• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

伊朗Ahangaran铅(铜)矿床特征及成因

韩朝辉, 宋玉财, 刘英超, 侯增谦, 程杨, 翟忠保

韩朝辉, 宋玉财, 刘英超, 侯增谦, 程杨, 翟忠保. 2020: 伊朗Ahangaran铅(铜)矿床特征及成因. 地质通报, 39(10): 1625-1638. DOI: 10.12097/gbc.dztb-39-10-1625
引用本文: 韩朝辉, 宋玉财, 刘英超, 侯增谦, 程杨, 翟忠保. 2020: 伊朗Ahangaran铅(铜)矿床特征及成因. 地质通报, 39(10): 1625-1638. DOI: 10.12097/gbc.dztb-39-10-1625
HAN Chaohui, SONG Yucai, LIU Yingchao, HOU Zengqian, CHENG Yang, ZHAI Zhongbao. 2020: Characteristics and genesis of the Ahangaran Pb Cu deposit Iran. Geological Bulletin of China, 39(10): 1625-1638. DOI: 10.12097/gbc.dztb-39-10-1625
Citation: HAN Chaohui, SONG Yucai, LIU Yingchao, HOU Zengqian, CHENG Yang, ZHAI Zhongbao. 2020: Characteristics and genesis of the Ahangaran Pb Cu deposit Iran. Geological Bulletin of China, 39(10): 1625-1638. DOI: 10.12097/gbc.dztb-39-10-1625

伊朗Ahangaran铅(铜)矿床特征及成因

基金项目: 

国家自然科学基金项目《伊朗Mehdiabad超大型铅锌矿床的巨量重晶石成因与金属富集机制》 41773042

《陆-陆碰撞褶皱逆冲带内MVT铅锌成矿作用:青藏高原与扎格罗斯造山带对比研究》 91855214

《逆冲褶皱系富硅型碳酸盐岩容矿铅锌矿床成因:以伊朗马拉耶尔-伊斯法罕铅锌矿带为例》 41773043

《兰坪盆地新生代构造变形及其对铅锌铜成矿的控制》 41772088

国家重点研发计划课题《青藏高原大陆碰撞铅锌成矿系统深部结构与成矿过程》 2016YFC0600306

详细信息
    作者简介:

    韩朝辉(1987-), 男, 硕士, 工程师, 从事矿床学和地球化学研究。E-mail:chaohuidihua@163.com

    通讯作者:

    宋玉财(1978-), 男, 研究员, 从事矿床学研究。E-mail:song_yucai@aliyun.com

  • 中图分类号: P618.41;P618.42

Characteristics and genesis of the Ahangaran Pb Cu deposit Iran

  • 摘要:

    Ahangaran铅(铜)矿床位于伊朗地块(北部)与阿拉伯板块(南部)碰撞形成的扎格罗斯造山带的Sanandaj-Sirjan带内,该碰撞发生在新生代,赋矿围岩为下白垩统白云质灰岩。矿体多呈顺层的透镜状和穿层的脉状产出,成矿前沉淀细粒石英,成矿期出现白云石、方解石、重晶石、粗粒石英、方铅矿、黄铜矿、黄铁矿、黝铜矿。流体包裹体研究显示,成矿流体为Cl--Na+-Ca2+-Mg2+体系,均一温度介于108~210℃之间,盐度介于7%~29% NaCl eq之间,结合脉石矿物和包裹体的碳-氢-氧同位素特征,显示成矿流体主要来自盆地卤水,但不排除有岩浆流体的贡献,在成矿过程中成矿流体与碳酸盐围岩发生相互作用,使围岩发生溶解。重晶石δ34S值介于18.7‰~22.7‰之间,硫化物中δ34S值介于-3.1‰~9.7‰之间,推测还原硫可能主要来自硫酸盐的生物还原(BSR),也不排除有机质热化学还原(TSR)作用的贡献。方铅矿206Pb/204Pb值介于18.4083~18.4054之间,207Pb/204Pb值介于15.6512~15.6548之间,208Pb/204Pb值介于38.5628~38.5515之间,与区域铅锌成矿带内其他赋存在碳酸盐岩中铅锌矿床的铅同位素特征相似,说明这些矿床中金属来源均与经历了"造山"作用的上地壳岩石有关。尽管该矿床矿化和成矿流体特征与密西西比河谷型(MVT)矿床相似,但其富石英和含铜的特征与和岩浆有关的碳酸盐岩交代型矿床(CRD)更接近,建议将该矿床归为后一类。

    Abstract:

    The Ahangaran Pb(Cu) deposit is located in the Sanandaj-Sirjan metamorphic zone of the Zagros orogenic belt, a Cenozoic continental collisional zone between Arabian(south) and Iran(north) blocks. The deposit is hosted in Lower Cretaceous dolomitic limestone and has conformable and lenticular orebodies and bed-crosscutting ore veins. Pre-ore stage of minerals are fine-grained quartz, and ore stage of minerals are composed of dolomite, barite, calcite, coarse-grained quartz, galena, chalcopyrite, pyrite, and tetrahedrite. The study of the fluid inclusions shows that the ore fluids are a Cl--Na+-Ca2+-Mg2+ system, with homogenization temperatures from 108℃ to 210℃ and the salinities from 7%NaCl eq to 29%NaCl eq. Combined with data of C-H-O isotopes from ore stage hydrothermal gangue minerals and associated fluid inclusions, the authors hold that the ore fluids were mainly derived from basinal brine, with or without contribution from magmatic fluids. The mineralization process led to the dissolution of the host carbonate. The δ34S values of barite range from 18.7‰ to 22.7‰, and sulfides range from -3.1‰ to 9.7‰, suggesting that the reduced sulfur was probably the result of biological sulfate reduction(BSR). But this does not exclude the probable contribution of reduced sulfur from thermochemical sulfate reduction(TSR). The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of galena are 18.4083~18.454, 15.6512~15.6548, and 38.5628~38.5515, respectively, which are similar to those of the other Pb-Zn deposits in this region, i.e., the Malayer-Esfahan carbonated-hosted Pb-Zn metallogenic belt. It is suggested that their metals were derived from the same upper crustal rocks. Although the Ahangaran deposit shares some similarities with Mississippi Valley-type(MVT) deposits, the enrichment of ore stage quartz and copper sulfides suggests that the deposit may be classified as a magmatic-related carbonate-replacement-type deposit.

