• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机理

韦璐, 范代读, 吴伊婧, 任发慧

韦璐, 范代读, 吴伊婧, 任发慧. 2021: 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机理. 地质通报, 40(5): 707-720.
引用本文: 韦璐, 范代读, 吴伊婧, 任发慧. 2021: 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机理. 地质通报, 40(5): 707-720.
WEI Lu, FAN Daidu, WU Yijing, REN Fahui. 2021: High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism. Geological Bulletin of China, 40(5): 707-720.
Citation: WEI Lu, FAN Daidu, WU Yijing, REN Fahui. 2021: High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism. Geological Bulletin of China, 40(5): 707-720.

近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机理

基金项目: 

上海市教委科研创新计划自然科学重大项目《河口动力地貌系统状态转变与潜在海洋地质灾害预警》 2021-01-07-00-07-E00093

详细信息
    作者简介:

    韦璐(1995-), 女, 在读硕士生, 从事海洋沉积学研究。E-mail: 625695571@qq.com

    通讯作者:

    范代读(1972-), 男, 博士, 教授, 从海洋地质学研究。E-mail: ddfan@tongji.edu.cn

  • 中图分类号: P333;TV122

High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism

  • 摘要:

    夏季洪涝灾害对长江流域社会经济造成了严重的影响,急需开展多时空尺度流域洪水发生规律和控制机理的研究,但因洪水器测数据年限短和缺少有效的古洪水沉积记录研究方法而难以实现。选取长江水下三角洲YEC1701柱状样顶部100 cm进行高分辨率XRF岩心连续扫描(XRFCS),粒度、有机碳、N元素、δ13C和210Pb定年分析,并与流域洪水器测或历史记录等进行对比研究,以期建立高效的古洪水沉积记录代用指标。结果表明,长江水下三角洲沉积物中Zr/Rb峰值通常对应粒度粗组分高值和较高的C/N值、偏负的δ13C值,所在层位的沉积年龄与流域洪水事件发生年份有很好的对应关系。由此判断,Zr/Rb值可作为判别长江古洪水沉积的重要代用指标。长江流域于1930—2017年间共发生22次洪水事件,利用XRFCS获得的10 mm和2 mm间隔Zr/Rb值可分别识别出其中的11次和18次,识别率为50%和80%。由此推荐XRFCS样品测试间隔要小于年沉积速率一半以内,以提高古洪水事件的识别率。多源洪水和降雨数据分析表明,长江洪水年际至千年尺度发生规律主要受厄尔尼诺-南方涛动和东亚夏季风、南亚夏季风活动的共同影响。但早期长江洪水资料分辨率较低,长江水下三角洲有较连续的洪水沉积记录,运用XRFCS毫米级分辨率的Zr/Rb值可重建全新世高分辨率的长江古洪水发生历史,更精细地分析气候变化对洪水发生规律的控制机理,为预测全球变化背景下长江洪水演变趋势提供依据。

    Abstract:

    Summer flood hazards have a strong influence on the social economy of the Yangtze River Basin, so it is in dire need of investigating multiple spatiotemporal variations in floods and control mechanisms, but this is handled by short time extent of instrumental flood data and lack of effective research methods for palaeoflood deposition records.A sediment core (YEC1701)collected from the Yangtze subaqueous delta was studied in detail with its top 100 cm through using high-resolution XRF core scanner (XRFCS), and measurements of grain size, organic carbon and nitrogen, stable carbon isotope (δ13C), and210Pb compositions.The above study results were compared with the observing instruments or documental flood data to establish an effective proxy for paleo-flood depositions by comparison with instrumental or documental flood data.The results show that the peak value of Zr/Rb in the subaqueous delta sediments of the Yangtze River usually corresponds to the high value of coarse grain composition, the high value of C/N, and the negative value of δ13C.The sedimentary age of the strata in the delta corresponds well to the year of flood events in the basin.Therefore, the Zr/Rb ratio can be used as an important proxy index for the identification of palaeo-flood sediments in the Yangtze River.Totally, 22 flood events occurred in the period 1930-2017 in the Yangtze River basin, 11 and 18 of which were identified by the XRFCS Zr/Rb data in terms of 10 mm and 2 mm measurement intervals with effective recognition rates of 50% and 80% respectively.It is therefore recommended to perform XRFCS measurement with a smaller interval than half of sedimentation rates for better recognition rates of flood events.Multiple source data of river floods and precipitations were analyzed to show that river floods in Yangtze River basin are majorly influenced by ENSO (El Niño-Southern Oscillation), EASM (East Asian summer monsoon) and SASM (South Asian summer monsoon) over different time scales from multiple years to millennium.However, the time resolution for earlier flood records is very low, and it can be greatly improved by employing XRFCS mm-scaled Zr/Rb ratio of continuous flood depositions in the Yangtze subaqueous delta.This will also improve our understanding of controlling mechanisms of flood events and then better prediction of flood variation in response to global climate change.

