Zircon U-Pb age, geochemistry and Hf isotope characteristics of Shimensi granite porphyry in northern Jiangxi Province and its constraint on mineralization
-
摘要:
大湖塘钨矿田石门寺矿段钨多金属矿成矿作用与燕山期花岗质岩浆活动密切相关。其中燕山期花岗斑岩与热液隐爆角砾岩关系密切,是重要的成矿地质体。为研究该岩体成岩时代、岩石成因与演化、形成背景,探讨岩体与成矿的关系,对石门寺花岗斑岩开展了系统的岩相学、岩石化学、锆石U-Pb年龄及Hf同位素研究。结果表明,花岗斑岩形成年龄为154.36±0.83 Ma;花岗斑岩为高硅(SiO2含量为71.90%~76.53%)、过铝质(Al2O3含量为12.76%~14.76%,A/CNK值为1.25~1.39)、高钾钙碱性系列(K2O含量为2.58%~5.42%)岩石;富集大离子亲石元素,亏损高场强元素,稀土元素含量(49.38×10-6~72.36×10-6)较低、LREE/HREE(9.83~16.76)和(La/Yb)N值(16.43~39.45)较高,呈明显负Eu(δEu=0.27~0.65)异常;岩石类型为S型花岗岩。锆石的εHf(t)值为-23.6~-2.9,二阶段模式年龄为1.39~2.70 Ga,表明石门寺花岗斑岩可能为古老地壳部分熔融的产物。岩浆源岩主要为富粘土物质;岩浆演化过程中经历了镁铁质矿物、钛铁矿、斜长石的分离结晶,磷灰石没有发生显著分离结晶作用。结合区内中生代成矿地球动力学背景分析,九岭-鄣公山隆起带存在2期重要的成矿作用:①约150 Ma,由于太平洋板块俯冲汇聚而产生的挤压构造背景下的成岩成矿作用;②约135 Ma以来,处于区域岩石圈伸展减薄背景下的钨多金属成矿作用。
Abstract:The mineralization of tungsten polymetallic ore in the Dahutang tungsten orefield is closely related to the Yanshanian granitic magmatism.The Yanshanian granite porphyry is closely related to the hydrothermal cryptoexplosion breccia and is an important ore-forming geological body in this area.In order to study the rock-forming age, genesis, evolution and formation background of the rock mass as well as to discuss the relationship between the rock mass and mineralization, the authors carried out a systematic study in the aspects of petrology, major and trace elements, zircon U-Pb geochronology and Hf isotope for the Shimensi granite porphyry.The research results show that the rock-forming age of granite porphyry is 154.36±0.83 Ma, the granite porphyry has high-silicon(the content of SiO2 is 71.90%~76.53%), peraluminous nature(the content of Al2O3 being 12.76%~14.76% and the A/CNK value being 1.25~1.39)and thus belongs to high-potassium-calcium-alkaline series(the content of K2O is 2.58%~5.42%).The granite porphyry is enriched in LILEs and depleted in HFSEs.The REE content is low(49.38×10-6~72.36×10-6), LREE/HREE(9.83~16.76)and(La/Yb)N(16.43~39.45)are high, and the granite porphyry has obviously negative δEu anomaly(0.27~0.65).The rock type of granite porphyry is S-type.The εHf(t)values of zircons are -23.6~-2.9 and the two-stage model ages are 1.39~2.70 Ga, indicating that the Shimensi granite porphyry may be a product of partial melting of ancient crust.The source rock magma is mainly clay-rich material.During the evolution of magma, the separation and crystallization of mafic minerals, ilmenite and plagioclase occurred, and no significant separation and crystallization of apatite occurred.Combined with the Mesozoic metallogenic tectonic background in this area, there existed two important mineralization events in the Jiuling-Zhanggongshan uplift zone:one occurred at about 150 Ma, as a result of the diagenetic mineralization under the extrusion tectonic background of the subduction of the Pacific plate; the second occurred at about 135 Ma, as a result of tungsten polymetallic mineralization under the background of the lithosphere stretching thinning.
