The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt
-
摘要:
通过1:5万黑红山幅区调工作,在内蒙古北山造山带的额勒根地区新发现并详细填绘出一套由玄武岩、斜长花岗岩、硅质岩和砂板岩构成的蛇绿构造混杂岩组合,该蛇绿混杂岩带呈NWW向带状展布,宽2.5~8 km,延伸约25 km。其中,玄武岩具富Na2O(3.02%~6.04%)、MgO(4.29%~5.46%)而贫K2O(0.03%~0.23%)、TiO2(0.44%~0.59%),轻稀土元素球粒陨石标准化配分模式为平坦型;微量元素富集大离子亲石元素Ba、U,明显亏损高场强元素Nb、Ta、P、Ti,兼具洋中脊玄武岩和岛弧玄武岩特征。斜长花岗岩与蛇绿岩中的玄武岩具相似的岩石地球化学特征,形成于玄武质岩浆部分熔融,稀土元素配分模式显示弱负Eu异常的似平坦型曲线。在斜长花岗岩中获得LA-ICP-MS锆石U-Pb年龄为342±4.7 Ma,推测古洋壳形成于早石炭世。结合蛇绿岩两侧不同时代火山岩构造环境的分析,认为额勒根蛇绿混杂岩为古亚洲洋向南俯冲过程中弧后扩张形成的SSZ型蛇绿岩。晚中生代一系列北东向左行走滑断裂,使红石山-百合山蛇绿岩带向北错移至额勒根一带通过。该蛇绿岩带的发现,解决了区域上红石山-百合山蛇绿岩带的东延问题,为北山乃至中亚造山带古生代构造演化提供了重要信息。
-
关键词:
- 北山造山带 /
- 额勒根蛇绿岩 /
- 斜长花岗岩 /
- 弧后扩张 /
- 红石山-百合山蛇绿岩带
Abstract:There is a set of ophiolite tectonic melange belt composed of basalt, plagiogranite, siliceous rock and sand slate which was discovered in the Elegen area of the Beishan orogenic belt in Inner Mongolia, based on the project of 1: 50000 Heihongshan Sheet regional geological survey.The ophiolitic melange belt is in NWW stripe-shaped distribution, with a width of about 2.5 to 8 km and an extension of about 25 km.The basalts in the Elegen ophiolite are rich in Na2O(3.02%~6.04%), MgO(4.29%~5.46%)and poor in K2O(0.03%~0.23%)and TiO2(0.44%~0.59%), and chondrite-normalized LREE patterns are flat.The primitive mantle normalized trace element patterns are characterized by the enrichment of the LILE(Ba, U)and depletion of the HFSE(Nd, Ta, P, Ti), which also have the characteristics of MORB and IAB, showing the lava characteristics of the SSZ-type tectonic background.The trace elements are enriched in the large ion lithophile elements Ba and U, while the high field strength elements Nb, Ta, P and Ti are obviously depleted, and have the characteristics of MORB and IAB, showing the lava characteristics of the SSZ-type tectonic background.The basalts in the the ophiolite and plagiogranite have similar rock geochemical characteristics, suggesting that they were formed in the partial melting of the basaltic magma, and the REE patterns show a flat-like curve with weak negative Eu anomalies.The LA-ICP-MS zircon U-Pb age of 342±4.7 Ma was obtained in the plagiogranite, and it is determined that the Elegen ophiolite was formed in the Early Carboniferous.Through the analysis of the tectonic setting of the ophiolite and the volcanic rocks in different ages around this area, the authors believe that the Elegen ophiolite might have been formed in the expansion stage of the post-arc basin in the Hongshishan-Baiheshan area during the southward reduction of the Paleo-Asian Ocean.In the Late Mesozoic, a series of NE-striking sinistral strike-slip faults caused the Hongshishan-Baiheshan tectonic belt to move northward to the area of Elegen.The discovery of the ophiolite explains the east extension of the Hongshishan-Baiheshan ophiolite belt, thus providing important information for the Paleozoic tectonic evolution of the Beishan area and even the whole Central Asian Orogenic Belt(CAOB).
