• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西太平洋海底多金属结核空间分布与多波束回波强度的关系

马金凤, 杨永, 邓希光, 何高文, 杨胜雄, 于宗泽

马金凤, 杨永, 邓希光, 何高文, 杨胜雄, 于宗泽. 2021: 西太平洋海底多金属结核空间分布与多波束回波强度的关系. 地质通报, 40(2-3): 392-400.
引用本文: 马金凤, 杨永, 邓希光, 何高文, 杨胜雄, 于宗泽. 2021: 西太平洋海底多金属结核空间分布与多波束回波强度的关系. 地质通报, 40(2-3): 392-400.
MA Jinfeng, YANG Yong, DENG Xiguang, HE Gaowen, YANG Shengxiong, YU Zongze. 2021: Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific. Geological Bulletin of China, 40(2-3): 392-400.
Citation: MA Jinfeng, YANG Yong, DENG Xiguang, HE Gaowen, YANG Shengxiong, YU Zongze. 2021: Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific. Geological Bulletin of China, 40(2-3): 392-400.

西太平洋海底多金属结核空间分布与多波束回波强度的关系

基金项目: 

中国地质调查局项目 DD20190629

南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0106

中国大洋矿产资源研究开发协会"十三五"课题《合同区海山地形单元识别与底质类型识别》 DY135-C1-1-03

《多金属结核快速找矿方法及成矿富集区圈划》 DY135-N2-1-02

国家自然科学青年基金项目《基于多源地学数据的监督学习识别海山富钴结壳空间分布》 42072324

详细信息
    作者简介:

    马金凤(1978-), 女, 硕士, 高级工程师, 从事物化遥数据研究。E-mail: guai99@163.com

    通讯作者:

    杨永(1982-), 男, 在读博士生, 高级工程师, 从事深海矿产资源调查研究。E-mail: yong0913029@163.com

  • 中图分类号: P618.2;P721

Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific

  • 摘要:

    西太平洋高丰度高覆盖率多金属结核的发现受到各国学者的高度关注,如何高效探测不同覆盖率和丰度的多金属结核分布特征是目前研究的重点。利用EM122多波束回波强度资料对西太平洋海盆结核分布特征进行分析,结果表明,回波强度的高低变化与结核覆盖率关系密切,而当结核覆盖率相当时,回波强度的高低变化反映了结核的粒径大小,其中大型结核(直径D>6 cm)较多时,回波强度值明显增大。利用最大似然分类方法对回波强度资料进行监督分类,得出深海沉积物、低丰度、中等丰度和高丰度结核空间分布,结果显示,深海粘土沉积区与丰度>>30 kg/m2的高丰度结核分布区多回波强度差异高达近20 dB。

    Abstract:

    As the discovery of high abundance and high coverage of manganese nodules in West Pacific has attracted much attention of many countries, how to detect the distribution characteristics of manganese nodules with different coverage and abundance is the focus of current research.In our project, the multibeam backscatter intensity data acquired by EM122 system were used to analysis the distribution characteristics of nodules.The results indicate that the change of backscatter intensity is closely related to nodule coverage, while when the coverage is equal, the change of backscatter intensity reflects the size of the nodule, and when nodules are large (D>6 cm), the backscatter intensity increases obviously.Then the maximum likelihood supervised classification method was used to classify the backscatter intensity data.The results of classification reveal that spatial distribution of sediment, low abundance, medium abundance and high abundance nodules. Significantly, in the deep-sea basin, whereas obvious high-backscatter values are observed on areas of clay deposit, the important difference in backscatter between two geological classes is nearly 20 dB which are pelagic clay sediments and nodules with high abundance around 30 kg/m2 in the deep sea basin.