  • 钦杭结合带是扬子和华夏2个古陆块于新元古代碰撞拼接所形成的板块结合带[1-2],其南西起自广西钦州湾,经湘、赣往北东延伸至浙江杭州湾,总体呈北东向反“S”状弧形展布。钦杭成矿带是沿钦杭结合带两侧扩展而新圈定的一个重要成矿带,成矿地质条件优越。开展地质调查工作以来,相继在该成矿带发现了一批大中型矿床,如锡田锡矿、思委银矿、园珠顶铜钼矿等,找矿突破成果显著[3]。对钦杭成矿带内一些典型矿床进行系统的研究,对了解区域成矿地质条件、矿床成因、矿床分布规律等具有重要意义。

    幕阜山地区位于钦杭成矿带中部,是钦杭成矿带西段部署的重点找矿地区之一,已发现的主要矿种有钨、金、铀、铍、铌、钽、铜、铅、锌等,湖南三墩铜铅锌矿位于幕阜山岩体南部[2-3]。幕阜山岩体呈岩基状产出,出露面积达2530km2,主体部分位于湖南省境内。幕阜山岩体为多期次侵入的复式岩体,区域地质调查对其进行了划分,其中燕山早期岩浆活动持续时期较长(189~145Ma),在长达44Ma的地质时期内,除了侵入以粗中粒斑状二长花岗岩为主的岩体外,在岩浆后阶段还有大量花岗伟晶岩脉生成,燕山晚期岩浆活动基本上紧接着燕山早期岩浆活动发生,其活动时期在136~115Ma之间,持续时间21Ma, 燕山晚期岩体划分出第一、第二、第三次侵入体,还伴有部分花岗伟晶岩脉的生成。虽然前人对幕阜山岩体进行了成岩期次划分和同位素年龄分析,但受当时测试条件和方法本身的制约,同位素年龄存在精度不高的问题,且缺乏系统的岩石成因研究。为了获得高精度的成岩年龄数据,本文采用LA-ICP-MS锆石U-Pb定年,并结合Hf同位素和岩石地球化学分析,深入探讨岩石成因,为研究成岩与成矿的关系提供重要的科学依据。

    三墩铜铅锌矿区位于下扬子陆块江南古岛弧的北缘,幕阜山岩体南部与冷家溪群侵入接触部位、北东向天府山-幕阜山断裂与枫林-浆市断裂复合处北西侧。矿区出露地层较简单(图 1),主要为冷家溪群变质岩,位于矿区南部,岩性以黑云母片岩、二云母片岩、石英片岩为主,其中有大量伟晶岩岩脉及石英脉穿插。区内断裂构造发育,尤其以北北西向和近南北向断裂最发育,延伸稳定、规模较大,断裂带内构造透镜体、石英脉、角砾岩等发育。区内岩浆岩十分发育,主要出露幕阜山岩体燕山晚期第一次侵入体,在矿区东北角还出露燕山早期侵入体和燕山晚期第三次侵入体,燕山早期侵入体(Mγ52Pb)岩性为片麻状粗中粒斑状黑云母二长花岗岩,燕山晚期第一次侵入体(γ53-1)岩性为中细粒二云母二长花岗岩,燕山晚期第三次侵入体(γδ53-3)岩性为细粒花岗闪长岩。

    图  1  三墩铜铅锌矿区地质简图
    1—第四系全新统;2—冷家溪群;3—燕山晚期第三次侵入体;4—燕山晚期第一次侵入体;5—燕山早期侵入体;6—花岗伟晶岩;7—石英脉;8—含矿石英脉;9—断裂;10—采样位置(锆石U-Pb);Ⅱ-1-5—江汉-洞庭断陷盆地;Ⅱ-2-2—下扬子被动陆缘;Ⅱ-2-3—江南古岛弧;Ⅱ-3-1—湘中-桂中裂谷盆地
    Figure  1.  Geological sketch map of Sandun

    矿区内热液活动强烈,硅化显著,尤其在断裂带内硅化现象最明显,往往被石英脉充填,石英脉除少数呈透镜状产出外,大部分呈整脉状充填在断裂带内。区内已探明19条含矿石英脉,其中具有工业矿体的有5条,皆呈脉状、透镜状产出,其走向为北北西向,倾向为北东东向。围岩蚀变除硅化外,还有绢云母化、绿泥石化、萤石化,偶见碳酸盐化、重晶石化等,萤石化与矿化关系密切。一般在断层构造带的中部、断裂构造转折处、两组断裂相交处,硅化、绿泥石化强烈发育处和北北西向断裂(节理)带中,形成较富的矿体

    三墩铜铅锌矿区花岗岩岩石地球化学和测年样品(东经113°45.626′、北纬28°52.622′)均采于幕阜山岩体燕山晚期第一次侵入体的地表露头。通过观察手标本和显微镜下特征(图 2),鉴定三墩铜铅锌矿区花岗岩岩性为二云母二长花岗岩,灰白色,中细粒花岗结构,块状构造,矿物成分为石英(25% ~30%)、钾长石(30% ~35%)、斜长石(25% ~30%)、黑云母(5%~7%)、白云母(5%~8%)。

    图  2  花岗岩手标本(a)和正交偏光照片(b)
    Figure  2.  Hand specimen (a) and crossed nicols photograph (b) of granite

    主量、微量元素测试在中国地质调查局武汉地质调查中心中南矿产资源监督检查中心进行(前者用X-射线荧光光谱法XRF,后者用ICP-MS法)。地球化学参数计算与图解生成使用GeoKit软件[4]

    花岗岩样品破碎和锆石挑选由廊坊市宇能岩石矿物分选技术服务有限公司完成。锆石阴极发光(CL)图像在中国地质大学(武汉)地质过程与矿产资源国家重点实验室拍摄,并结合透射光和反射光图像观察锆石内部结构。

    锆石U-Pb定年分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)LAICP-MS仪器上完成,ICP-MS型号为Agilent7500a。激光剥蚀系统为GeoLas 2005,所用斑束直径为32μm。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal [5-6]完成。详细的仪器操作条件和数据处理方法同Liu等[5-6]。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均值计算均采用Isoplot 3.0完成[7]

    锆石Hf同位素原位测试在西北大学大陆动力学国家重点实验室的多接受电感耦合等离子质谱仪MC-ICP-MS(Nu Plasma)上完成。分析时采用氦作为剥蚀物质载气,激光束斑直径为42μm, 分析步骤和流程参见徐平等[8]和Yuan等[9]。采用标准锆石91500、MON-1和GJ-1作为外部标样,分析精度和误差用标样来校准,误差为2σ,本次实验测试中91500的分析结果176Hf/177Hf=0.282307 ± 0.000016,与参考值一致。