  • 致谢: 感谢同济大学赵金鹏、王晓慧、苏建锋同学对采样及室内实验工作的帮助,感谢中国极地研究中心毕磊助理研究员对本文图件制作的指导。
  • 图  1   长江流域主要水系(a)和长江口及周边海域表层沉积物分布特征(b,据参考文献[28]修改)

    (其他文献中用于古洪水研究的5个短柱样位置(A[29]、Cj0702[9]、S5-2[20]、DH3-2、DH3-3[11]);a图中红色虚线表示南亚夏季风(SASM)和东亚夏季风(EASM)主要影响区域的分界线(据参考文献[30]修改))

    Figure  1.   Major tributaries of the Yangtze River system (a)and grain-size distribution pattern of surface sediments in the Yangtze Estuary and adjacent seas (b)

    图  2   YEC1701柱状样沉积物岩性、粒度特征、敏感组分与Zr/Rb值的垂向变化

    Figure  2.   Downcore variations of the lithology, grain size parameters, sensitive grain populations, and Zr/Rb ratio in core YEC1701

    图  3   柱状样沉积物粒级-标准偏差曲线对比(其他柱样位置和数据来源详见图 1)

    a—单粒径测量通道(0.135 φ);b—双粒径测量通道(0.27 φ)

    Figure  3.   Grain size-standard deviation curves of sediment cores in the Yangtze Delta with different statistical intervals

    图  4   YEC1701柱状样有机元素和碳同位素组成变化

    Figure  4.   Variations of organic elements and stable carbon isotope (δ13C)in core YEC1701

    图  5   YEC1701柱状样210Pb(a)和137Cs(b)深度剖面特征(a中斜线框标示顶部混合层;b中灰色框标示137Cs蓄积峰范围)

    Figure  5.   210Pb (a)and 137Cs (b)concentration profiles and accumulation rate calculated from core YEC1701

    图  6   1930年以来YEC1701柱样Zr/Rb距平值与粗组分含量、C/N值、δ13C值及历史洪水数据[4, 42-48]对比

    (蓝色阴影区域表示历史洪水多发时期)

    Figure  6.   Comparison of Zr/Rb anomaly values, coarse grain-size population, C/N ratio, and δ13C in core YEC1701 with historical flood events in the Yangtze watershed since 1930

    图  7   YEC1701柱样Zr/Rb值时间序列功率谱

    Figure  7.   Spectral analysis of Zr/Rb ratio in core YEC1701

    图  8   1930—2017年YEC1701柱样沉积物Zr/Rb距平值与气候变化、降雨量及长江年径流量对比

    (SASM指数(a,据参考文献[65])、EASM指数(b、c分别据参考文献[68]和[69])、ENSO指数(d,https://www.esrl.noaa.gov/psd/enso/mei)、长江中下游流域梅雨带降水量(e,据参考文献[70])及长江年径流量(f,1930—2005年数据据参考文献[71];2006—2017年数据据参考文献[72]);蓝色阴影区域表示上游和全流域洪水多发期,橘色阴影区域表示中下游洪水多发期)

    Figure  8.   Comparison of Zr/Rb anomaly valueswith climate change, the precipitation records and annual water discharge of the Changjiang river

