何国琦, 李茂松, 韩宝福. 中国西南天山及邻区大地构造研究[J]. 新疆地质, 2001, 19(1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002

    Bazhenov M L, Collins A Q, Degtyarev K E, et al. Paleozoic northward drift of the North Tien Shan(Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism[J]. Tectonophysics, 2003, 366: 113-141. doi: 10.1016/S0040-1951(03)00075-1

    Qian Q, Gao J, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2009, 98: 551-569. doi: 10.1007/s00531-007-0268-x

    李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征: 地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 895-909. doi: 10.3969/j.issn.1671-2552.2006.08.001

    Mao J W, Konondelko D, Seltamn R, et al. Postcollisional age of the Kumtor Gold deposit and timing of Hercynian events in the Tien Shan[J]. Economic Geology, 2004, 99: 1771-1780. doi: 10.2113/gsecongeo.99.8.1771

    徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 29(6): 691-706. doi: 10.3969/j.issn.1000-6524.2010.06.007

    Gao J, Long L, Klemd R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. International[J]. Journal of Earth Sciences, 2009, 98: 1221-1238. doi: 10.1007/s00531-008-0370-8

    董云鹏, 周鼎武, 张国伟, 等. 中天山北缘干沟蛇绿混杂岩带的地质地球化学[J]. 岩石学报, 2006, 22(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601005.htm
    李超, 肖文交, 韩春明, 等. 新疆北天山奎屯河蛇绿岩斜长花岗岩锆石SIMS U-Pb年龄及其构造意义[J]. 地质科学, 2013, 43(3): 815-826. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201303018.htm
    苏会平, 司国辉, 张超. 新疆北天山巴音沟南侧发育早泥盆纪蛇绿岩及其构造意义[J]. 陕西地质, 2014, 32(1): 33-38. doi: 10.3969/j.issn.1001-6996.2014.01.007

    Wheller G E, Varne R, Foden J D, et al. Geochemistry of Quaternary volcanism in the sunda-banda arc, Indonesia, and three-comonent genesis of island-arc basalt magmas[J]. Journal of Volcaology and Geothermal Research, 1987, 32: 137-160. doi: 10.1016/0377-0273(87)90041-2

    Gertisser R, Keller J. Trace element and Sr, Nd, Pb and O isotope variations in medium-k and high-k volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis[J]. Journal of Petrology, 2003, 44(3): 457-489. doi: 10.1093/petrology/44.3.457

    Patricia Sruoga, Eduardo J, Llambias et al. Volcanological and geochemical evolution of the Diamante Caldera-Maipo volcano complex in the southern Andes of Argentina(34°10'S)[J]. Journal of South American Earth Sciences, 2005, 19: 399-414 doi: 10.1016/j.jsames.2005.06.003

    Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism. Subduction Top to Bottom[J]. Geophysical Monograph series, DC, 1996(96): 251-262. doi: 10.1029/GM096

    Tatsumi Y, Eggins S. Subduction zone magmatism[M]. Blackwel Science, 1995: 1-211.

    Pearce J A. Tectonic implications of thecomposition of volcanic arc magmas[J]. Annual Review of Earth Planet Sciences, 1995, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    新疆区域地质调查大队. 昭苏幅1/20万区域地质调查报告. 1978.
图(9)  /  表(2)
计量
  • 文章访问数:  2786
  • HTML全文浏览量:  511
  • PDF下载量:  1759
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-04-16
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-06-14

目录

/

返回文章
返回