    本次研究采集的测年样品编号为SD2-2。样品CL图像显示(图 3),锆石形态大部分呈短柱状,晶形比较完整,裂纹不发育,振荡环带发育。从制备好的测年样品中选取锆石进行测试,每颗锆石一个测点,多数测点位于锆石柱体两端,少数测点在柱体中部。锆石Th含量为192×10-6~963×10-6,U含量为1581×10-6~10530×10-6,Th/U值为0.034~0.39,虽然锆石的Th/U值较低,但其具有较高的Th、U含量和存在振荡环带等特征,表明其为岩浆锆石[10]

    图  3  样品中代表性锆石阴极发光(CL)图像及其U-Pb年龄
    Figure  3.  Representative CL images for zircons with U-Pb ages

    测年样品的同位素分析结果见表 1。共测试20个测点,除3号点数据有明显错误删除外,有效测点为19个,其中15号点年龄明显较老,14号点年龄明显较小,其余17个测试点的206Pb/238U年龄值集中分布于129.0~134.9Ma之间,投影点均落在谐和线上(图 4),206Pb/238U年龄加权平均值为131.9±1.1Ma(95%置信度,MSWD=2.3),可代表三墩铜铅锌矿区花岗岩的成岩年龄。结合阴极发光图像分析,15号测点应为继承锆石核,其206Pb/238U年龄为749.5Ma。

    表  1  花岗岩LA-ICP-MS锆石U-Th-Pb同位素测试结果
    Table  1.  LA-ICP-MS U-Th-Pb isotopic compositions of zircons for the granite
    分析
    含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 231 323 9563 0.034 0.04826 0.00120 0.14259 0.00348 0.02115 0.00021 122.3 57.4 135.3 3.1 134.9 1.3
    2 155 377 6425 0.059 0.04627 0.00127 0.13697 0.00381 0.02114 0.00023 13.1 63.0 130.3 3.4 134.8 1.5
    3 103 243 4266 0.057 0.04430 0.00125 0.13036 0.00375 0.02102 0.00024 error error 124.4 3.4 134.1 1.5
    4 174 358 7255 0.049 0.04723 0.00137 0.13570 0.00381 0.02056 0.00022 61.2 66.7 129.2 3.4 131.2 1.4
    5 101 240 4245 0.057 0.04742 0.00182 0.13820 0.00545 0.02082 0.00030 77.9 88.9 131.4 4.9 132.8 1.9
    6 109 279 4578 0.061 0.05025 0.00160 0.14233 0.00446 0.02024 0.00022 205.6 74.1 135.1 4.0 129.2 1.4
    7 84 224 3476 0.064 0.04772 0.00160 0.13724 0.00451 0.02058 0.00023 87.1 -117.6 130.6 4.0 131.3 1.5
    8 110 259 4530 0.057 0.04652 0.00146 0.13614 0.00420 0.02097 0.00021 33.4 64.8 129.6 3.8 133.8 1.3
    9 81 211 3513 0.060 0.04946 0.00318 0.14136 0.00903 0.02063 0.00034 168.6 154.6 134.3 8.0 131.7 2.1
    10 233 376 10530 0.036 0.04686 0.00134 0.13658 0.00453 0.02102 0.00042 42.7 66.7 130.0 4.0 134.1 2.6
    11 120 375 5185 0.072 0.04865 0.00152 0.13863 0.00437 0.02049 0.00026 131.6 78.7 131.8 3.9 130.7 1.6
    12 79 192 3258 0.059 0.04918 0.00166 0.14283 0.00465 0.02097 0.00021 166.8 79.6 135.6 4.1 133.8 1.3
    13 148 399 6305 0.063 0.04854 0.00110 0.13748 0.00307 0.02040 0.00017 124.2 55.6 130.8 2.7 130.2 1.1
    14 210 561 9618 0.058 0.04795 0.00103 0.12706 0.00283 0.01910 0.00017 98.2 45.4 121.5 2.5 122.0 1.1
    15 392 963 2472 0.390 0.06553 0.00086 1.11877 0.01526 0.12330 0.00078 790.7 27.8 762.4 7.3 749.5 4.5
    16 38 286 1581 0.181 0.04736 0.00244 0.13302 0.00626 0.02055 0.00029 77.9 109.3 126.8 5.6 131.1 1.8
    17 141 371 6038 0.061 0.04796 0.00111 0.13634 0.00319 0.02040 0.00016 98.2 53.7 129.8 2.9 130.2 1.0
    18 138 326 5740 0.057 0.04908 0.00174 0.14255 0.00407 0.02112 0.00021 150.1 83.3 135.3 3.6 134.7 1.3
    19 145 358 6175 0.058 0.04931 0.00142 0.14325 0.00423 0.02089 0.00025 161.2 66.7 135.9 3.8 133.2 1.6
    20 154 398 6752 0.059 0.04837 0.00138 0.13621 0.00389 0.02022 0.00017 116.8 63.9 129.7 3.5 129.0 1.1
    下载: 导出CSV 
    | 显示表格
    图  4  花岗岩锆石U-Pb谐和图(a)和206Pb/238U年龄图谱(b)
    Figure  4.  U-Pb concordia diagram (a) and 206Pb/238U age spectrum (b) of zircons form the granites

    岩石地球化学分析结果见表 2。花岗岩SiO2含量为72.56%~74.27%(>70%),Al2O3含量为14.05%~14.46%,铝饱和指数(A/CNK)值为1.13~1.28,属强过铝质(>1.1)。碱含量(Na2O+K2O)变化范围为7.71% ~8.81%,其中K2O含量为4.22% ~5.61%,在TAS岩石分类图解(图 5-a)上[11-12],样品点落在亚碱性花岗岩系列。在岩石系列SiO2-K2O图解(图 5-b)上[13],样品点落在高钾钙碱性系列。

