Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U-Pb ages and Hf isotopes
-
摘要:
对北山造山带小红山地区三叠纪花岗斑岩锆石U-Pb年龄、锆石Hf同位素和全岩地球化学组成进行了研究。LA-MC-ICP-MS锆石U-Pb测年结果显示,2个花岗斑岩样品的锆石206Pb/238U年龄为211.8±1.6 Ma和205.9±1.7 Ma,显示花岗斑岩的侵位时代为晚三叠世晚期。花岗斑岩具有高硅、富碱、准铝,贫钙、镁、铁的特征,属于高钾钙碱性至钾玄岩系列,分异程度较高,属高分异Ⅰ型花岗岩,富集Rb、Th、U、La、Ce等大离子亲石元素,亏损Nb、P、Ti等高场强元素和Ba、Sr,表现出低Sr,高Yb和Y的特点,并具有明显的负Eu异常。εHf(t)值较高(-1.43~9.93),Hf同位素地壳模式年龄TDMC为610~1335 Ma,指示花岗斑岩均源于具有幔源烙印的新生地壳并混有重熔的古老地壳。结合最近获得的数据及区域地质资料,提出在后造山伸展体制下,基性岩浆底侵带来的热导致新元古代—古生代新生地壳的部分熔融,并遭受了下元古界古老地壳重熔的岩浆混染,形成的岩浆经过分离结晶作用,最终在中上地壳侵位形成了晚三叠世花岗斑岩。
Abstract:In this paper, zircon U-Pb ages, Hf isotopes and whole rock geochemical compositions of Triassic granite-porphyry in Xiaohongshan area of Beishan orogenic belt were systematically studied.Zircon LA-MC-ICP-MS U-Pb dating results show that the two ages of granite-porphyry are 211.8±1.6 Ma(the confidence value is 95%, n=24, MSDW=2.4)and 205.9±1.7 Ma(the confidence value is 95%, n=23, MSDW=2.9)respectively, which intruded at the late stage of Late Triassic.The granite-porphyry in the study area is characterized by high silicon, rich alkali, quasi-aluminum, and poor calcium, magnesium, and iron.It belongs to the series of high potassium calc-alkaline to potassic basanite with high degree of differentiation.It belongs to highly differentiated Ⅰ-type granite.It is enriched in Rb, Th, U, La, Ce and other large ion lithophile elements and depleted in Nb, P, Ti, Ba and Sr. It is characterized by low Sr, high Yb and Y with obvious negative europium anomaly.The εHf(t)values range from -1.43 to 9.93, which are relatively high, and the Hf isotopic crustal model ages range from 610 Ma to 1335 Ma, indicating that the granite-porphyry was derived from the juvenile crust with mantle imprint mixed with remelting old crust. According to the data obtained in this paper and other regional geological data acquired recently, it is proposed that, under the post-orogenic extension system, the heat brought by the underplating of basic magma caused the partial melting of the juvenile crust from Neoproterozoic to Paleozoic, and suffered magma contamination of the remelting of the old crust of Lower Proterozoic.In addition, the magma was finally emplaced in the middle and upper crust after fractional crystallization, forming the the Late Triassic granite-porphyry in the study area.
