胶东三山岛北海域金矿床热液蚀变作用研究

    Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province

    • 摘要: 三山岛北海域金矿床位于胶东金矿省的西北缘,是2015年新发现的超大型金矿床(储量470 t、Au品位4.30 g/t),金矿体赋存于中生代玲珑式花岗岩中,主矿体受三山岛-仓上断裂带控制。中生代含矿的玲珑式花岗岩显示了复杂的蚀变、矿化共生组合关系。三山岛-仓上断裂的活动使热液流体发生渗透,导致断裂带两侧发生广泛的钾化蚀变。随后,大规模的绢云母化沿主断裂两侧形成。随着断层泥的形成,其作为"阻挡层"使含矿流体不能运移到断裂带上盘,成矿流体在下盘发生强烈的绢云母-石英-黄铁矿蚀变并伴有金的析出。最后石英-碳酸盐脉的形成标志着与金成矿相关热液活动减弱。钾化和绢英岩化岩石的平衡计算揭示了SiO2、MgO和CaO带入,TiO2、K2O基本不变,而Na2O表现为带出;大多数主量元素受强烈的矿物反应影响。Au、Ag、Bi、As、Pb、Zn等相关成矿元素呈带入特征,它们之间多呈正相关关系且与黄铁绢英岩化有密切关系,显示出在水岩反应过程中不同类型的元素具有复杂的地球化学行为。蚀变组合和流体包裹体研究表明,成矿流体以中低温(126~351℃)、中低盐度(1.02%~10.48% NaCleqv)为特征,属于CO2-H2O-NaCl±CH4体系。在热液流体中,金可能主要以Au(HS)2-络合物的形式运移;黄铁绢英岩化过程中,硫化作用使Au(HS)2-络合物失稳分解导致Au沉淀富集成矿。华北克拉通的重新活化导致软流圈上涌和大量火成岩的形成,也为胶东发生大规模金成矿作用提供了充足的的热能和流体输入。

       

      Abstract: The Haiyu gold deposit, located in the north part of the Jiaodong gold province, was discovered in 2015 as a superlarge gold deposit with gold reserves 470 t @ 4.30 g/t. The gold orebodies were hosted in the Mesozoic Linglong-type granites and controlled by the Sanshandao-Cangshang Fault (SCF). Host Longlong-type granitic rocks for Au mineralization show a complex paragenetic sequence with hydrothermal alteration. Remobilization of the SCF system allowed for infiltration of hydrothermal fluids, leading to extensive K-feldspar alteration along the main fault. Subsequently, massive sericite formation occurred along both sides of the main fault. With the formation of fault gouge, the ore-bearing fluid could not migrate to the upper wall of the fault zone; therefore, the ore-forming fluid underwent intense sericite-quartz-pyrite alteration in footwall accompanied by gold precipitation. Finally, the formation of quartz-carbonate veins indicated the decrease of hydrothermal activity related to gold mineralization. The equilibrium calculation of potash and sericite rocks revealed that SiO2, MgO and CaO were brought in, TiO2 and K2O were basically unchanged, while Na2O appeared to be taken out. Most major elements were affected by strong mineral reactions. Au, Ag, Bi, As, Pb, Zn and other related ore-forming elements showed a positive correlation and were closely related to sericite-quartz-pyrite alteration. The mass balance calculation shows that different types of elements had complex geochemical behaviors in the process of water-rock reaction. The alteration combination and fluid inclusion study shows that the ore-forming fluid was characterized by medium and low temperature (126~351℃) and medium and low salinity (1.02~10.48%NaCleqv), belonging to the CO2-H2O-NaCl±CH4 system. In hydrothermal fluids, gold might have migrated mainly as Au(HS)2- complex. During the process of sericite-quartz-pyrite alteration, Au(HS)2- complex was destabilized and decomposed by sulfofication, leading to Au precipitation and mineralization. The reactivation of the North China Craton led to the upwelling of asthenosphere and the formation of a large number of igneous rocks, and also provided sufficient thermal energy and fluid input for large-scale gold mineralization in Jiaodong gold province.

       

    /

    返回文章
    返回