    表  2  花岗岩主量、微量和稀土元素含量
    Table  2.  Major, trace and rare earth element values of the granite
    样号
    岩性
    SD1-4
    二云母
    花岗岩
    SD1-5
    二云母
    花岗岩
    SD2-2
    二云母
    花岗岩
    SD3-1
    二云母
    花岗岩
    SD4-1
    二云母
    花岗岩
    SiO272.7072.5674.2773.4973.49
    Al2O314.4514.4614.1814.3514.05
    Fe2O30.5010.3830.2500.2280.237
    FeO1.882.041.731.772.34
    CaO0.5531.020.4750.7320.739
    MgO0.3250.3460.1840.2310.320
    K2O5.614.504.775.004.22
    Na2O3.203.663.083.123.49
    TiO20.1250.1070.1060.1270.165
    P2O50.2010.1810.2670.2150.111
    MnO0.0340.0350.0500.0390.064
    灼失量0.3990.2770.4190.4590.460
    Cu13.515.019.617.812.7
    Pb65.090.328.243.243.5
    Zn10859.447.057.9146
    Cr14.53.8617.97.279.28
    Ni2.252.292.6519.45.07
    Co1.701.541.201.422.12
    W2.192.143.123.272.29
    Mo0.850.550.89
    Bi1.041.251.454.820.22
    Sr42.463.318.133.338.8
    Ba25119978.9163226
    Nb17.314.818.6
    Ta2.862.574.89
    Zr48.059.951.2
    Hf2.262.521.97
    U17.28.028.00
    Th6.559.9210.7
    La22.815.712.717.420.7
    Ce36.127.226.635.840
    Pr5.54.023.164.374.73
    Nd18.91410.915.116.2
    Sm4.493.392.673.813.78
    Eu0.470.40.250.460.54
    Gd3.832.932.263.323.39
    Tb0.580.460.450.560.57
    Dy2.562.052.52.542.64
    Ho0.360.290.440.350.42
    Er0.870.731.240.811.09
    Tm0.120.0930.240.110.2
    Yb0.740.581.510.741.39
    Lu0.0940.0710.190.0910.19
    Y9.277.4912.79.4311.8
    A/CNK1.171.131.281.211.21
    ∑REE106.6879.4077.8194.89107.64
    δEu0.350.390.310.400.46
    δCe0.790.841.031.010.99
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV 
    | 显示表格
    图  5  花岗岩TAS岩石分类图解(a)和SiO2-K2O关系图(b)
    1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长(斑)岩;6—二长花岗(斑)岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长石正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩
    Figure  5.  TAS(a)and SiO2-K2O(b)diagram of the granite

    花岗岩稀土元素总量(∑REE)为77.81×10-6~107.64×10-6,平均为80.56×10-6,δEu=0.31~0.46,δCe=0.79~1.03。在微量元素蛛网图(图 6-a)上,富集U、Ta、Pb等元素,亏损Ba、Nb、Sr、Zr、Ti等元素。Nb/Ta值为3.80~6.05,平均为5.20,低于地壳Nb/Ta值,指示源区具有地壳性质。Sr亏损指示斜长石的分离结晶;Ti亏损指示钛铁矿的分离结晶,暗示岩浆物质来源于地壳[14-16]。在稀土元素球粒陨石标准化配分图(图 6-b)上,稀土元素为右倾配分模式,轻、重稀土元素分异强烈,富集轻稀土元素,重稀土元素平坦分布,具有弱负Eu异常特征。

    图  6  花岗岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化模式图(b)
    Figure  6.  Chondrite-normalized REE patterns(a)and primitive mantlenormalized trace element spider diagram(b)of the granite

    对测年样品锆石19个有效测点中的17个测点(包含15号继承锆石核,除去5号和14号测点)进行了原位Hf同位素分析,除继承锆石用测点的年龄计算外,其余锆石Hf同位素计算所用的年龄为该样品的206Pb/238U年龄加权平均值,分析结果见表 3。测年样品的16个燕山晚期花岗岩锆石的微区原位Hf同位素组成相对均匀,初始176Hf/177Hf值较一致,分布在0.282526~0.282624之间,平均值为0.282589,εHf(t)值集中分布在-5.9~-2.4之间,平均值为-3.7,二阶段模式年龄(T2DM)在1558~1338Ma之间,平均值为1417Ma。15号继承锆石核初始176Hf/177Hf值为0.282453,εHf(t)值为4.8,一阶段模式年龄(T1DM)为1130Ma, 二阶段模式年龄(T2DM)为1355Ma。

    表  3  锆石Lu-Hf同位素分析结果
    Table  3.  Lu-Hf isotope data of zircons
    分析点176Hf/177Hf
    比值
    176Lu/177Hf
    比值
    176Yb/177Hf
    比值
    t/MaεHf(t)T1DM/MaT2DM/MafLu/Hf
    10.2825540.0000180.0009750.0000030.0261400.000080131.9-4.99881496-0.97
    20.2825700.0000170.0009710.0000080.0256860.000242131.9-4.49661460-0.97
    40.2825260.0000210.0009740.0000040.0256280.000105131.9-5.910281558-0.97
    60.2825840.0000160.0007320.0000090.0196660.000251131.9-3.89391426-0.98
    70.2826050.0000190.0008300.0000200.0219060.000564131.9-3.19121380-0.98
    80.2826000.0000140.0010430.0000110.0276270.000318131.9-3.39251392-0.97
    90.2825970.0000190.0008970.0000020.0242620.000049131.9-3.49261399-0.97
    100.2826240.0000160.0010420.0000140.0277030.000383131.9-2.48901338-0.97
    110.2826140.0000280.0010680.0000040.0295130.000140131.9-2.89061361-0.97
    120.2825880.0000170.0007820.0000040.0207000.000127131.9-3.79351418-0.98
    130.2826160.0000160.0010030.0000140.0268960.000377131.9-2.79011355-0.97
    150.2824530.0000180.0009850.0000040.0234840.000117749.54.811301355-0.97
    160.2825750.0000150.0005110.0000020.0134130.000053131.9-4.19461445-0.98
    170.2825950.0000190.0010790.0000050.0289650.000139131.9-3.49321403-0.97
    180.2825410.0000210.0009710.0000060.0258350.000161131.9-5.410061524-0.97
    190.2826190.0000210.0009400.0000020.0248970.000063131.9-2.68961349-0.97
    200.2826130.0000160.0011650.0000020.0312960.000053131.9-2.89101364-0.96
    下载: 导出CSV 
    | 显示表格

    幕阜山复式岩体最早的同位素年龄测定是在20世纪80年代区域地质调查时完成的,其中报道有南江桥附近的铷锶(全岩)同位素年龄样品等时线年龄为189±29.7Ma, 黄龙山岩体的白云母K-Ar年龄为139Ma,由于当时条件制约,存在同位素年龄精度不高的问题。锆石中Pb的扩散封闭温度高达900℃[17],是目前测定岩浆结晶年龄最理想的矿物之一,锆石结晶年龄代表了岩石成岩年龄[10]。本次选取与成矿关系密切的燕山晚期第一次侵入体开展锆石LA-ICP-MS定年工作,获得了燕山晚期第一次侵入体花岗岩的年龄为131.9±1.1Ma, 为准确限定幕阜山岩体燕山晚期第一次侵入体的年龄提供了重要的年代学依据。