-
Keywords:
- Triassic /
- granites /
- post-orogenic extension /
- zircon U-Pb age /
- zircon Hf isotopes /
- Beishan orogenic belt
-
致谢: 野外工作得到中国地质调查局天津地质调查中心赵泽霖、张国震和程先钰的帮助和支持,审稿专家提出了中肯的修改建议,在此一并表示感谢。
-
图 9 小红山地区花岗斑岩LaN-(La/Yb)N(a)、δEu-Sr(b)、Sr-Rb(c)、Sr-Ba(d)、Zr-TiO2(e)和Ni-Cr(f)关系图及分离结晶趋势
Zr—锆石;Ap—磷灰石;Mon—独居石;Allan—褐帘石;PlAn15—斜长石(An=15);PlAn50—斜长石(An=50);Pl—斜长石;Kf—钾长石;Bi—黑云母;Ms—白云母;Amp—角闪石;Hb—角闪石;Grt—石榴子石;Mgt—磁铁矿;Tit—榍石;Cpx—单斜辉石
Figure 9. LaN-(La/Yb)N(a), δEu-Sr(b), Sr-Rb(c), Sr-Ba(d), Zr-TiO2(e) and Ni-Cr(f)diagrams showing the fractional crystallization trends for the granite-porphyry in Xiaohongshan area
表 1 小红山地区花岗斑岩LA-MC-ICP-MS锆石U-Th-Pb同位素数据表
Table 1 Zircon LA-MC-ICP-MS U-Th-Pb dating result of the granite-porphyry in Xiaohongshan area
样品号 含量/10-6 同位素比值 年龄/Ma Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ TW730a 1 9 188 0.0320 0.0004 0.2261 0.0070 0.0513 0.0012 0.0161 0.0005 1.4923 0.013 202.8 2.6 207 6 255 54 2 34 907 0.0331 0.0005 0.2277 0.0076 0.0499 0.0011 0.0107 0.0002 0.8336 0.026 209.9 3.5 208 7 191 51 3 15 352 0.0342 0.0003 0.2370 0.0055 0.0503 0.0011 0.0105 0.0002 1.2178 0.003 216.6 2.2 216 5 210 51 4 46 1294 0.0340 0.0004 0.2312 0.0036 0.0493 0.0007 0.0096 0.0002 0.5697 0.003 215.4 2.2 211 3 164 31 5 25 710 0.0336 0.0004 0.2365 0.0040 0.0510 0.0008 0.0096 0.0002 0.6125 0.007 213.2 2.5 216 4 241 34 6 126 3287 0.0327 0.0004 0.2288 0.0036 0.0508 0.0007 0.0114 0.0004 0.8537 0.018 207.2 2.5 209 3 232 34 7 20 459 0.0326 0.0003 0.2320 0.0044 0.0517 0.0008 0.0167 0.0004 0.8994 0.015 206.6 2.2 212 4 270 36 8 14 413 0.0338 0.0004 0.2375 0.0046 0.0510 0.0009 0.0104 0.0002 0.4067 0.004 214.2 2.4 216 4 240 38 9 74 2012 0.0332 0.0005 0.2356 0.0036 0.0514 0.0006 0.0119 0.0002 0.6266 0.003 210.6 3.0 215 3 260 28 10 185 5542 0.0338 0.0003 0.2325 0.0031 0.0499 0.0006 0.0153 0.0003 0.2024 0.000 214.5 2.1 212 3 188 27 11 23 539 0.0325 0.0004 0.2268 0.0059 0.0506 0.0010 0.0104 0.0002 1.5112 0.026 206.1 2.7 208 5 224 44 12 30 762 0.0339 0.0004 0.2367 0.0036 0.0507 0.0007 0.0076 0.0002 1.3465 0.031 214.7 2.7 216 3 227 32 13 373 10106 0.0329 0.0004 0.2289 0.0074 0.0504 0.0013 0.0097 0.0003 0.8127 0.004 209.0 2.7 209 7 213 58 14 45 1136 0.0337 0.0004 0.2354 0.0034 0.0507 0.0006 0.0109 0.0002 0.9680 0.007 213.5 2.4 215 3 227 29 15 84 2402 0.0341 0.0004 0.2333 0.0031 0.0496 0.0006 0.0104 0.0002 0.4158 0.001 216.4 2.3 213 3 174 30 16 12 351 0.0336 0.0004 0.2358 0.0046 0.0509 0.0009 0.0104 0.0003 0.3604 0.001 213.1 2.3 215 4 235 41 17 71 1950 0.0336 0.0005 0.2362 0.0032 0.0510 0.0007 0.0175 0.0004 0.3685 0.006 212.9 2.9 215 3 241 33 18 38 1104 0.0336 0.0004 0.2387 0.0034 0.0515 0.0007 0.0102 0.0002 0.4598 0.004 213.1 2.3 217 3 264 29 19 162 4089 0.0323 0.0005 0.2222 0.0078 0.0500 0.0012 0.0297 0.0007 0.4002 0.013 204.7 3.4 204 7 193 54 20 7 203 0.0341 0.0004 0.2350 0.0108 0.0500 0.0021 0.0115 0.0003 0.5562 0.007 215.9 2.7 214 10 197 100 21 85 2321 0.0334 0.0004 0.2319 0.0047 0.0503 0.0008 0.0130 0.0003 0.5382 