-
致谢: 河北省区域地质调查院胡醒民教授级高级工程师,中国地质科学院地质力学研究所胡健民研究员和河北地质大学李英杰教授给本文提出了宝贵的修改意见,在此表示感谢。
-
图 1 额勒根蛇绿岩区域构造简图⑤
Figure 1. Simplified regional tectonic map of Elegen ophiolite
图 2 研究区地质简图②
1—第四系;2—中二叠统金塔组;3—石炭系白山组;4—下石炭统绿条山组;5—中奥陶统咸水湖组;6—晚石炭世花岗岩;7—泥砂质基质(下石炭统);8—绿泥板岩(强劈理化玄武岩);9—块状玄武岩;10—斜长花岗岩;11—硅质岩;12—区域性边界断裂;13—断层;14—走滑断层;15—糜棱岩化带;16—角度不整合界线;17—同位素样品位置
Figure 2. Geological sketch map of the research area
图 5 玄武岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)[33]
Figure 5. Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spider diagram(b)of basalt
图 6 斜长花岗岩稀土元素球粒陨石标准化配分曲线(a)及微量元素原始地幔标准化蛛网图(b)[33]
Figure 6. Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spider diagram(b)of plagiogranite
图 8 额勒根玄武岩构造环境判别图
a—2Nb-Zr/4-Y图解[42];b—Hf/3-Th-Ta图解[43];c—V-Ti/1000图解[44];d—Ta/Yb-Th/Yb图解[45];N-MORB—正常洋中脊玄武岩;E-MORB—富集洋中脊玄武岩;IAT—岛弧拉斑玄武岩;IAB—岛弧玄武岩;CAB—钙碱性玄武岩;WPA—板内碱性玄武岩;ICA—岛弧钙碱系列;SHO—岛弧橄榄玄粗岩系列;WPB—板内玄武岩;TH—拉斑玄武岩;TR—过渡玄武岩;ALK—碱性玄武岩;OIB—洋岛玄武岩;CFB—大陆溢流玄武岩;AB—碱性玄武岩
Figure 8. Discriminant diagrams of tectonic setting of the Elegen basalt
图 9 斜长花岗岩SiO2-La(a)和SiO2-Yb(b)判别图解[47]
Figure 9. SiO2-La(a) and SiO2-Yb(b) diagrams of plagiogranite
表 1 额勒根蛇绿岩中玄武岩和斜长花岗岩主量、微量和稀土元素分析结果
Table 1 Major, trace elements and REE analyses of the basalt and plagioclase granite in the Elegen ophiolite
分析项 玄武岩 斜长花岗岩 P20YQ1 P20YQ4 BS-1 BS-2 BS-3 YQ83 YQ33 YQ42 YQ61 YQ48 YQ66 SiO2 42.52 52.19 52.88 53.57 53.27 52.18 74.15 72.02 77.91 74.57 73.44 TiO2 0.44 0.49 0.59 0.55 0.58 0.49 0.28 0.35 0.22 0.31 0.34 Al2O3 14.37 15.02 16.04 14.97 15.67 17.29 13.02 13.52 11.85 13.07 12.33 Fe2O3 2.09 2.65 4.65 4.67 4.88 3.00 0.64 0.92 0.10 0.85 1.52 FeO 7.18 5.02 6.01 5.24 5.78 6.42 1.96 2.18 1.52 1.65 1.68 MnO 0.24 0.18 0.16 0.17 0.17 0.18 0.027 0.059 0.014 0.037 0.048 MgO 4.29 4.75 5.22 4.77 5.46 4.41 1.42 1.41 1.26 1.06 0.96 CaO 12.35 7.47 3.36 4.73 3.47 5.79 0.49 1.40 0.34 1.09 1.72 Na2O 3.02 4.54 6.04 5.64 5.66 3.49 6.33 4.43 4.37 5.62 4.96 K2O 0.23 0.03 0.08 0.08 0.07 0.76 0.15 1.07 0.91 0.45 0.69 P2O5 0.05 0.11 0.04 0.04 0.04 0.08 0.03 0.07 0.04 0.06 0.06 烧失量 13.14 7.49 4.04 4.79 4.14 5.79 1.45 2.50 1.42 1.19 2.19 总计 99.93 99.94 99.11 99.22 99.19 99.89 99.96 99.80 99.96 99.96 99.94 A/CNK 1.00 0.79 0.71 0.71 0.84 1.01 1.13 1.23 1.35 1.12 1.02 σ 2.36 1.82 3.28 2.67 2.79 1.64 1.34 1.03 0.80 1.16 1.04 TFeO 7.37 5.26 6.43 5.66 6.22 6.69 2.02 2.26 1.53 1.73 1.82 Mg# 0.51 0.62 0.59 0.60 0.61 0.54 0.56 0.53 0.60 0.52 0.49 Rb 19.02 0.71 2.66 1.69 1.33 10.5 2.57 13.52 13.20 4.40 8.24 Ba 212.48 28.17 19.20 34.50 23.70 114 97.52 307.97 147.93 103.03 111.21 Th 0.40 0.37 0.24 0.16 0.16 0.23 0.99 0.61 1.28 0.74 0.76 U 0.46 0.41 0.20 0.19 0.21 0.51 0.70 0.37 0.76 0.63 0.55 K 10278 288 683 642 600 6284 1264 8842 7587 3757 5764 Ta 0.08 0.08 0.03 0.03 0.03 0.07 0.16 0.09 0.57 0.22 0.61 Nb 1.18 1.45 0.41 0.38 0.41 0.55 2.69 1.75 2.29 1.88 1.52 Sr 58.56 134.43 138.00 156.00 153.00 176.92 84.47 115.34 83.46 94.81 68.97 P 223.89 464.69 157.86 188.56 162.25 367.68 144.99 285.21 161.47 265.43 251.14 Zr 27.29 37.70 25.00 22.80 