    本次工作发现了新元古代继承锆石核的存在,其206Pb/238U年龄为749.5Ma, 与前人研究一致,表明湖南地区的中酸性岩体中存在新元古代—新太古代继承锆石核[18-20]

    近年来的研究发现,锆石原位Hf同位素分析是揭示地壳演化和示踪岩浆源区的重要手段[21]。三墩铜铅锌矿区花岗岩燕山晚期锆石的176Hf/177Hf值为0.282526~0.282624,εHf(t)值为-5.9~-2.4(图 7-a),Hf同位素二阶段模式年龄在1558~1338Ma之间。在t-εHf(t)图(图 7-b)上,花岗岩样品燕山晚期锆石测点均落在球粒陨石和下地壳演化线之间,表明其物质来源为中元古代的古老地壳岩石部分熔融。

    图  7  花岗岩锆石εHf(t)直方图(a)和Hf同位素演化图解(b)
    Figure  7.  Histograms of εHf(t)(a)and Hf isotopic diagram(b)of zircons from the granite

    继承锆石核的176Hf/177Hf值为0.282453,对应的εHf(t)值为4.8,二阶段模式年龄(T2DM)为1355Ma, 投影点落在亏损地幔和球粒陨石之间,表明其岩浆源区为直接源于亏损地幔分异的新生地壳的迅速重熔,新生地壳年龄为中元古代。

    综合证据表明,花岗岩主要物质来源为中元古代地壳岩石的部分熔融,岩浆源区或上升通道可能有新元古代幔源物质加入。燕山晚期锆石和继承锆石的二阶段模式年龄都为中元古代,指示中元古代是该区重要的地壳生长阶段。

    钦杭成矿带是一条巨型的构造岩浆活动带,学者们普遍认为其在新元古代完成了拼接,但在中侏罗世又复活[22-23]。中侏罗世是一个重要的构造转折期,华南乃至中国东部发生了特提斯体制向太平洋体制的转变,随着太平洋板块持续俯冲,华南板块受到强烈挤压,地壳缩短加厚,产生一系列北东向断裂,原先不活动的断裂又重新活动;大约在早白垩世太平洋板块运动方向由原来的斜俯冲转向几乎平行大陆边缘运动,中国大陆乃至东亚大陆边缘转换为伸展阶段,区域上对应出现了基性岩浆活动,代表性的有蕉溪岭煌斑岩,其成岩年龄在136Ma左右[24]。沿钦杭结合带,是构造相对薄弱的古板块拼接带,由于强烈挤压活化,壳幔相互作用更加活跃,致使钦杭成矿带成为华南中生代大规模岩浆活动和成矿作用最集中的地区[222]

    前人研究表明,岩石圈减薄和软流圈上涌是华南中生代岩浆作用形成的主要机制[25-28],笔者认为,太平洋板块的运动方式制约了华南中生代大规模的岩浆活动和成矿作用,其中中晚侏罗世受太平洋板块挤压加厚的中下地壳发生部分熔融,局部出现岩石圈垮塌,形成大量火山岩浆活动;早白垩世太平洋板块运动方向发生转向,发生了强烈挤压向伸展的构造转换,出现大规模的岩石圈减薄和软流圈上涌事件,加速了中下地壳的熔融,爆发了大规模岩浆活动和成矿作用,幕阜山岩体燕山晚期第一次侵入体就是其成岩事件爆发的响应。三墩铜铅锌矿区花岗岩岩石地球化学特征具有壳源特征,Hf同位素特征表明,其主要物质来源为中元古代地壳岩石的部分熔融,在岩浆熔融的过程中有少量幔源物质的加入。三墩铜铅锌矿区花岗岩可能是由于中下地壳的部分熔融岩浆形成后,混入少量幔源物质上侵形成的。

    (1)通过对LA-ICP-MS锆石U-Pb定年,获得了三墩铜铅锌矿区幕阜山岩体燕山晚期第一次侵入体的年龄加权平均值为131.9±1.1Ma, 成岩年龄为燕山晚期,继承锆石核的206Pb/238U年龄为749.5Ma, 暗示区内可能存在新元古代岩浆活动。

    (2)通过岩石地球化学研究,确定三墩铜铅锌矿区花岗岩为一套强过铝质高钾钙碱性系列花岗岩,富U、Ta、Pb等元素,贫Ba、Nb、Sr、Zr、Ti。具有向右倾斜的稀土元素配分模式,富集轻稀土元素,重稀土元素分布平坦,具弱负Eu异常。

    (3)结合Hf同位素分析,确定三墩铜铅锌矿区花岗岩物质来源主要为中元古代地壳物质重熔,并混入少量的幔源物质。其成岩可能是在大范围的岩石圈伸展背景下,发生了岩石圈拆离、软流圈上涌,中下地壳加热,部分熔融形成花岗岩浆上侵。

    致谢: 感谢中国地质科学院地质研究所研究生庄亮亮、黄世强博士在开展研究期间给予的支持,感谢中国地质科学院陈伟十老师在包裹体测试时的指导,感谢审稿专家对本文提出的宝贵修改意见。
  • 图  1   伊朗的主要构造组成单元及Ahangaran矿床位置(底图据参考文献[7])

    Figure  1.   Main tectonic elements of Iran and location of the Ahangaran deposit

    图  2   Sanandaj-Sirjan变质带中部地区断层样式及马拉耶尔-伊斯法罕成矿带主要铅锌矿床分布(据参考文献[14]修改)

    Figure  2.   Fault patterns in central part of the Sanandaj-Sirjan zone and the distribution of major Pb-Zn deposits in the Malayer-Esfahan metallogenic belt

    图  3   Ahangaran矿区地质简图(据参考文献[7]修改)

    Figure  3.   Simplified geological map of the Ahangaran ore district

    图  4   Ahangaran铅(铜)矿床实测地质剖面(位置见图 3)

    Figure  4.   Geological section of the Ahangaran Pb(Cu) deposit

    图版Ⅰ  

    a.砂质灰岩发生方铅矿化;b.与石英-白云石团块共生的硫化物;c.方铅矿切穿重晶石,重晶石较硫化物沉淀略早;d.图c的正交偏光;e.方铅矿、黄铜矿及黝铜矿共生;f.硫化物切穿石英和碳酸盐矿物,表明石英和碳酸盐矿物沉淀略早

    图版Ⅰ.  