0.007 211.9 2.3 212 4 210 37 22 44 1262 0.0335 0.0003 0.2380 0.0033 0.0515 0.0006 0.0102 0.0002 0.4742 0.002 212.5 2.2 217 3 264 28 23 137 3624 0.0327 0.0003 0.2243 0.0031 0.0498 0.0006 0.0142 0.0003 0.6596 0.011 207.3 2.1 205 3 184 27 24 258 7808 0.0337 0.0003 0.2377 0.0032 0.0512 0.0006 0.0097 0.0002 0.2790 0.003 213.7 2.2 217 3 248 27 TW730b 1 10 254 0.0334 0.0004 0.2334 0.0104 0.0507 0.0022 0.0097 0.0005 0.8374 0.010 211.7 2.7 213 9 227 102 2 6 159 0.0335 0.0004 0.2305 0.0085 0.0499 0.0017 0.0093 0.0002 0.7434 0.006 212.4 2.4 211 8 191 81 3 25 723 0.0330 0.0003 0.2321 0.0034 0.0511 0.0007 0.0094 0.0002 0.5787 0.002 209.1 2.1 212 3 243 30 4 21 568 0.0334 0.0004 0.2301 0.0044 0.0499 0.0008 0.0103 0.0002 0.7694 0.006 211.9 2.4 210 4 191 39 5 14 408 0.0316 0.0003 0.2343 0.0067 0.0537 0.0015 0.0073 0.0002 0.9380 0.004 200.6 2.0 214 6 360 63 6 18 644 0.0236 0.0002 0.2485 0.0036 0.0763 0.0010 0.0088 0.0002 0.7061 0.008 150.5 1.5 225 3 1103 26 7 48 1377 0.0321 0.0003 0.2305 0.0034 0.0521 0.0007 0.0097 0.0002 0.6871 0.004 203.6 2.0 211 3 289 31 8 46 1104 0.0311 0.0003 0.2244 0.0034 0.0523 0.0007 0.0171 0.0004 0.9075 0.002 197.6 2.0 206 3 299 33 9 6 178 0.0330 0.0004 0.2328 0.0109 0.0512 0.0023 0.0100 0.0002 0.6029 0.009 209.1 2.4 213 10 251 106 10 15 384 0.0333 0.0008 0.2283 0.0074 0.0498 0.0011 0.0150 0.0004 0.6090 0.023 211.0 5.1 209 7 185 50 11 6 155 0.0326 0.0004 0.2314 0.0107 0.0515 0.0023 0.0109 0.0003 0.8014 0.009 206.8 2.7 211 10 263 101 12 2 64 0.0325 0.0005 0.2277 0.0216 0.0508 0.0048 0.0090 0.0003 1.0395 0.016 206.5 2.9 208 20 230 218 13 9 255 0.0326 0.0004 0.2245 0.0071 0.0500 0.0015 0.0108 0.0002 0.6784 0.003 206.7 2.3 206 6 194 69 14 9 264 0.0326 0.0003 0.2303 0.0062 0.0512 0.0013 0.0113 0.0003 0.5415 0.008 207.1 2.2 210 6 249 59 15 15 440 0.0319 0.0003 0.2224 0.0036 0.0506 0.0007 0.0115 0.0003 0.6077 0.003 202.4 2.1 204 3 221 34 16 11 307 0.0321 0.0003 0.2273 0.0046 0.0514 0.0009 0.0123 0.0003 0.6260 0.004 203.6 2.1 208 4 258 42 17 5 132 0.0319 0.0003 0.2245 0.0089 0.0511 0.0020 0.0112 0.0003 0.8566 0.003 202.4 2.1 206 8 243 91 18 6 130 0.0328 0.0004 0.2248 0.0071 0.0497 0.0015 0.0152 0.0003 0.9640 0.005 207.9 2.3 206 6 183 71 19 15 436 0.0319 0.0003 0.2252 0.0038 0.0512 0.0008 0.0115 0.0002 0.5955 0.003 202.4 2.0 206 3 250 36 20 12 319 0.0327 0.0003 0.2299 0.0048 0.0510 0.0010 0.0123 0.0003 0.6949 0.003 207.3 2.2 210 4 242 45 21 9 236 0.0326 0.0003 0.2292 0.0061 0.0510 0.0013 0.0124 0.0003 0.6929 0.003 206.7 2.1 210 6 242 59 22 22 583 0.0326 0.0003 0.2210 0.0038 0.0492 0.0008 0.0128 0.0003 0.7479 0.011 206.7 2.1 203 4 157 39 23 15 350 0.0328 0.0003 0.2276 0.0046 0.0503 0.0009 0.0101 0.0002 1.5071 0.007 208.0 2.2 208 4 210 43 24 14 386 0.0327 0.0003 0.2258 0.0051 0.0500 0.0011 0.0139 0.0004 0.6345 0.008 207.6 2.2 207 5 197 52 注:测试单位为天津地质调查中心实验室 表 2 小红山地区花岗斑岩主量、微量和稀土元素测试结果
Table 2 Major, trace elements and REE compositions of the granite-porphyry in Xiaohongshan area