    表  1   长江流域历史洪水信息

    Table  1   Historical floods of Yangtze River

    年份 洪峰流量/(m3·s-1) 水文站 区域 参考文献
    2016 61300 汉口 中下游 [40]
    2012 71200 三峡入库 上游 [41]
    2010 70000 宜昌 上中游 [42]
    2004 61100 宜昌 上游 [43]
    2002 70300 汉口 中下游 [44]
    1999 84500 大通 中下游 [4]
    1998 81700 大通 全流域 [4]
    1996 75200 大通 中游 [4]
    1995 74500 大通 中下游 [4]
    1991 66700 汉口 下游 [4]
    1983 65000 汉口 中游及汉江流域 [4]
    1981 85700 寸滩 上游 [4]
    1980 60100 汉江 中下游 [4]
    1969 62400 汉口 中下游 [4]
    1954 92600 大通 全流域 [4]
    1949 - - 中下游 [4]
    1948 57000 宜昌 上游 [45]
    1945 73800 寸滩 上游 [4]
    1936 62000 宜昌 上游 [45]
    1935 56900 宜昌 中游 [46]
    1934 - - 上游 [4]
    1931 65000 宜昌 全流域 [45]
    下载: 导出CSV
  • Schulte L, Schillereff D, Santisteban J I, et al. Pluridisciplinary analysis and multi-archive reconstruction of paleofloods[J]. Global and Planetary Change, 2019: 103220. http://www.sciencedirect.com/science/article/pii/S0921818119301493

    Schulte L, Schillereff D, Santisteban J I. Pluridisciplinary analysis and multi-archive reconstruction of paleofloods: Societal demand, challenges and progress[J]. Global Planet Change, 2019, 177: 225-238. doi: 10.1016/j.gloplacha.2019.03.019

    CRED(The Centre for Research on the Epidemiology of Disasters) and UNDRR(United Nations Office for Disaster Risk Reduction). The human cost of disasters: an overview of the last 20 years(2000-2019)[EB/OL]. (2020). [2021-04-07]. UN Reports. https://www.undrr.org/publication/human-cost-disasters-2000-2019.

    施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, (4): 289-297. doi: 10.3321/j.issn:1003-5427.2004.04.001

    Jiang T, Zhang Q, Blender R, et al. Yangtze Delta floods and droughts of the last millennium: Abrupt changes and long term memory[J]. Theor. Appl. Climatol., 2005, 82(3/4): 131-141. doi: 10.1007/s00704-005-0125-4

    Wang M J, Zheng H B, Xie X, et al. A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records[J]. Chin. Sci. Bull., 2011, 56(2): 188-195. http://www.ingentaconnect.com/content/ssam/10016538/2011/00000056/00000002/art00009

    Kochel R C, Baker V R. Paleoflood hydrology[J]. Science, 1982, 215(4531): 353-361. doi: 10.1126/science.215.4531.353

    JonesA F, Macklin M G, Brewer P A. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179: 89-105. doi: 10.1016/j.geomorph.2012.08.003

    Hu G, Li A, Liu J, et al. High resolution records of flood deposition in the mud area off the Changjiang River mouth during the past century[J]. Chin. J. Oceanol. Limn., 2014, 32(4): 909-920. doi: 10.1007/s00343-014-3244-x

    Barbara L, Schmidt S, Urrutia-Fucugauchi J, et al. Fuerte River floods, an overlooked source of terrigenous sediment to the Gulf of California[J]. Cont. Shelf Res., 2016, 128: 1-9. doi: 10.1016/j.csr.2016.09.006

    Zhang K, Li A, Zhang J, et al. Recent sedimentary records in the East China Sea inner shelf and their response to environmental change and human activities[J]. Chin. J. Oceanol. Limn., 2018, 36(5): 81-99.

    Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and(Zr+Rb)/Sr ratios[J]. Chem. Geol., 2001, 181(1): 131-146. http://www.sciencedirect.com/science/article/pii/S0009254101002789

    Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores[J]. Series: Developments in Paleoenvironmental Research, 2015, 17: 1-236. doi: 10.1007/978-94-017-9849-5_1

    Liu L, Chen J, Ji J, et al. Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon[J]. Chin. Sci. Bull., 2002, 47(15): 1298-1302. doi: 10.1360/02tb9288

    水利部长江水利委员会长江泥沙公报. [M]. 北京: 长江出版社, 2019.

    Kundzewicz Z W, Huang J, Pinskwar I, et al. Climate variability and floods in China-A review[J]. Earth-Science Reviews, 2020, 211: 103434. doi: 10.1016/j.earscirev.2020.103434

    王晨曦. 应急管理部: 今年洪涝灾害造成直接经济损失2143.1亿元[EB/OL]. (2020-09-03). [2021-04-07]. 中国网财经. http://finance.china.com.cn/news/20200903/5358440.shtml.

    Su J, Fan D. Internal Facies Architecture and Evolution History ofChangxing Mouth-Bar Complex in the Changjiang(Yangtze) Delta, China[J]. J. Ocean U. China, 2018, 6: 1281-1289. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=QDHB201806003

    Middelkoop H, Erkens G, Van der Perk M. The Rhine delta-a record of sediment trapping over time scales from millennia to decades[J]. J. Soils Sediments, 2010, 10: 628-639. doi: 10.1007/s11368-010-0237-z

    Zhao Y, Zou X, Gao J, et al. Recent sedimentary record of storms and floods within the estuarine-inner shelf region of the East China Sea[J]. The Holocene, 2016, 27(3): 439-449. http://adsabs.harvard.edu/abs/2017Holoc..27..439Z

    Tian Y, Fan D, Zhang X, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Mar. Geol., 2019, 410: 109-121. doi: 10.1016/j.margeo.2018.12.010

    展望, 杨守业, 刘晓理, 等. 长江下游近代洪水事件重建的新证据[J]. 科学通报, 2010, 55(19): 1908-1913. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201019010.htm

    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean[J]. Org. Geochem., 1997, 27(5/6): 195-212. http://www.sciencedirect.com/science/article/pii/S0304420304002130

    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Org. Geochem., 1997, 27(5/6): 213-250. http://www.sciencedirect.com/science/article/pii/S0146638097000491

    Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Sci. Rev., 2006, 75: 29-57. doi: 10.1016/j.earscirev.2005.10.003

    陈吉余, 沈焕庭, 恽才兴. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988.
    火苗, 范代读, 陆琦, 等. 长江口南汇边滩冲淤变化规律与机制[J]. 海洋学报, 2010, 32(5): 41-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201005006.htm

    Fan D. Open-Coast Tidal Flats[M]//Principles of Tidal Sedimentology, 2012: 187-229.

    Fan D, Qi H, Sun X, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from High-resolution biogenic silica and sensitive grain-sizerecords[J]. Cont. Shelf Res., 2011, 31(2): 129-137. doi: 10.1016/j.csr.2010.12.001

    Rao Z, Li Y, Zhang J, et al. Investigating the long-termpalaeoclimatic controls on the δD and δ18O of precipitation during the Holocene in the Indian and East Asian monsoonal regions[J]. Earth-Sci. Rev., 2016, 159: 292-305. doi: 10.1016/j.earscirev.2016.06.007

    Chen Z, Song B, Wang Z, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Mar. Geol., 2000, 162(2): 423-441. http://www.sciencedirect.com/science/article/pii/S002532279900064X

    Liu J, Saito Y, Kong X, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last 13000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Sci. Rev., 2010, 29(17): 2424-2438. http://www.sciencedirect.com/science/article/pii/S0277379110002106

    Shang S, Fan D, Ying P, et al. Late Quaternary environmental change in the central-western East China Sea[J]. Palaeogeogr. Palaeocl., 2018, 492: 64-80. doi: 10.1016/j.palaeo.2017.12.012

    Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea(ODP Site 1144)[C]//Prell W L, Wong P, Blum P, et al. Proc ODP, Sci. Res., 2003, 184: 1-21.