    图  5   Ahangaran铅(铜)矿床矿物共生组合特征

    Figure  5.   Mineral assemblage and paragenesis in the Ahangaran Pb (Cu) deposit

    图  6   Ahangaran铅(铜)矿床石英中流体包裹体显微照片

    V—气相;L—液相

    Figure  6.   Microphotographs of fluid inclusions in hydrothermal quartz in the Ahangaran Pb (Cu) deposit

    图  7   Ahangaran铅(铜)矿床热液石英流体包裹体均一温度和盐度直方图

    Figure  7.   Histograms of homogenization temperatures and salinities of fluid inclusions in hydrothermal quartz in the Ahangaran Pb (Cu) deposit

    图  8   Ahangaran铅(铜)矿床石英流体包裹体均一温度与盐度协变图

    Figure  8.   Salinity versus homogenization temperature diagram of fluid inclusions in hydrothermal quartz in the AhangaranPb (Cu) deposit

    图  9   Ahangaran铅(铜)矿床硫同位素分布直方图

    Figure  9.   Histogram of sulfur isotopic compositions in the Ahangaran Pb (Cu) deposit

    图  10   Ahangaran铅(铜)矿床和Emarat铅锌矿床流体包裹体均一温度和盐度变化图解(底图据参考文献[26],Emarat铅锌矿床数据据参考文献[24])

    Figure  10.   Diagram showing the salinities and homogenization temperatures of fluid inclusions in the Ahangaran Pb (Cu) deposit and Emarat Pb-Zn deposit

    图  11   Ahangaran铅(铜)矿床碳酸盐中δ18O-δ13C图解(底图据参考文献[32])

    Figure  11.   δ13C versus δ18O diagram of carbonates in the Ahangaran Pb (Cu) deposit

    图  12   Ahangaran铅(铜)矿床成矿流体δ18OH2O-δD图解

    (Gulf Coast, Illinois, Michigan盆地趋势据参考文献[33];Alberta盆地趋势据参考文献[34];California Tertiary盆地趋势据参考文献[35];Michigan盆地趋势据参考文献[33];原生岩浆水和变质水的D-O同位素范围据参考文献[36];大气降水线据参考文献[37];围岩氧同位素数据据参考文献[38])

    Figure  12.   Plot of δ18OH2O- δD values for the ore-forming fluid in the Ahangaran Pb-Cu deposit

    图  13   Ahangaran铅(铜)矿床矿石中206Pb/204Pb- 207Pb/204Pb关系图

    (底图据参考文献[43],Emarat铅锌矿床数据据参考文献[24])

    Figure  13.   Plot of 206Pb/204Pb versus 207Pb/204Pb of galena from the Ahangaran Pb (Cu) deposit

    表  1   Ahangaran铅(铜)矿床热液石英中流体包裹体液相成分

    Table  1   Solution compositions of fluid inclusions from hydrothermal quartz in the Ahangaran Pb (Cu) deposit

    样品号 Cl- SO42- Na+ K+ Mg2+ Ca2+
    HGL12-11-2 23.1 0.75 10.1 0.3 13.8 20.8
    HGL12-11-12 6.42 6 2.82 - 8.4 16
    HGL12-11-1b 49.8 1.67 26.8 1.31 0.246 2.51
    下载: 导出CSV

    表  2   Ahangaran铅(铜)矿床热液石英流体包裹体显微测温结果

    Table  2   Homogenization temperature and salinity data of fluid inclusions from hydrothermal quartz in the Ahangaran Pb (Cu) deposit

    样品号 包裹体类型 均一温度/℃ 冰点/℃ 盐度/%NaCl eq
    HGL12-11-6 气液二相(n=7) 142.3~181.4 -12.7~-29.8 16.62~28.53
    HGL12-1-3 气液二相(n=16) 108.1~209.7 -7.8~-28.8 11.46~27.91
    下载: 导出CSV

    表  3   Ahangaran铅(铜)矿床与Emarat铅锌矿床中氢、氧同位素组成

    Table  3   Hydrogen-oxygen isotope compositions in quartz from the Ahangaran Pb (Cu) deposit and the Emarat Pb-Zn deposit 

    样品原号 矿物 δDV-SMOW δ18OV-SMOW 均一温度T/℃ δ18OH2O 数据来源
    HGL12-11-1b 石英 -77.7 18.3 164.49 3.73 本文
    HGL12-11-7 石英 -68.7 17.2 159.04 2.63
    EM12-1-11 石英 -76.2 20.1 T1=147;
    T2=201.7
    4.34~8.52 [24]
    EM12-1-14 石英 -70.5 20.7 4.94~9.12
    EM12-2-4 石英 -57.5 19.7 3.94~8.12
    EM12-4-3 石英 -69.1 18.8 3.04~7.22
    EM12-18-2 石英 -65.9 19.7 3.94~8.12
    EM12-19-2 石英 -63.4 18.6 2.84~7.02
    EM12-19-4 石英 -64.1 18.9 3.14~7.32
      注:T1T2分别代表所有包裹体测得的均一温度的2个峰值波段范围内的平均值
    下载: 导出CSV

    表  4   Ahangaran铅(铜)矿床方解石碳、氧同位素组成

    Table  4   C and O isotopic compositions of calcite from the Ahangaran Pb (Cu) deposit 

    样品号 样品描述 δ13CV-PDB δ18OV-SMOW
    HGL12-1-3 方解石 -3.0 20.1
    HGL12-11-2 方解石 -1.7 17.8
    HGL12-11-4 方解石 -2.7 19.7
    HGL12-11-9 方解石 -1.4 19.6
    下载: 导出CSV

    表  5   Ahangaran铅(铜)矿床硫同位素测试结果

    Table  5   Sulfur isotopic compositions of sulfides in the Ahangaran Pb (Cu) deposit

    样品号 矿物 δ34S/‰
    HGL12-1-3(1) 重晶石 22.2
    HGL12-1-3 重晶石 22.2
    HGL12-11-3 重晶石 22.7
    HGL12-11-5 重晶石 18.7
    HGL12-11-8 方铅矿 1.3
    HGL12-11-9 方铅矿 -3.1
    HGL12-11-10 黄铁矿 8.2
    HGL12-11-10 方铅矿 9.7
    HGL12-11-12 黄铁矿 5.6
    HGL12-11-12 方铅矿 5.9
    下载: 导出CSV