24.00 41.0 147.27 79.83 105.47 127.64 122.77 Hf 0.81 1.11 0.97 0.88 0.93 1.05 4.69 2.59 3.73 4.29 3.69 La 2.16 2.92 1.66 1.83 1.71 2.72 4.52 5.03 7.98 4.91 4.41 Ce 4.83 6.91 4.50 4.89 4.43 6.95 15.0 14.3 19.3 14.3 11.7 Pr 0.67 0.94 0.70 0.79 0.71 0.94 1.81 1.54 2.20 2.31 1.46 Nd 3.23 4.66 3.64 4.22 3.61 4.80 8.66 7.89 9.75 11.2 7.58 Sm 1.01 1.33 1.12 1.36 1.15 1.49 2.76 2.36 2.62 3.34 2.45 Eu 0.39 0.50 0.43 0.51 0.43 0.59 0.50 0.56 0.52 0.66 0.54 Gd 1.17 1.45 1.50 1.77 1.55 1.57 2.99 2.53 2.77 3.80 2.46 Tb 0.25 0.29 0.26 0.33 0.27 0.33 0.81 0.54 0.56 0.83 0.54 Dy 1.71 2.07 1.69 2.15 1.79 2.20 6.03 3.88 3.86 5.76 3.87 Ho 0.36 0.40 0.37 0.45 0.38 0.46 1.28 0.79 0.79 1.22 0.81 Er 1.03 1.23 1.10 1.32 1.16 1.30 3.64 2.46 2.39 3.51 2.50 Tm 0.19 0.23 0.18 0.21 0.18 0.25 0.66 0.45 0.44 0.62 0.48 Yb 1.13 1.36 1.26 1.43 1.31 1.49 4.01 2.68 2.71 4.02 2.85 Lu 0.18 0.22 0.20 0.22 0.21 0.24 0.68 0.44 0.42 0.60 0.44 Y 11.71 11.50 8.60 10.80 9.32 13.20 36.90 29.30 22.80 32.50 27.10 ΣREE 18.30 24.51 18.61 21.48 18.89 25.34 53.33 45.48 56.33 57.11 42.11 LREE 12.29 17.26 12.05 13.60 12.04 17.49 33.22 31.69 42.38 36.75 28.17 HREE 6.02 7.25 6.56 7.88 6.85 7.85 20.11 13.79 13.95 20.36 13.94 LREE/HREE 2.04 2.38 1.84 1.73 1.76 2.23 1.65 2.30 3.04 1.81 2.02 LaN/YbN 1.37 1.54 0.95 0.92 0.94 1.31 0.81 1.35 2.11 0.88 1.11 δEu 1.09 1.09 1.01 1.00 0.98 1.18 0.53 0.70 0.59 0.56 0.67 δCe 0.98 1.03 1.02 1.00 0.99 1.07 1.29 1.26 1.13 1.04 1.13 注:TFeO=FeO+ Fe2O3×0.8998;Mg#=Mg2+/(Mg2++TFe2+);主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 2 额勒根蛇绿岩中的斜长花岗岩(TW48)LA-ICP-MS锆石U-Th-Pb测试分析结果
Table 2 LA-ICP-MS zircon U-Th-Pb isotope analytical results of plagiogranite(TW48) in the Elegen ophiolite
测点号 含量/10-6 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 28 211 351 0.0554 0.0017 0.4947 0.0157 0.0644 0.0010 428 70 408 11 402 6 2 13 69 200 0.0488 0.0029 0.3651 0.0222 0.0539 0.0009 139 133 316 16 338 6 3 16 133 161 0.0670 0.0056 0.6390 0.0351 0.0645 0.0012 839 176 502 22 403 7 4 47 280 598 0.0521 0.0015 0.4628 0.0135 0.0639 0.0009 287 65 386 9 399 6 5 19 220 290 0.0509 0.0024 0.3350 0.0145 0.0482 0.0008 235 107 293 11 304 5 6 17 112 248 0.0588 0.0039 0.4446 0.0276 0.0553 0.0011 561 144 373 19 347 7 7 54 71 764 0.0542 0.0017 0.4830 0.0152 0.0644 0.0010 389 72 400 10 402 6 8 13 138 172 0.0571 0.0028 0.4344 0.0217 0.0547 0.0010 494 114 366 15 343 6 9 28 403 433 0.0539 0.0019 0.3615 0.0142 0.0480 0.0008 369 86 313 11 302 5 10 5 36 57 0.0570 0.0051 0.4848 0.0401 0.0644 0.0016 500 200 401 27 402 10 11 54 277 806 0.0533 0.0018 0.4113 0.0144 0.0555 0.0009 343 78 350 10 348 6 12 36 303 536 0.0567 0.0015 0.4233 0.0126 0.0538 0.0008 480 61 358 9 338 5 13 23 249 363 0.0529 0.0021 0.3477 0.0133 0.0479 0.0007 324 89 303 10 302 5 14 9 97 133 0.0497 0.0025 0.3640 0.0185 0.0536 0.0011 189 120 315 14 337 6 15 15 216 158 0.0564 0.0029 0.4879 0.0276 0.0626 0.0013 478 115 404 19 391 8 -
杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西部地质, 2010, 43(1):26-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201001002 杨合群, 赵国斌, 李英等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020326&flag=1 武鹏, 王国强, 李向民, 等.甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J].地质通报, 2012, 31(12):2032-2037. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201212012.htm 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201212011.htm 余吉远, 李向民, 王国强, 等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2012, 31(12):2038-2045. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201212013.htm 胡新茁, 赵国春, 胡新悦, 等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报, 2015, 34(2/3):425-436. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2015020318&flag=1 张正平, 段炳鑫, 孟庆涛, 等.内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地质与勘探, 2017, 53(6):1129-1139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201706008 赵茹石, 周振环, 毛金海, 等.甘肃省板块构造单元划分及其构造演化[J].中国区域地质, 1994, 1:28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629561 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西部地质, 2002, 35(4):30-40. http://d.wanfangdata.com.cn/Periodical/xbdz200204004 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, (1):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200301002 魏志军, 黄增保, 金霞, 等.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质, 2004, 37(2):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200402003 黄增保, 金霞.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质, 2006, (5):1030-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200605011 李春昱, 王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[C]//中国北方板块构造文集: 第1集.辽宁: 中国地质科学院沈阳地质矿产研究所出版, 1983: 1-16. 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, (28):37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240926 聂凤军, 江思宏, 白大明.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-408. 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200301001 潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分和演化[J].地学前缘, 2016, 23(6):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201606001 卢进才, 牛亚卓, 魏仙样, 等.北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].岩石学报, 2013, 29(8):2685-2694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201308006 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201406011 彭湘萍, 陈高潮, 李玉宏, 等.北山地区红石山蛇绿混杂岩组成及地质意义[J].新疆地质, 2016, 34(2):184-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201602006 王小红, 杨建国, 谢燮, 等.甘肃北山红石山基性-超基性岩体的成因类型及构造意义[J].西北地质, 2013, 46(1):40-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201301005 彭海练, 高峰, 菅坤坤, 等.内蒙古红石山南辉长岩体锆石U-Pb年龄及地质意义[J].矿产勘查, 2018, 9(9):1705-1712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201809010 谢春林, 杨建国, 王立社, 等.甘肃北山地区古亚洲洋南缘古生代岛弧带位置的讨论[J].地质学报, 2009, 83(11):1584-1599. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200911006.htm Jackson S E, Pearson N J.The application of laser ablation-inductinvely coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017