    Sun Y, Gao S, Li J. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal seasetting[J]. Chin. Sci. Bull., 2003, 48(2): 184-187. doi: 10.1360/03tb9038

    肖尚斌, 李安春. 东海内陆架泥区沉积物的环境敏感粒度组分[J]. 沉积学报, 2005, (1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016
    王晓慧, 吴伊婧, 范代读. 福建兴化湾外近海210Pb法沉积速率及校正方法[J]. 古地理学报, 2019, 21(3): 527-536. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903013.htm

    Xing L, Zhang H, Yuan Z, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Seashelf[J]. Cont. Shelf Res., 2011, 31(10): 1106-1115. doi: 10.1016/j.csr.2011.04.003

    Luo X X, Yang S L, Zhang J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River(Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea[J]. Geomorphology, 2012, 179: 126-140. doi: 10.1016/j.geomorph.2012.05.034

    李妍清, 刘冬英, 熊莹. 2016年长江洪水遭遇分析[J]. 水资源研究, 2017(6): 568-576.
    李文龙, 李鸿雁. 长江流域连续大洪水年机理分析及预报[J]. 水利水电技术, 2018, 49(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201805001.htm
    邹红梅, 陈新国. 2010年与1998年长江流域洪水对比分析[J]. 水利水电快报, 2011, (5): 15-17. doi: 10.3969/j.issn.1006-0081.2011.05.004
    李春香, 张辰亮, 虞海平, 等. 长江宜昌"2004·9"暴雨洪水分析[J]. 人民长江, 2008, 39(18): 9-10, 26. doi: 10.3969/j.issn.1001-4179.2008.18.004
    黄为, 冯忠民. 长江2002年洪水与1996年洪水的对比分析[J]. 人民长江, 2003, 34(4): 39-40. doi: 10.3969/j.issn.1001-4179.2003.04.017
    乔盛西, 陈正洪. 历史时期川江石刻洪水资料的分析[J]. 暴雨灾害, 1999, 18(1): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX199901001.htm

    Wang Z Y, Plate E J. Recent flood disasters inChina[J]. Water & Maritime Engineering, 2002, 154(3): 177-188. doi: 10.1680/maen.154.3.177.38719

    Li X, Bianchi T S, Allison M A, et al. Historical reconstruction of organic carbon decay and preservation in sediments on the East China Seashelf[J]. J. Geophys. Res. Biogeo., 2013, 118(3): 1079-1093. doi: 10.1002/jgrg.20079

    胡利民, 石学法, 王国庆, 等. 2011长江中下游旱涝急转前后河口表层沉积物地球化学特征研究[J]. 地球化学, 2014, (1): 39-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201401005.htm
    高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141-160. doi: 10.3969/j.issn.0253-4193.2019.10.010

    Xiao S, Li A, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeogr. Palaeocl., 2006, 237: 293-304. doi: 10.1016/j.palaeo.2005.12.003

    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 159-162. doi: 10.1038/nature01163

    D'Arrigo R, Cook E R, Wilson R J, et al. On the variability of ENSO over the past six centuries[J]. Geophys. Res. Lett., 2005, 32(3), L03711. doi: 10.1029/2004GL022055/full

    MacDonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the pastmillennium[J]. Geophys. Res. Lett., 2005, 32(8): L08703. doi: 10.1029/2005GL022478

    张瑞, 汪亚平, 潘少明. 近50年来长江入海径流量对太平洋年代际震荡变化的响应[J]. 海洋通报, 2011, 30(5): 572-577. doi: 10.3969/j.issn.1001-6392.2011.05.016

    Zhang Q, Xu C, Jiang T, et al. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China[J]. J. Hydrol., 2007, 333(2/4): 265-274. http://www.sciencedirect.com/science/article/pii/S002216940600429X

    Qian W, Lin X, Zhu Y, et al. Climatic regime shift and decadal anomalous events in China[J]. Climatic Change, 2007, 84(2): 167-189. doi: 10.1007/s10584-006-9234-z