    表  6   Ahangaran铅(铜)矿床和区域上相邻其他矿床铅同位素测试结果

    Table  6   Lead isotopic compositions of galenain the Ahangaran Pb (Cu) deposit

    样品编号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 数据来源
    HGL12-1-3 方铅矿 18.4054 15.6512 38.5515 本文
    HGL12-11-8 方铅矿 18.4069 15.6526 38.5584
    HGL12-11-9 方铅矿 18.4067 15.6526 38.5533
    HGL12-11-10 方铅矿 18.4061 15.6517 38.5517
    HGL12-11-12 方铅矿 18.4083 15.6548 38.5628
    IK12-4-6 方铅矿 18.4603 15.6502 38.6452
    IK12-7-9 方铅矿 18.4594 15.6491 38.6434
    IK12-7-10 方铅矿 18.4466 15.6278 38.5578
    IK12-7-12 方铅矿 18.444 15.6271 38.5551
    IK12-7-13 方铅矿 18.4497 15.6287 38.5624
    IK12-7-14 方铅矿 18.4686 15.6526 38.6596
    IK12-9-3 方铅矿 18.4514 15.6561 38.6337
    IK12-10-5 方铅矿 18.4513 15.6526 38.6351
    TI12-2-1 方铅矿 18.3966 15.6474 38.575
    TI12-2-5 方铅矿 18.398 15.6494 38.5803
    TI12-5-2 方铅矿 18.4025 15.6489 38.5836
    TI12-8-3 方铅矿 18.3956 15.6469 38.5722
    TI12-16-1 方铅矿 18.395 15.6476 38.5691
    TI12-17-2 方铅矿 18.3958 15.6476 38.5727
    EM12-1-11 方铅矿 18.4145 15.6479 38.5775 [24]
    EM12-1-14 方铅矿 18.4112 15.649 38.5642
    EM12-4-3 方铅矿 18.4157 15.6491 38.5808
    EM12-18-3 方铅矿 18.4129 15.6472 38.5709
    EM12-18-7 方铅矿 18.4129 15.6497 38.5753
      注:IK为Irankuh铅锌矿床;TI为Tiran铅锌矿床;EM为Emarat矿
    下载: 导出CSV
  • 张洪瑞, 侯增谦, 杨志明.特提斯成矿域主要金属矿床类型与成矿过程[J].矿床地质, 2010, 29(1):113-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201001011

    Reynolds N A, Duncan L.Tethyan Zinc-Lead Metallogeny in Europe, North Africa, and Asia[J].Society of Economic Geologists, 2010, 15:339-365. http://www.researchgate.net/publication/313051590_Tethyan_zinc-lead_metallogeny_in_Europe_North_Africa_and_Asia

    Hou Z, Zhang H.Geodynamaics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews, 2015, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026

    Alavi M.Tectonics of Zagros Orogenic belt of Iran, new data and interpretation[J].Tectonophysics, 1994, 229:211-238. doi: 10.1016/0040-1951(94)90030-2

    Stocklin J.Structural history and tectonics of Iran:A review[J].AAPG.Bull, 1968, 52:1229-1258. http://www.researchgate.net/publication/311570221_Structural_history_and_tectonics_of_Iran

    Ghazban F, McNutt R H, Schwarcz H P.Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh District, Esfahan area, west-central Iran[J].Economic Geology, 1994, 89(6):1262-1278. doi: 10.2113/gsecongeo.89.6.1262

    Zamanian H.Mineralogy, paragenesis and genesis of Ahangaran Ag-Pb deposit, Malayer[D].Unpublished MSc.Thesis, Tehran Tarbiat Moallem University, 1993: 280(In Persian).

    Ehya F, Lotfi M, Rasa I.Emarat carbonate-hosted Zn-Pb deposit, Markazi Province, Iran:A geological, mineralogical and isotopic(S, Pb) study[J].Journal of Asian Sciences, 2010, 37(2):186-194. http://www.sciencedirect.com/science/article/pii/S1367912009001989

    Momenzadeh M, Shafighi S, Rastad E, et al.The Ahangaran Lead-Silver Deposit, SE-Malayer, West Central Iran[J].Mineral Deposita(Berl.), 1979, 14:323-341. http://www.onacademic.com/detail/journal_1000034292721610_5a34.html

    Nadimi A, Konon A.Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran[J].Journal of Structural Geology, 2012, 40:2-16. doi: 10.1016/j.jsg.2012.04.007

    Morley C K, Kongwung B, Julapour A, et al.Structural development of a major late Cenozoic basin and transpressional belt in central Iran:The Central Basin in the Qom-Saveh area[J].Geosphere, 2009, 5(4):325-362. doi: 10.1130/GES00223.1

    Davoudian A R, Khalili M, Noorbehsht I, et al.Geochemistry of metabasites in the north of the Shahrekord, Sanandaj-Sirjan Zone, Iran.Neues Jahrbuch für Mineralogie-Abhandlungen[J].Journal of Mineralogy and Geochemistry, 2006, 182(3):291-298. http://www.ingentaconnect.com/content/schweiz/njma/2006/00000182/00000003/art00007

    Davoudian A, Genser J, Dachs E, et al.Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran[J].Mineralogy and Petrology, 2008, 92(3/4):393-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16778cd75a3c4275ceddd2bcba125cc0

    刘英超, 宋玉财, 侯增谦, 等.伊朗扎格罗斯碰撞造山带马拉耶尔-伊斯法罕碳酸盐岩容矿铅锌成矿带[J].地质学报, 2015, 89(9):1573-1594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509003

    Mohajjel M, Fergusson C L.Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran[J].Journal of Structural Geology, 2000, 22(8):1125-1139. doi: 10.1016/S0191-8141(00)00023-7

    Sarkarinejad K, Faghih A, Grasemann B.Transpressional deformations within the Sanandaj-Sirjan metamorphic belt(Zagros mountains, Iran)[J].Journal of Structural Geology, 2008, 30(7):818-826. doi: 10.1016/j.jsg.2008.03.003

    Babaahmadi A, Mohajjel M, Eftekhari A, et al.An investigation into the fault patterns in the Chadegan region, west Iran:Evidence for dextral brittle transpressional tectonics in the Sanandaj-Sirjan Zone[J].Journal of Asian Earth Sciences, 2012, 43(1):77-88. doi: 10.1016/j.jseaes.2011.08.012

    Nadimi A, Konon A.Gaw-Khuni Basin:An active stepover structure in the Sanandaj-Sirjan zone, Iran[J].Geological Society of America Bulletin, 2012b, 124(3/4):484-498. http://adsabs.harvard.edu/abs/2012GSAB..124..484N

    Safaei H.The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone(Iran)[J].Journal of Asian Earth Sciences, 2009, 35(5):391-400. doi: 10.1016/j.jseaes.2009.01.007

    Mazhari S, Bea F, Amini S, et al.The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran:a marker of the end of the collision in the Zagros orogeny[J].Journal of the Geological Society, 2009, 166(1):53-69. doi: 10.1144/0016-76492008-022

    Agard P, Omrani J, Jolivet L, et al.Zagros orogeny:a subduction-dominated process[J].Geological Magazine, 2011, 148(5/6):692-725. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Geological%20Magazine&atitle=Zagros%20orogeny%3A%20a%20subduction-dominated%20process

    Berberian F, Berberian M, Tectono-Plutonic Episodes in Iran[M].Geological Survey of Iran, 1981, 52: 566-593.