-
Keywords:
- Dahutang tungsten orefield /
- Shimensi granite porphyry /
- zircon U-Pb age /
- geochemistry /
- Hf isotope
-
区域地质调查和填图是地质工作的基础,也是衡量一个国家基础地质调查和研究程度及水平的重要指标,具有重要的战略意义。中国地质调查局高度重视基础地质调查与填图方式、方法的改革,树立“地质填图的过程就是科学研究的过程”的理念,确定“需求决定工作部署”、“问题决定调查方式”的工作思路,提升解决制约重大资源环境的基础地质问题和地球系统科学问题的能力。在中国地质调查局总工室和基础部的协调、领导下,由中国地质科学院地质研究所、地质力学所联合地调局六大区域地质调查中心开展了国际分幅和非国际分幅的中大比例尺专题试点填图,取得了重要进展。这是中国第一次较系统地构建填图方法体系。2019年11月6—7日,中国地质调查局召开了第三次全国区域地质调查工作会议。同时,成立了全国区域地质调查专家委员会,并组织了全国区调填图方法研讨会,来自全国地质行业近100人参加了培训和研讨,有30人在会议上交流发言,展现了区调改革在技术方法上的创新及取得的一批新进展、新发现,收效良好。
本专辑是本次会议成果的一次体现。本专辑共收录15篇论文,内容涉及短周期密集台阵方法在专题填图中的运用、遥感技术的使用等,以及地层、岩浆岩(侵入岩和火山岩)、变质岩、蛇绿混杂岩、构造、古生物、矿床等基础学科填图成果;还有论文,包括岩溶地区填图方法和地貌演变、造山带构造变形、侵入岩、蛇绿混杂岩、年轻变质事件及热泉的填图成果介绍,将在下一辑发表。这些论文集中展示了填图的成果。
(1)地球物理方法在填图中的运用。新填图方法和理念的运用是现代填图的重要内容,卢占武等介绍了利用短周期密集台阵进行近地表结构调查的应用实例,提出了该技术在专题地质填图中的应用前景,丰富和完善了专题填图的技术方法体系。李娜等介绍了高光谱遥感技术在中国西部基岩区填图中的应用,高光谱遥感数据对不同岩性段和岩相带、细小构造等区分能力突出,提高了地质调查填图的效率和质量。
(2)蛇绿混杂岩填图。蛇绿混杂岩的填图历经数十年的探索,也是造山带研究的基础数据来源,王国强等系统介绍了近十余年来北山造山带关键地段1:5万区域地质调查和综合研究成果,突出了造山带蛇绿混杂岩带填图方法在北山地区的实践和应用。付长垒等在大比例尺填图的基础上,在拉脊山识别出连续的洋岛海山火山-沉积组合序列,为造山带古洋盆构造演化研究提供了新思路。
(3)侵入岩区填图。侵入岩是造山带的重要组成部分,对它们的刻画和研究一直是造山带研究的基础性工作。苑新晨等对滇西澜沧江地区南段复式岩基进行研究,确定其是古特提斯封闭及保山-思茅地块碰撞的响应。卢鹏等在前期开展同位素填图的基础上,在东准噶尔乌伦古河地区识别出一套晚古生代富碱细晶花岗质岩墙,这期岩墙在整个中亚造山带中普遍发育,具有重要的构造环境指示意义。车亚文等在1:5万填图的基础上,对大兴安岭南段林西地区辉长闪长岩开展系统工作,确定其与蒙古-鄂霍茨克洋闭合引起的碰撞后伸展背景有关。王帅等报道了1:5万填图发现的迪彦庙SSZ型蛇绿岩北部晚石炭世马尼塔埃达克岩,确定其为洋内俯冲岩石组合的重要组成部分,表明古亚洲洋东段在晚石炭世处于洋内俯冲消减过程中。
(4)沉积岩区填图。沉积岩区填图是建立地层系统与格架、恢复区域和生命演化的重要手段。向忠金等通过对中越边界富宁—那坡地区的1:5万填图,查明早—中三叠世火山岩及其相关沉积序列,确定了扬子南缘地区印支期岛弧火山-沉积环境。石秋圆等报道了新建立的中—上三叠统卡尼阶岩石地层单位——嘎热扎地组,该工作填补了措勤中—上三叠统卡尼阶岩石地层单位的空白。安显银等报道了在西藏察雅地区侏罗纪红层中发现的恐龙化石,丰富了侏罗系恐龙的地理分布,有助于了解亚洲地区蜥脚类和兽脚类恐龙的早期演化和分异。
(5)变质岩区填图。变质岩填图是填图的难点,也是获得突破和新发现的主要基础。李猛等对东昆仑西段金水口岩群白沙河岩组的碎屑锆石进行研究,指出东昆仑早古生代可能存在一条近千千米的高压变质岩带。张连祥等通过莱阳地区1:5万变质基底填图,限定了胶北荆山群禄格庄组的原岩为古元古代,推测粉子山群小宋组与祝家夼组沉积时可能靠近被动大陆边缘的一侧,而禄格庄组更靠近岩浆岛弧的一侧,二者可能属于同时异相沉积的产物。
(6)复杂构造区填图。构造地质是中国填图中最薄弱的环节,复杂现象和关系的识别及构造过程的建立得益于详细地地质填图。张北航等在1:5万填图的基础上,厘定出狼山地区自晚侏罗世以来发育6期陆内变形,并认为先存构造和欧亚板块边缘自晚侏罗世以来不同方向的增生是控制狼山地区陆内变形的主要因素。柯昌辉等通过对白云鄂博矿田内褶皱及断层构造特征的剖析,确定了中元古代—晚古生代4期构造活动,对矿区深部及外围找矿工作具有重要的指导意义。
本专辑的文章是填图试点的部分成果及方法探索,希望能够为今后进一步开展中大比例尺(1:5万和1:2.5万)区域地质填图和专题填图起到推广和借鉴作用,成功的经验和失败的教训都是未来继续工作不可多得的财富。希望专辑中介绍的新方法、新理念能够逐步为广大一线工作认可,并运用到新时期地质调查工作中。
张 进 王 涛