李凤春, 侯明兰, 栾日坚, 等.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J].岩矿测试, 2016, 35(01):17-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201601005 Schilling J G, Zajac M, Evans R, et al.Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J].American Journal of Science, 1983, 283(6):510-586. doi: 10.2475/ajs.283.6.510
Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation og granitic rocks[J].Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956
Yegodainski G M, Kay R W, Volynets O N, et al.Magnesian andesite in the westem Aleutian Komandorsky region Implications for slab melting and processes in the mantle wedge[J].Geol.Soc.Amer.Bull., 1995, 107:505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
Winchester J, Floyd P.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355. doi: 10.2475/ajs.274.4.321
Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48(1/4):43-55. http://www.sciencedirect.com/science/article/pii/0009254185900348
O'Connor J.A classification for quartz-rich igneous rock based on feldspar ratios[J].US Geol.Surv Prof.Paper, 1965, 525:79-84. http://ci.nii.ac.jp/naid/10011069261
Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society, London, Special Publications, 1989, 42: 313-345.
Holm P E.The geochemical fingerprints of different tectonomagmatic environments using hydromagmatophile element abundances of tholeiitic basalts and basaltic andesites[J].Chemical Geology, 1985, 51(3/4):303-323. http://www.sciencedirect.com/science/article/pii/0009254185901391
Condie K C.Geochemical changes in baslts and andesites arcoss the Archean-Proterozoic boundary:Identification and significance[J].Lithos, 1989, 23(1):1-18. http://www.sciencedirect.com/science/article/pii/0024493789900200
Gill J B.Early geochemical evolution of an oceanic island arc and backarc:Fiji and the South Fiji Basin[J].The Jourmal of Geology, 1987, 95(5):589-615. doi: 10.1086/629158
张旗, 王焰, 李承东, 等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 2006, 22(9):2249-2269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀法多接收器等离子质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 28(增刊):600-601. http://d.wanfangdata.com.cn/Periodical_kwxb2009z1311.aspx 夏林圻, 夏祖春, 徐学义, 等.天山岩浆作用[M].北京:中国地质大学出版社, 2007:1-360. Taylor S R, Mclennan S M.The Continental Crust, Its Composition and Evolution[M].Oxford:Blackwell, 1985:1-312.
Thompson R N.Magmatism in the British Tertiary volcanic province, Scott[J].J.Geol., 1982, 18:49-107. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sjg&resid=18/1/49
Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chemical Geology, 1986, 56(3/4):207-218. http://www.sciencedirect.com/science/article/pii/0009254186900045
Wood D A.Avariably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence[J].Geology, 1979, 7:499-503. doi: 10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2
Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth Planet.Sci.Lett., 1982, 59:101-118. doi: 10.1016/0012-821X(82)90120-0
Pearce J A.Trace element characteristics of lavas from destructive plate boundarie[C]//Thorpe R S.Andesites.Chishester: Wiley, 1982: 525-548.