    Hall D L, Stemer S M, Bodnar R J.Freezing point depression of NaCl-KCl-H2O Solutions[J].Economic Geology, 1988, 83:197-202. doi: 10.2113/gsecongeo.83.1.197

    韩朝辉, 宋玉财, 刘英超, 等.伊朗Emarat铅锌矿床成矿特征及矿床成因研究[J].地质学报, 2015, 89(9):1595-1606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509004

    Clyton R N, O'neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research, 1972, 77(17):3057-3067. doi: 10.1029/JB077i017p03057

    Beane R E.The magmatic-meteoric transition[M].Geothermal Resources Council Special Report, 1983, 13: 245-253.

    Roedder E.Composition of fluid inclusions[M].US Geological Survey Professional Paper, 1983, 440: 164.

    郑永飞, 徐宝龙, 周根陶.矿物稳定同位素地球化学研究[J].地学前缘, 2000, 47(1):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200002001

    Ohmoto H.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J].Economic Geology, 1972, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551

    Veizer J, Holser W T, Wilgus C K.Correlation of 13C/12C and 34S/32S secular variation.Geochim[J].Cosmochim.Acta, 1980, 44:579-588. doi: 10.1016/0016-7037(80)90250-1

    Taylor B E.Magmatic volatiles: Isotope variation of C, H and S reviews in mineralogy[C]//Valley G W, Taylor H P, O'neil J R.Stable Isotopes in High Temperature Geological Process.Washington, D.C.: Mineralogical Society of America, 1986, 16: 185-226.

    刘建明, 刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997, 17(4):448-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700341921

    Clayton R N, Friedman I, Graf D L, et al.The origin of saline formation waters:1.Isotopic composition[J].Journal of Geophysical Research, 1966, 71:3869-3882. doi: 10.1029/JZ071i016p03869

    Hitchon B, Friedman I.Geochemistry and origin of formation waters in the western Canada sedimentary basin-I.Stable isotopes of hydrogen and oxygen[J].Geochimica et Cosmochimica Acta, 1969, 33:1321-1349. doi: 10.1016/0016-7037(69)90178-1

    Kharaka Y K, Berry F A F, Friedman I.Isotopic composition of oil-field brines from Kettleman North Dome, California, and their geologic implications[J].Geochimica et Cosmochimica Acta, 1973, 37:1899-1908. doi: 10.1016/0016-7037(73)90148-8

    Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J].Economic Geology, 1974, 69:843-83. doi: 10.2113/gsecongeo.69.6.843

    陈俊, 王鹤年.地球化学[M].北京:科学出版社, 2004.

    Ferydoun G, Robert H M, Henry S.Genesis of sediment-Hosted Zn-Pb-Ba Deposits in the Irankuh District, Esfahan Area, West-Central Iran[J].Economic Geology, 1994, 89:1262-1278. doi: 10.2113/gsecongeo.89.6.1262

    George E, Claypool, William T, et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J].Chemical Geology, 1980, 28:199-260. doi: 10.1016/0009-2541(80)90047-9

    Detmers J, Bruchert V, Habicht K S, et al.Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes[J].Applied and Environmental Microbiology, 2001, 67:888-94. doi: 10.1128/AEM.67.2.888-894.2001

    Ohmoto H, Kaiser C J, Geer K A.Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits[C]//Herbert H K, Ho S E.Stable isotopes and Fluid Processes in Mineralisation.Geol.Dep.Univ.Extens.Univ[J].Western Australia, 1990, 23: 70-120.

    Machel H G.Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits[J].Carbonates Evaporites, 1989, 4:137-151. doi: 10.1007/BF03175104

    Doe B R, Zartman R E.Plumbotectonics1.The Phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits 2nd(Ed).Wiley Interscience, 1979: 22-70.

    Rajabi A, Rastad E, Canet C.Metallogeny of Cretaceous carbonate-hosted Zn-Pb deposits of Iran:geotectonic setting and data integration for future mineral exploration[J].International Geological Review, 2012, 54(14):1649-1672. doi: 10.1080/00206814.2012.659110

    Leach D L, Sangster D F, Kelley K D, et al.Sediment-hosted lead-zinc deposits:A global perspective[J].Economic Geology, 2005, 100:561-607. http://ci.nii.ac.jp/naid/10030174885

    Leach D L, Bradley D C, Huston D, et al.Sediment-Hosted Lead-Zinc Deposits in Earth History[J].Economic Geology, 2010, 105(3):593-625. doi: 10.2113/gsecongeo.105.3.593

    Paradis S, Hannigan P, Dewing K.Mississippi Valley-type lead-zinc deposits[C]//Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 185-203.

    Plumlee G S, Leach D L, Hofstra A H, et al.Chemical reaction path modeling of ore deposition in Mississippi valley-type Pb-Zn deposits of the Ozark region, U.S.Midcontinent[J].Economic Geology, 1994, 89:1361-1383. doi: 10.2113/gsecongeo.89.6.1361

    Dejonghe L, Darras B, Hughes G, et al.Weis D.Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia[J].Mineralium Deposita, 2002, 37(2):158-172. doi: 10.1007/s00126-001-0225-8

    Camprubí A, Gonzalez-Partida E, Torres-Tafolla E.Fluid inclusion and stable isotope study of the Cobre-Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico[J].Journal of Geochemical Exploration, 2006, 89:33-38. doi: 10.1016/j.gexplo.2005.11.011

    Bendezú R, Page L, Spikings R, et al.New 40Ar/39Ar alunite ages from the Colquijirca district, Peru:evidence of a long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores[J].Mineralium Deposita, 2008, 43(7):777-789. doi: 10.1007/s00126-008-0195-1

图(14)  /  表(6)
计量
  • 文章访问数:  2782
  • HTML全文浏览量:  376
  • PDF下载量:  1636
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-05-06
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-10-14

目录

/

返回文章
返回