中国地质科学院地质研究所
2020年12月20日
致谢: 江西省地质矿产勘查开发局九一六大队项新葵教授级高工、刘永红高级工程师对石门寺矿区的野外工作给予了多方面的帮助,吉林大学孙景贵教授提出了宝贵意见,天津地质调查中心实验室韩伟老师对样品的测试给予了大力支持,审稿专家对文章结构和内容提出了诸多重要建议,在此一并表示感谢。 -
图 1 江西北部大湖塘钨矿区地质简图[6]
Figure 1. Geological map of the Dahutang tungsten deposit in northern Jiangxi Province
图 2 石门寺钨矿床地质简图[7]
Figure 2. Geological map of the Shimensi tungsten deposit
图 13 石门寺花岗斑岩Rb/Sr-Rb/Ba关系图解[33]
Figure 13. Diagram of relationship between Rb/Ba and Rb/Sr of the Shimensi granite porphyry
图 15 石门寺钨矿花岗岩类形成时的构造环境判别图[37]
syn-COLG—同碰撞花岗岩; VAG—火山弧花岗岩; ORG—洋脊花岗岩; WPG—板内花岗岩
Figure 15. Discriminant diagram of the tectonic setting during the formation of granitoids in the Shimensi tungsten deposit
表 1 石门寺花岗斑岩LA-ICP-MS锆石U-Th-Pb同位素数据
Table 1 LA-ICP-MS zircon U-Th-Pb dating results for the Shimensi granite prophyry
样品号 含量/10-6 同位素比值 年龄/Ma Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 12 446 0.0242 0.0001 0.1647 0.0020 0.0494 0.0007 0.0072 0.0010 0.6112 0.0009 154 1 155 2 166 31 2 190 8640 0.0237 0.0001 0.1627 0.0024 0.0499 0.0008 0.0271 0.0006 0.0196 0.0004 151 1 153 2 188 36 3 55 2227 0.0246 0.0001 0.1692 0.0019 0.0498 0.0006 0.0204 0.0007 0.1336 0.0007 157 1 159 2 187 29 4 184 8130 0.0242 0.0001 0.1623 0.0038 0.0487 0.0012 0.0225 0.0002 0.0360 0.0003 154 1 153 4 135 55 5 24 983 0.0248 0.0001 0.1683 0.0024 0.0493 0.0007 0.0072 0.0020 0.2853 0.0015 158 1 158 2 163 32 6 409 18255 0.0241 0.0001 0.1626 0.0023 0.0489 0.0007 0.0437 0.0016 0.0137 0.0003 154 1 153 2 142 35 7 206 9043 0.0242 0.0001 0.1675 0.0027 0.0502 0.0008 0.0405 0.0004 0.0213 0.0001 154 1 157 2 202 38 8 130 4641 0.0240 0.0001 0.1622 0.0021 0.0489 0.0007 0.0086 0.0024 0.8061 0.0016 153 1 153 2 144 32 9 185 8102 0.0240 0.0001 0.1661 0.0022 0.0502 0.0007 0.0403 0.0006 0.0281 0.0008 153 1 156 2 203 33 10 111 5013 0.0238 0.0001 0.1611 0.0029 0.0491 0.0009 0.0083 0.0020 0.0682 0.0003 152 1 152 3 151 43 11 54 2193 0.0244 0.0001 0.1661 0.0027 0.0494 0.0009 0.0251 0.0010 0.1180 0.0011 155 1 156 3 168 40 12 116 5247 0.0238 0.0002 0.1639 0.0030 0.0500 0.0008 0.0167 0.0010 0.0342 0.0002 151 1 154 3 197 36 13 85 3392 0.0245 0.0001 0.1670 0.0027 0.0494 0.0008 0.0536 0.0013 0.0569 0.0003 156 1 157 2 167 35 14 44 1834 0.0244 0.0001 0.1647 0.0019 0.0489 0.0006 