    Jiang T, Zhang Q, Zhu D, et al. Yangtze floods and droughts(China) and teleconnections with ENSO activities(1470-2003)[J]. Quatern. Int., 2006, 144: 29-37. doi: 10.1016/j.quaint.2005.05.010

    Chen J, Chen F, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms[J]. Quaternary Sci. Rev., 2015, 107: 98-111. doi: 10.1016/j.quascirev.2014.10.012

    Kim H J, Hyeong K, Yoo C M, et al. Impact of strong El Niño events(1997/98 and 2009/10) on sinking particle fluxes in the 10°N thermocline ridge area of the northeastern equatorial Pacific[J]. Deep Sea Res., Part Ⅰ, 2012, 67(0): 111-120. http://www.dbpia.co.kr/Article/2757500

    Zhu Z, Feinberg J M, Xie S, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proc. Natl. Acad., USA, 2017, 114(5): 852-857. doi: 10.1073/pnas.1610930114

    Kundzewicz Z W, Szwed M, Pińskwar I. Climate Variability and Floods-A global Review[J]. Water, 2019, 11(7): 1399. doi: 10.3390/w11071399

    Guo Y, Huang C C, Zhou Y, et al. Extraordinary flood events and the response to monsoonal climatic change during the last 3000 years along the middle Yangtze River valley, China[J]. Palaeogeogr. Palaeocl., 2016, 462: 70-84. doi: 10.1016/j.palaeo.2016.09.005

    Liu H, Gu Y, Huang X, et al. A 13000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley[J]. Quaternary Sci. Rev., 2019, 212: 80-91. doi: 10.1016/j.quascirev.2019.03.034

    Shen C, Wang W C, Gong W, et al. A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over easternChina[J]. Geophysical Research Letters, 2006, 33(3): L03702. doi: 10.1029/2005GL024804/full

    Shi F, Li J, Wilson R J. A tree-ring reconstruction of the South Asian summer monsoon index over the pastmillennium[J]. Sci. Rep., 2014, 4: 6739. http://www.nature.com/articles/srep06739

    Xu K, Li A, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersalsystem[J]. Mar. Geol., 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003

    Wang Z, Wei G, Chen J, et al. El Niño-Southern Oscillation variability recorded in estuarine sediments of theChangjiang River, China[J]. Quaternary International, 2017, 441: 18-28. doi: 10.1016/j.quaint.2016.07.009

    李建平, 曾庆存. 一个新的季风指数及其年际变化和与雨量的关系[J]. 气候与环境研究, 2005, (3): 351-365. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200503008.htm

    IPCC. Climate change 2007: the physical science basis[C]//Solomon S, Qin D, Manning M, et al. Contribution of Working Group I to the Fourth Assessment Report of Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York, 2007: 1-297.

    Ding Y, Wang Z, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summermonsoon. Part Ⅰ: Observed evidences[J]. Int. J. Climatol., 2008, 28(9): 1139-1161. doi: 10.1002/joc.1615

    Wang H, Yang Z, Wang Y, et al. Reconstruction of sediment flux from theChangjiang(Yangtze River) to the sea since the 1860s[J]. J. Hydrol., 2008, 349(3/4): 318-332.

    长江泥沙公报. 水利部长江水利委员会[M]. 北京: 长江出版社, 2006-2017.

    Liu J, Chen J, Zhang X, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004

    葛兆帅. 长江上游全新世特大洪水对西南季风变化的响应[J]. 地理研究, 2009, 28(3): 592-600. doi: 10.3321/j.issn:1000-0585.2009.03.004

    Guo Y, Huang C C, Pang J, et al. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River[J]. Geomorphology, 2015, 238: 187-197. doi: 10.1016/j.geomorph.2015.03.014

    周秀骥, 赵平, 刘封, 等. 中世纪暖期、小冰期与现代东亚夏季风环流和降水年代-百年尺度变化特征分析[J]. 科学通报, 2011, 56(25): 2060-2067. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201125005.htm
图(8)  /  表(1)
计量
  • 文章访问数:  3029
  • HTML全文浏览量:  317
  • PDF下载量:  1660
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-23
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回