张旗, 周国庆.中国蛇绿岩[M].北京:地质出版社, 2001:13-14. Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:Implications for the origin of oceanic plagiogranite[J].Contributions to Mineralogy and Petrology, 2009, 158(1):99-111. doi: 10.1007/s00410-008-0372-3
Koepke J, Berndt J, Feig S T, et al.The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros[J].Contributions to Mineralogy and Petrology, 2007, 153(1):67-84. doi: 10.1007/s00410-006-0135-y
Sylvester P J.Post-collisional strongly peraluminous granites[J].Lithos, 1998, 45(1/4):29-44. http://www.sciencedirect.com/science/article/pii/S0024493798000243
Macdonald R, Hawkesworth C J, Heath E.The Lesser Antilles volcanic chain:A study in arc magmatism[J].Earth-Science Reviews, 2000, 49(1/4):1-76. http://www.sciencedirect.com/science/article/pii/S0012825299000690
Elburg M A, van Bergen M, Hoogewerfe J, et al.Geochemical trends across an arc-continent collision zone:Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J].Geochimica et Cosmochimica Acta, 2002, 66(15):2771-2789. doi: 10.1016/S0016-7037(02)00868-2
Dilek Y, Furnes H, Shallo M.Geochemistry of the Jurassic Mirdita ophiolite(Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust[J].Lithos, 2008, 100(1/4):174-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47efaf17226e3a76590da19706d7570c
牛文超, 辛后田, 段连峰, 等.内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲基性——基于1:5万清河沟幅地质图的新认识[J].中国地质, 2019, 46(5):977-994. http://d.wanfangdata.com.cn/periodical/zgdizhi201905004 Xia L Q, Xia Z C, Xu X Y, et al.Magmatism in Tianshan Mountains[M].Beijing:China Land Press, 2007:1-350.
李向民, 夏林圻, 夏祖春, 等.东天山企鹅山群火山岩锆石U-Pb年代学[J].地质通报, 2004, 23(12):1215-1220. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2004012219&flag=1 任云伟, 任邦方, 牛文超, 等.内蒙古哈珠地区石炭纪白山组火山岩:北山北部晚古生代活动陆缘岩浆作用的产物[J].地球科学2019, 44(1):312-327. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DQKX201901024 赵志雄, 贾元琴, 许海, 等.北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J].地质学报, 2015, 89(7):1210-1218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201507005 董洪凯, 孟庆涛, 张正平, 等.内蒙古标山一带石英闪长岩地质特征及构造意义[J].新疆地质, 2018, 36(4):518-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201804017 李敏, 辛后田, 任邦方, 等.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 2019, 44(1):328-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901023 徐旭明, 鲁扬, 辛后田, 等.内蒙古北山北缘古亚洲洋闭合时间制约:来自黑红山晚石炭世石英闪长岩的证据[J].矿物岩石, 2018, 38(4):66-75. http://www.cqvip.com/QK/94361X/201804/6100099673.html 程海峰, 梁国庆, 张正平, 等.内蒙古北山地区黑红山一带斑状花岗闪长岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2018, 37(10):1895-1904. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181014&flag=1 王德强, 薛鹏远, 张正平, 等.内蒙古额济纳旗涌珠泉海西期侵入岩年代学特征及构造意义[J].地质通报, 2017, 36(9):1514-1523. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170903&flag=1 左国朝, 何国琦.北山地区板块构造及成矿规律[M].北京:北京大学出版社, 1990:152-166. 刘雪亚, 王荃.中国西部北山造山带大地构造及其演化[J].地学研究, 1995, 28:37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240926 张文, 冯继承, 郑荣国, 等.甘肃北山音凹峡南花岗岩体的锆石LA-ICP-MS定年及其构造意义[J].岩石学报, 2011, 27(6):1649-1661. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201106007.htm 中国冶金地质总局五队.新疆东天山—甘蒙北山地区大地构造相图.2009. 河北省区域地质调查院.内蒙古: 5万黑红山、额勒根乌兰乌拉、园包山幅区域地质矿产调查报告.2019. 内蒙古地质勘察院.内蒙古1: 5万红梁子、沙多山、红旗山、蓬勃山幅区域地质矿产调查报告.2015. 天津地质调查中心.内蒙古1: 5万清河沟、红柳峡幅区域地质矿产调查报告.2019. 山西地质调查院.内蒙古1: 5万额勒斯图浑迪、哈布特盖嘎顺、骆驼口东、青山、大红山、双红山幅区域地质矿产调查.2017.