0.0254 0.0004 0.0941 0.0009 155 1 155 2 144 29 15 124 5614 0.0240 0.0001 0.1654 0.0046 0.0499 0.0014 0.0092 0.0003 0.0416 0.0001 153 1 155 4 192 66 16 15 605 0.0245 0.0001 0.1670 0.0025 0.0495 0.0007 0.0078 0.0004 0.4135 0.0034 156 1 157 2 171 34 17 80 3458 0.0244 0.0001 0.1665 0.0024 0.0495 0.0008 0.0106 0.0016 0.1120 0.0007 155 1 156 2 170 36 18 20 802 0.0245 0.0002 0.1709 0.0036 0.0505 0.0009 0.0145 0.0007 0.1976 0.0005 156 1 160 3 219 43 19 54 2266 0.0243 0.0001 0.1650 0.0023 0.0492 0.0007 0.0142 0.0020 0.1413 0.0010 155 1 155 2 158 35 20 73 3131 0.0244 0.0001 0.1651 0.0029 0.0491 0.0009 0.0146 0.0004 0.0806 0.0009 155 1 155 3 152 42 表 2 石门寺花岗斑岩主量、微量和稀土元素分析结果
Table 2 Major, trace elements and REE compositions of Shimensi granite porphyry
样号 DHB-87 DHB-89 DHC-176 DHC-331 DHY-1 SiO2 76.53 76.27 73.86 73.90 71.90 TiO2 0.13 0.16 0.12 0.12 0.23 Al2O3 12.76 13.27 14.42 14.74 14.76 Fe2O3 0.40 0.25 0.17 0.40 0.49 FeO 0.80 0.73 0.87 0.65 1.00 MnO 0.05 0.03 0.05 0.05 0.05 MgO 0.27 0.31 0.27 0.26 0.59 CaO 0.79 1.06 0.82 0.38 0.97 Na2O 1.97 3.36 3.08 2.45 2.62 K2O 4.38 2.58 4.57 5.42 5.08 P2O5 0.13 0.10 0.18 0.17 0.12 烧失量 1.21 1.28 1.00 0.92 1.64 总计 98.21 98.12 98.41 98.54 97.81 K2O+NaO 6.35 5.94 7.65 7.87 7.70 Na2O/K2O 0.45 1.30 0.67 0.45 0.52 σ 1.20 1.06 1.90 2.00 2.05 A/CNK 1.36 1.30 1.25 1.39 1.28 A/NK 1.60 1.60 1.44 1.49 1.51 锆饱和温度/℃ 726.03 742.77 708.25 718.9 759.72 Cs 138.00 85.20 125.00 100.00 158.00 Rb 497.00 418.00 548.00 574.00 426.00 Ba 98.70 72.40 50.70 64.70 229.00 Th 10.40 11.40 8.07 7.94 12.60 U 10.70 11.00 13.60 6.37 6.09 Nb 13.30 14.60 15.60 12.80 9.05 Ta 2.14 2.81 3.22 2.21 1.58 K 36360 21417 37937 44994 42171 Sr 45.60 52.50 37.60 47.30 71.80 P 567.35 436.42 785.56 741.92 523.70 Zr 59.20 77.70 53.90 55.80 104.00 Hf 2.28 2.88 2.20 2.26 3.35 Ti 779.15 958.95 719.21 719.21 1378.4 La 14.60 15.70 11.70 11.00 15.70 Ce 28.90 32.60 24.40 22.90 30.80 Pr 3.20 3.64 2.73 2.50 3.27 Nd 11.70 14.00 9.86 8.48 12.90 Sm 2.12 2.58 1.96 1.58 2.49 Eu 0.27 0.33 0.16 0.14 0.52 Gd 1.80 2.06 1.65 1.30 2.38 Tb 0.22 0.22 0.22 0.17 0.35 Dy 0.94 1.05 1.21 0.69 1.75 Ho 0.15 0.18 0.20 0.11 0.32 Er 0.37 0.43 0.46 0.25 0.88 Tm 0.05 0.06 0.06 0.03 0.12 Yb 0.33 0.36 0.39 0.20 0.77 Lu 0.05 0.05 0.05 0.03 0.11 Y 3.79 4.51 5.12 2.38 8.42 ∑REE 64.70 73.26 55.06 49.38 72.36 ∑LREE/∑HREE 15.56 15.62 11.96 16.76 9.83 (La/Yb)N 31.74 31.28 21.52 39.45 14.63 δEu 0.42 0.44 0.27 0.30 0.65 (Gd/Yb)N 4.51 4.73 3.50 5.38 2.56 注:A/CNK=Al2O3/(CaO+Na2O+K2O); A/NK= Al2O3/(Na2O+K2O);主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 石门寺花岗斑岩Lu-Hf同位素组成
