Abstract:
Classification of diagenesis lithofacies systems in sedimentary basin may help promote the research level of enrichment and synergistic diagenesis-mineralization for metallic and nonmetallic deposits and such energy mineral resources as oil, gas, coal and uranium deposits in the same basin; moreover, it may encourage researchers to get a better understanding of geodynamic process in basin evolution and formation, coupling transitions of basin-mountain, and coupling transitions of basin-mountain-plateau. In this study, systems of diagenetic lithofacies in the basin were categorized based on the principal line of diagenesis events in the basin, using means of tectonic lithofacies and geochemical lithofacies, and combining diagenesis and systems of diagenetic lithofacies with recognition technology of geochemical lithofacies. Systems of diagenetic lithofacies in the basin were classified into four systems, i.e., diagenesis system formed by buried compaction to chemical diagenesis at the stage of basin formation, renovated diagenesis system formed by tectonic-thermal events at the stage of basin renovation, magmatic superimposed diagenesis system formed by thermal events of tectonics-magmatism at the stage of magmatic intrusions in the basin, and supergene diagenesis system at the stage of supergene modification in the basin. Therefore, environments of diagenetic lithofacies and diagenetic mechanisms may be recognized from the mechanism of geochemical lithofacies. This may help promote the research level of enrichment and synergistic diagenesis-mineralization for metallic and nonmetallic deposits, such energy mineral resources as oil, gas, coal and uranium deposits and predication of deep mineral systems in the same basin.