样号 YQ730.a YQ730.b YQ730.c YQ730.d YQ730.e YQ730.f YQ730.g YQ730.h SiO2 76.38 76.27 76.34 76.18 75.82 75.71 75.59 75.99 Al2O3 12.40 12.49 12.45 12.46 12.31 12.35 12.51 12.31 Fe2O3 0.36 0.46 0.49 0.64 0.67 0.72 0.62 0.85 FeO 0.57 0.39 0.49 0.42 0.62 0.55 0.67 0.46 CaO 0.70 0.66 0.67 0.69 0.76 0.82 0.66 0.68 MgO 0.14 0.11 0.16 0.14 0.14 0.14 0.14 0.18 K2O 4.76 4.94 4.49 4.86 5.33 5.42 5.44 5.38 Na2O 3.67 3.66 3.86 3.58 3.01 2.96 3.01 2.87 TiO2 0.12 0.12 0.13 0.16 0.13 0.14 0.14 0.14 P2O5 0.015 0.015 0.021 0.024 0.017 0.018 0.019 0.018 MnO 0.045 0.037 0.03 0.04 0.055 0.048 0.052 0.049 灼失量 0.78 0.80 0.83 0.75 1.07 1.07 1.06 1.03 Pb 41.2 42.1 46.7 42.4 63.2 45.4 59.8 53.3 Cr 1.68 1.22 1.45 0.87 1.37 1.32 1.13 1.65 Ni 0.81 0.41 0.69 0.44 0.5 0.63 0.49 0.58 Co 0.58 0.46 0.54 0.58 0.68 0.60 0.69 0.73 Rb 952 987 902 984 790 779 801 808 Cs 6.18 6.31 6.27 6.79 7.24 7.65 7.45 7.77 Sr 21.5 23.6 24.4 29.6 34.2 34.1 37.5 58.0 Ba 47.8 77.8 67.9 95.4 93.1 95.0 108 104 V 2.95 2.68 3.85 4.20 3.82 4.72 4.81 4.73 Sc 4.56 4.76 4.66 4.82 4.74 4.75 4.79 4.91 Nb 52.9 52.6 45.0 51.8 29.7 29.3 30.0 30.4 Ta 6.67 6.61 5.96 6.12 4.22 4.19 4.18 4.24 Zr 218 157 142 142 155 155 148 148 Hf 10.7 7.41 6.23 5.51 7.20 7.12 7.06 7.13 Ga 10.1 10.5 10.6 11.4 10.9 12.4 11.9 12.1 U 40.1 40.0 26.9 35.6 10.4 10.2 15.5 15.7 Th 75.0 58.0 51.3 54.6 57.5 54.9 58.5 63.6 La 24.5 23.0 24.4 31.2 38.3 36.5 42.1 45.0 Ce 43.0 40.0 41.6 52.1 57.8 51.7 64.4 114 Pr 6.64 6.12 6.43 8.20 8.63 8.16 9.51 10.5 Nd 24.4 22.5 23.1 29.6 28.0 26.9 31.6 34.6 Sm 5.89 5.37 5.40 6.86 5.32 5.05 5.87 6.76 Eu 0.30 0.32 0.30 0.41 0.27 0.26 0.31 0.33 Gd 5.76 5.22 5.20 6.56 5.10 4.86 5.58 6.35 Tb 1.24 1.12 1.05 1.34 0.93 0.90 1.00 1.13 Dy 8.21 7.40 6.72 8.52 5.67 5.73 6.12 6.98 Ho 1.74 1.55 1.41 1.76 1.15 1.20 1.25 1.46 Er 5.57 4.79 4.45 5.44 3.60 3.86 4.01 4.57 Tm 0.99 0.82 0.76 0.92 0.63 0.68 0.68 0.81 Yb 6.79 5.61 5.21 6.10 4.33 4.81 4.71 5.50 Lu 1.06 0.87 0.83 0.94 0.67 0.78 0.74 0.84 Y 49.6 43.9 40.7 49.0 31.4 35.2 35.9 42.1 ΣREE 186 169 168 209 192 187 214 281 LREE 105 97.3 101 128 138 129 154 211 HREE 31.4 27.4 25.6 31.6 22.1 22.8 24.1 27.6 LREE/
HREE3.34 3.55 3.95 4.06 6.26 5.63 6.38 7.64 注:测试工作由天津地质调查中心实验室完成,主量元素采用XRF测试,其中FeO采用氢氟酸、硫酸溶样、重铬酸钾滴定容量法,微量元素采用ICP-MS测试;主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 小红山地区花岗斑岩锆石Lu-Hf同位素数据
Table 3 Zircon Lu-Hf isotopic data of the granite-porphyry in Xiaohongshan area
点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) TDM /Ma TDMC/Ma TW730a 2 210 0.0536 0.0016 0.282695 0.000021 0.282689 -2.71 1.68 801 1136 4 215 0.0818 0.0023 0.282730 0.000017 0.282721 -1.49 2.92 766 1061 5 213 0.1539 0.0041 0.282615 0.000028 0.282599 -5.54 -1.43 981 1335 7 207 0.0464 0.0015 0.282712 0.000021 0.282706 -2.12 2.21 775 1100 8 214 0.0303 0.0009 0.282718 0.000020 0.282714 -1.92 2.65 755 1077 9 211 0.0933 0.0027 0.282701 0.000015 0.282690 -2.51 1.73 818 1133 10 214 0.1344 0.0045 0.282711 0.000019 0.282693 -2.16 1.92 844 1124 12 215 0.0388 0.0013 0.282741 0.000018 0.282736 -1.09 3.45 729 1027 13 209 0.1373 0.0043 0.282940 0.000021 0.282923 5.93 9.93 485 610 14 214 0.0519 0.0017 0.282795 0.000021 0.282788 0.80 5.25 661 912 16 213 0.0364 0.0011 0.282795 0.000020 0.282791 0.81 5.34 649 906 17 213 0.0755 0.0023 0.282749 0.000018 0.282740 -0.81 3.54 738 1020 18 213 0.0575 0.0016 0.282737 0.000018 0.282731 -1.23 3.22 742 1040 21 216 0.0288 0.0010 0.282754 0.000022 0.282750 -0.65 3.96 706 996 22 212 0.0420 0.0014 0.282692 0.000015 0.282687 -2.82 1.65 800 1139 24 214 0.1892 0.0057 0.282892 0.000021 0.282869 4.24 8.14 583 728 TW730b 3 209 0.0274 0.0009 0.282722 0.000020 0.282718 -1.77 2.69 750 1071 7 204 0.0458 0.0013 0.282711 0.000017 0.282706 -2.17 2.13 774 1103 11 207 0.0459 0.0013 0.282704 0.000022 0.282699 -2.40 1.96 782 1115 12 206 0.0539 0.0018 0.282736 0.000023 0.282729 -1.28 3.00 748 1049 13 207 0.0247 0.0007 0.282801 0.000021 0.282798 1.01 5.45 635 894 14 207 0.0244 0.0008 0.282690 0.000019 0.282687 -2.91 1.53 791 1143 15 202 0.0487 0.0015 0.282724 0.000017 0.282719 -1.69 2.56 757 1074 16 204 0.0391 0.0013 0.282646 0.000017 0.282641 -4.44 -0.15 866 1247 17 202 0.0305 0.0009 0.282693 0.000019 0.282689 -2.80 1.53 790 1140 18 208 0.0402 0.0012 0.282736 0.000018 0.282731 -1.29 3.11 737 1044 19 202 0.0479 0.0014 0.282753 0.000018 0.282748 -0.66 3.60 714 1008 20 207 0.0280 0.0009 0.282756 0.000019 0.282753 -0.56 3.87 701 995 21 207 0.0300 0.0009 0.282699 0.000021 0.282695 -2.58 1.83 782 1124 22 207 0.0434 0.0014 0.282773 0.000015 0.282767 0.02 4.37 686 962 23 208 0.0599 0.0017 0.282754 0.000022 0.282747 -0.65 3.69 720 1007 24 208 0.0348 0.0010 0.282700 0.000018 0.282696 -2.56 1.86 782 1123 注:测试单位为天津地质调查中心实验室,该表中点号与表 1对应 表 4 小红山地区花岗斑岩锆石饱和温度测试结果
Table 4 Result from saturated Zr thermometer of the granite-porphyry in Xiaohongshan area
样品 Zr/10-6 M Tzr/℃ YQ730.a 218 1.4 819 YQ730.b 157 1.4 789 YQ730.c 142 1.4 782 YQ730.d 142 1.4 782 YQ730.e 155 1.4 791 YQ730.f 155 1.4 790 YQ730.g 148 1.3 789 YQ730.h 148 1.3 790 注:TZr = 129000 /[2.95 + 0.85M + ln(469000 /Zrsample)],M为岩石中阳离子的比值, M =(Na + K + 2Ca)/(Al × Si) -
Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310:1553-1594. doi: 10.2475/10.2010.12
Liu X C, Chen B, Jahn B M, et al.Early Paleozoic(ca.465 Ma)eclogites from Beishan(NW China)and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt[J].Journal of Asian Earth Sciences, 2011, 42(4):715-731. http://www.sciencedirect.com/science/article/pii/S1367912010003147
Guo Q Q, Xiao W J, Hou Q L, et al.Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt[J].Lithos, 2014, 184-187(1):361-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12623046eb693c8acdf0846752adffb9
江思宏, 聂凤军.北山地区花岗岩类成因的Nd同位素制约[J].地质学报, 2006, 80(6):826-842. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200606005 Su B X, Qin K Z, Sun H, et al.Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes[J].Lithos, 2012, 134-135(2):41-51. http://www.sciencedirect.com/science/article/pii/S0024493711003847