Table 3 Zircon Lu-Hf isotopic compositions of the Shimensi granite porphyry
测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma TDM2/Ma fLu/Hf 1 154 0.065863 0.001465 0.282471 0.000022 0.282467 -10.6 -7.4 1117 1675 -0.96 2 151 0.032894 0.000754 0.282533 0.000016 0.282531 -8.5 -5.2 1011 1534 -0.98 3 157 0.050259 0.001407 0.282159 0.000019 0.282155 -21.7 -18.4 1557 2370 -0.96 4 154 0.044646 0.001226 0.282502 0.000019 0.282498 -9.6 -6.3 1068 1606 -0.96 5 158 0.054137 0.001346 0.282516 0.000014 0.282512 -9.0 -5.7 1050 1571 -0.96 6 154 0.079034 0.001541 0.282501 0.000017 0.282496 -9.6 -6.4 1078 1610 -0.95 7 154 0.029697 0.000684 0.282500 0.000020 0.282498 -9.6 -6.3 1055 1606 -0.98 8 153 0.008623 0.000258 0.282009 0.000022 0.282009 -27.0 -23.6 1715 2698 -0.99 9 153 0.049818 0.001250 0.282491 0.000017 0.282488 -9.9 -6.7 1083 1629 -0.96 10 152 0.084368 0.001862 0.282562 0.000018 0.282556 -7.4 -4.3 1000 1476 -0.94 11 155 0.058163 0.001300 0.282497 0.000016 0.282493 -9.7 -6.4 1076 1615 -0.96 12 151 0.056192 0.001565 0.282601 0.000017 0.282596 -6.1 -2.9 936 1386 -0.95 13 156 0.068215 0.002050 0.282565 0.000021 0.282559 -7.3 -4.1 1001 1468 -0.94 14 155 0.026493 0.000716 0.282495 0.000016 0.282493 -9.8 -6.5 1063 1616 -0.98 15 153 0.035462 0.001068 0.282519 0.000014 0.282515 -9.0 -5.7 1039 1567 -0.97 16 156 0.030660 0.000905 0.282516 0.000017 0.282514 -9.0 -5.7 1038 1569 -0.97 17 155 0.008637 0.000257 0.282049 0.000021 0.282048 -25.6 -22.2 1661 2609 -0.99 18 156 0.028899 0.000846 0.282398 0.000016 0.282395 -13.2 -9.9 1202 1835 -0.97 19 155 0.043227 0.001495 0.282356 0.000067 0.282352 -14.7 -11.5 1281 1932 -0.95 20 155 0.008651 0.000259 0.282029 0.000022 0.282028 -26.3 -22.9 1688 2654 -0.99 表 4 华南地区部分矿床和岩体同位素年龄
Table 4 Age compilation of some igneous plutons and related ore deposits in South China