  • 致谢: 感谢中国大洋36和41航次全体科考队员的辛苦工作。
  • 图  1   回波强度数据处理流程

    Figure  1.   Backscatter intensity data processing flow

    图  2   Geocoder处理参数

    Figure  2.   Geocoder parameters

    图  3   海底地形图

    Figure  3.   Seafloor Terrain

    图  4   原始回波强度图

    Figure  4.   Raw backscatter intensity

    图  5   海底坡度图

    Figure  5.   Seafloor Slope

    图  6   滤波后回波强度图

    Figure  6.   Fittered backscatter intensity

    图  7   结核覆盖率与回波强度对比分析

    B—回波强度;C—结核覆盖率;D—水深;H—视频截图离底高度

    Figure  7.   Comparison between backscatter and nodule coverage

    图  8   结核丰度与回波强度对比分析图

    (A为结核丰度,其他代号同图 7)

    Figure  8.   Comparison between backscatter and nodule abundance

    图  9   底质分类结果

    Figure  9.   Result of seafloor geological classification

    图  10   分类结果置信度等级图

    Figure  10.   Confidence levels of classification

    表  1   线性回归方差分析结果

    Table  1   Result of variance analysis of linear regression

    方差来源 偏差平方和 自由度 方差 F 显著性
    回归 14700.97 1 14700.97 31.12 高度显著
    剩余 31654.02 67 472.448
    总和 46354.99 68
    下载: 导出CSV
  • Cronan D S, Hodkinson R A, Miller S, et al. Manganese nodules in the EEZ's of island countries in the southwestern equatorial pacific[J]. Marine Geology, 1991, 98: 425-435. doi: 10.1016/0025-3227(91)90114-J

    Hein J R, Koschinsky A. Deep-ocean Ferromanganese Crusts and Nodules. Treatise on Geochemistry[M]. H D Holland and T K K Oxford, 2014.

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015, 68(1): 97-116. http://smartsearch.nstl.gov.cn/paper_detail.html?id=736ede268d0e4fbed2c5092b35695a57

    Machida S K, Fujinaga. Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island[J]. Geochemical Journal, 2016, 50. http://ci.nii.ac.jp/naid/130005435144

    Machida S, Kikawa E, Ishill T, et al. Cross-ministerial Strategic Innovation Promotion Program (SIP), Next-generation Technology for Ocean Resources Exploration (ZIPANG in ocean)[R]. 2016.

    Spiess F N. Ocean acoustic remote sensing of the sea floor: Nat. Ocean. and Atmos. Adminis[J]. Workshop on Ocean Acoustic Remote Sensing Ⅱ, Seattle: 1980, 11-1, 11-38.

    Allen H M, Karl S. Acoustic soundings for manganese nodules[C]//Proc. 13th Annual Offshore Tech. Conf., OTC 4133.1981: 147-161.

    Moustier C D. Inference of manganese nodule coverage from SeaBeam acoustic backscattering data[J]. Geophysics, 1985, 50(6): 989-1001. doi: 10.1190/1.1441976

    Moustier C D. Beyond bathymetry: Mapping acoustic backscattering from the deep seafloor with Sea Beam[J]. Journal of Acoustical Society of American, 1986, 79(2): 316-331. doi: 10.1121/1.393570

    Huggett Q J, Somers M L. Possibilities of using the GLORIA system for manganese nodule assessment[J]. Marine Geophysical Research, 1988, 9: 255-264. doi: 10.1007/BF00309976

    Scanlon K M, Masson D G. Fe-Mn nodule field indicated Gloria, North of the Puerto Rico Trench[J]. Geo-Marine Letters, 1992, 12: 208-213. doi: 10.1007/BF02091840

    Weydert M M P. Measurements of the acoustic backscatter of selected areas of the deep seafloor and some implications for the assessment of manganese nodule resources[J]. Journal of Acoustical Society of America, 1990, 88: 350-366. doi: 10.1121/1.399910

    Chakraborty B, Kodagali V. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter[J]. Geo-Marine Letters, 2004, 24: 8-13. doi: 10.1007/s00367-003-0153-y

    Thomas K. Developing a strategy for the exploration of vast seafloor areas for prospective magnganese nodule fields[C]//Underwater Mining Institute, Shanghai, China, 2012.

    Tao C H, Jin X B, Bian A F, et al. Estimation of Manganese Nodule Coverage Using Multi-Beam Amplitude Data[J]. Marine Georesources & Geotechnology, 2015, 33: 283-288. doi: 10.1080/1064119X.2013.806973

    Polydoros A, Kim K. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Transactions on Communications[J]. 1990, 38(8): 1199-1211.

图(10)  /  表(1)
计量
  • 文章访问数:  2679
  • HTML全文浏览量:  608
  • PDF下载量:  1888
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-11-29
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-03-14

目录

    /

    返回文章
    返回