Zhang W, Pease V, Wu T R, et al.Discovery of an adakite-like pluton near Dongqiyishan(Beishan, NW China)-Its age and tectonic significance[J].Lithos, 2012, 142-143(6):148-160. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=75185132&site=ehost-live
Li S, Wilde S A, Wang T.Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China:Petrogenesis and tectonic implications[J].Lithos, 2013, 179:99-119. doi: 10.1016/j.lithos.2013.08.002
李敏, 任邦方, 滕学建, 等.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义[J].地球科学, 2018, 43(12):4586-4605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812023 李敏, 辛后田, 任邦方, 等.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 2019, 44(1):328-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901023 潘志龙, 王硕, 邱振, 等.内蒙古北山地区咸水沟一带早石炭世红柳园组火山岩地球化学、锆石U-Pb年龄及Hf同位素特征[J].地质调查与研究, 2017, 40(02):99-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201702003 刘明强, 王建军, 代文军.甘肃北山红石山地区马鞍山北花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J].岩石矿物学杂志, 2006, 25(6):473-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200606003 李舢, 王涛, 童英.中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J].岩石矿物学杂志, 2010, 29(6):642-662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006004 Li S, Wang T, Wilde S A, et al.Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J].Lithos, 2012, 134-135:123-145. doi: 10.1016/j.lithos.2011.12.005
杨合群, 赵国斌, 李英, 等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020326&flag=1 Zuo G C, Zhang S L, He G Q, et al.Plate Tectonic characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China[J].Tectonophysics, 1991, 188:385-392. doi: 10.1016/0040-1951(91)90466-6
耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10):1508-1513. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20111004&flag=1 王树庆, 胡晓佳, 赵华雷.内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J].地质调查与研究, 2019, 42(2):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201902001 Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].J.Petrol., 2010, 51(1/2):537-571. http://petrology.oxfordjournals.org/content/51/1-2/537
Söderlund U, Patchett P J, Veroort J D, et al.The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Percambrian mafic intrusions[J].Earth and Planetary Science Letters, 2004, 219(3/4):311-324. http://www.sciencedirect.com/science/article/pii/S0012821X04000123
Bouvier A, Vervoort J D, Patchett P J.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J].Earth and Planetary Science Letters, 2008, 273(1/2):48-57. http://www.sciencedirect.com/science/article/pii/S0012821X08003828
Griffin W L, Pearson N J, Elusive E, et al.The Hf isotopes composition of carbonic mantle:LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J].Geochim.Cosmochim.Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9
Griffin W L, Wang X, Jackson S E, et al.Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3):237-269. http://www.sciencedirect.com/science/article/pii/S0024493702000828
Koschek G.Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x
Williams I S, Buick A, Cartwright I.An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynold region, central Australia[J].J.Metamorphic Geol., 1996, 14(1):29-47. doi: 10.1111/j.1525-1314.1996.00029.x
吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Whalen J B, Currie K L, Chappell B W.A-Type granites:geochemical characteristics, discrimination and petrogenesis[J].Contrib.Mineral Petrol., 1987, 95:407-419. doi: 10.1007/BF00402202
刘昌实, 陈小明, 陈培荣, 等.A型岩套的分类、判别标志和成因[J].高校地质学报, 2003, 9(4):573-591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 Miller C F, McDowell S M, Mapes R W.Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J].Geology, 2003, 31:529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Ameilin Y, Lee D C, Halliiday A N, et al.Nature of the Earth's earliest crust from hafninm isotopes in single detrital zircon[J].Nature, 1999, 399(6733):252-255. doi: 10.1038/20426
Bleousova E A, Grifflin W L, O'Reilly S Y.Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:Examples from eastern Australian granitoids[J].Journal of Petrology, 2006, 47(2):329-353. doi: 10.1093/petrology/egi077
Kemp A I S, Hawkesworth C J, Foster G L, et al.Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J].Science, 2007, 16:980-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1dbf87dba7ccb9472238f299f960285c
Ravikant V, Wu F Y, Ji W Q, et al.U-Pb Age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya[J].Earth and Planetary Science Letters, 2011, 304(3/4):356-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb603789424af69c5acd28427bf0aff8
Murphy J B, Nance R D.Sm-Nd isotopic systematics as tectonic tracers:an example from West Avalonia in the Canadian Appalachians[J].Earth-Science Reviews, 2002, 59(1/4):77-100. http://www.sciencedirect.com/science/article/pii/S0012825202000703
Kröner A, Kovach V, Belousova E, et al.Reassessment of continental growth during the accretionary history of the Central Asian Orogenie Belt[J].Gondwana Res., 2014, 25:103-125. http://www.sciencedirect.com/science/article/pii/S1342937X13000415
Jahn B M, Windley B, Natal'in B, et al.Phanerozoic Continental Growth in Central Asia[J].J.Asian Earth Sci., 2004, 23(5):599-603. doi: 10.1016/S1367-9120(03)00124-X
Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society, 2007, 164:31-47. doi: 10.1144/0016-76492006-022
Sun M, Yuan C, Xiao W, et al.Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive Accretionary history in the Early to Middle Palaeozoic[J].Chem.Geol., 2008, 247:352-383. https://ui.adsabs.harvard.edu/abs/2008ChGeo.247..352S/abstract
Wilhem C, Windley B F, Stampfli G M.The Altaids of Central Asia:A tectonic and evolutionary innovative review[J].Earth_Sci.Rev., 2012, 113:303-341. doi: 10.1016/j.earscirev.2012.04.001
Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of Early Neoproterozoic(ca.900 Ma)high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010