区域 矿床 方法 年龄/Ma 参考文献 相关岩体 方法 年龄/Ma 参考文献 北武夷 冷水坑 40Ar/39Ar 162.8±1.6 [38] 花岗斑岩 锆石U-Pb 162.0±2 [38] 闽西南 永定口 辉钼矿Re-Os 165.3±3.5 [40] 北武夷 金溪熊家山 辉钼矿Re-Os 152 [41] 粤东 厚婆坳锡 Rb-Sr
40Ar-39Ar149.99±7.04
145.8±1.43[42] 浙江 治岭头 135~145 [43-46] 武夷山 行洛坑 辉钼矿Re-Os 156.3±4.8 [47] Rb-Sr 147.5±2.9 铜陵 高钾钙碱性花岗岩 锆石U-Pb 151~142 [48-50] 湘南 黄沙坪 辉钼矿Re-Os 154.8±1.9 [51] 黄沙坪花岗斑岩 锆石U-Pb 161.6±1.1 [51] 湘南 锡田 辉钼矿Re-Os 150±2.7 [52] 锡田细粒含斑黑云母花岗岩 全岩Rb-Sr 151.0±24 [52] 湘南 大坳 辉钼矿Re-Os 151.4±2.4 [53] 金鸡岭花岗岩 锆石U-Pb 156.0±2 [53] 湘东南 邓阜仙 辉钼矿Re-Os 150.5±5.2 [54] 邓阜仙二云母花岗岩 锆石U-Pb 154.4±2.2 [54] 赣南 摇篮寨 辉钼矿Re-Os 155.8±2.8 [55] 摇篮寨花岗岩体 锆石U-Pb 156.1±1.7 [55] 赣南 木梓园 辉钼矿Re-Os 151.1±8.5 [56] 木梓园花岗岩体 锆石U-Pb 153.3±1.9 [56] 赣南 漂塘 白云母Ar-Ar 152±1.9 [56] 漂塘黑云母花岗岩 锆石U-Pb 161.8±1.0 [56] 赣南 浒坑 辉钼矿Re-Os 150.2±2.2 [57] 浒坑白云母花岗岩 锆石U-Pb 151.6±2.6 [58] 赣南 西华山 白云母K-Ar 149±4.9 [59] 黑云母花岗岩 150.6±6.7 [59] 赣南 淘锡坑 辉钼矿Re-Os 154 [60] 赣南 洪水寨 辉钼矿Re-Os 156.3±1.3 [61] 九龙脑岩体 锆石U-Pb 155.8±1.2 [61] 赣北 大湖塘 辉钼矿Re-Os 143.7±1.2 [5] 似斑状白云母花岗岩 锆石U-Pb 144.2±1.3 [6] 辉钼矿Re-Os 140.9±3.6 石门寺 辉钼矿Re-Os 150.4±1.4Ma [62] 花岗斑岩 锆石U-Pb 154.36±0.83 本文 -
杨明桂, 王昆.江西省地质构造格架及地壳演化[J].江西地质, 1994, 8(4):239-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400273868 张家菁, 梅玉萍, 王登红, 等.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报, 2008, 82(7):927-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200807010 满发胜, 王小松.阳储岭斑岩型钨钼矿床同位素地质年代学研究[J].矿产与地质, 1998, 2(1):61-67. http://www.cnki.com.cn/Article/CJFDTotal-KCYD198804010.htm 陈柏林, 董法先, 王平, 等.江西大背坞金矿床成因探讨[J].江西地质, 1997, 11(3):7-15. http://www.cnki.com.cn/Article/CJFDTotal-JXDZ703.001.htm 丰成友, 张德全, 项新葵, 等.赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意见[J].岩石学报, 2012, 28(12):3858-3868. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212006.htm 黄兰椿, 蒋少涌.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J].岩石学报, 2012, 28(12):3887-3900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212008 张志辉.江西武宁县大湖塘钨多金属矿田成矿作用研究[D].中国地质大学(北京)博士学位论文, 2014. 项新葵, 陈茂松, 詹国年, 等.赣北石门寺矿区钨多金属矿床成矿地质条件[J].地质找矿论丛, 2012, 27(2):143-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201202002 Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55:1535-1546. doi: 10.1007/s11434-010-3052-4
Ludwig K R.Isoplot/Ex version 3.00.A Geochronological Toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication, 2003, 4:1-70.
耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10):1508-1513. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20111004&flag=1 Morel M L A, Nebel O, Nebel J Y J, et al.Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS[J].Chemical Geology, 2008, 255(1/2):231-235. doi: 10.1016/j.chemgeo.2008.06.040
Liu Y S, Zong K Q, Kelemen P B, et al.Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J].Chemical Geology, 2008, 247:133-153 doi: 10.1016/j.chemgeo.2007.10.016
Middlemost E A K.Naming materials in the magma/igneous rock system[J].Annual Review of Earth & Planetary Sciences, 1994, 37(3/4):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
Peccerillo A, Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J].Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. http://cn.bing.com/academic/profile?id=02a36bc6883c31fed8d1d54e545ebf76&encoded=0&v=paper_preview&mkt=zh-cn
McDonough W F, Sun S S.The composition of the Earth[J].Chemical Geology, 1995, 120(3/4):223-253. doi: 10.1016/0009-2541(94)00140-4
Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Amelin Y, Lee D C, Halliday A N.Early-middle Archaean crustal evolution deduced from Lu-Hf isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta, 2000, 64:4205-4225. doi: 10.1016/S0016-7037(00)00493-2
Vervoort J D, Pachelt P J, Gehrels G E, et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes[J].Nature, 1996, 379:624-627. doi: 10.1038/379624a0
吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 陈骏, 王汝成, 朱金初, 等.南岭多时代花岗岩的钨锡成矿作用[J].中国科学:地球科学, 2014, 44:111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201401012 赵葵东, 蒋少涌, 朱金初, 等.桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义[J].科学通报, 2009, 54:3716-3725. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200923021 朱金初, 陈骏, 王汝成, 等.南岭中西段燕山早期北东向含锡钨A型花岗岩带[J].高校地质学报, 2008, 14:474-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200804002 Whalen J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202
梁鹤.华南白垩纪岩背斑岩锡矿成矿斑岩的成因及其成矿意义[D].中国科学院大学硕士学位论文, 2017. Watson E B, Harrison T M.Zircon saturation revisited:temperature and composition effects in variety of crustal magma types[J].Earth & Planetary Science Letters, 1983, 64(2):295-304. http://cn.bing.com/academic/profile?id=0576ab41b1e04d4e6717cb8dcb33ce54&encoded=0&v=paper_preview&mkt=zh-cn
Chappell B W, White A J R.Two contrasting granite types[J].Pac.Geol., 1974, 8:173-174. https://www.researchgate.net/publication/245539396_Two_contrasting_granite_type
Li X H, Li W X, Li Z X.On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China[J].Chinese Science Bulletin, 2007, 52(14):1873-1885. doi: 10.1007/s11434-007-0259-0
Chappell B W.Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46:535-551. doi: 10.1016/S0024-4937(98)00086-3
Mao Z H, Liu J J, Mao J W, et al.Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China:Implications for petrogenesis, geodynamic setting, and mineralization[J].Gondwana Research, 2015, 28(2):816-836. doi: 10.1016/j.gr.2014.07.005
Sylvester P J.Post-collisional strongly peralumious granites[J].Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3
张宏飞, 高山.地球化学[M].北京:地质出版社, 2012. 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7):1035-1053. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120703&flag=1 董树文, 张岳桥, 陈宣华, 等.晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J].地球学报, 2008, 29(3):306-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200803005 Pearce J A, Harris N B W, Tindle A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
左力艳, 侯增谦, 孟祥金, 等.冷水坑斑岩型银铅锌矿床含矿岩体锆石SHRIMP U-Pb年代学研究[J].中国地质, 2010, 37(5):1450-1456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201005021 丁昕, 蒋少涌, 倪培, 等.江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学[J].高校地质学报, 2005, 11(3):383-389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503009 罗锦昌, 陈郑辉, 屈文俊.福建省永定山口钼矿辉钼矿铼-锇同位素定年及其地质特征[J].岩矿测试, 2009, 28(3):254-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200903012 孟祥金, 侯增谦, 董光裕, 等.江西金溪熊家山钼矿床特征及其Re-Os年龄[J].地质学报, 2007, 81(7):946-950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200707010 徐晓春, 岳书仓, 潘成荣.中国东南沿海金属矿床时空分布的控制因素[J].安徽地质, 1999, 9(1):42-44. http://www.cnki.com.cn/Article/CJFDTotal-AHDZ199901006.htm 李长江, 徐步台, 胡永和, 等.浙东南金银铅锌区域成矿作用的若干问题探讨[J].地质与勘探, 1990, 26(6):1-8. http://www.cnki.com.cn/Article/CJFD1990-DZKT199006000.htm 陈好寿, 徐步台.浙江主要金银矿床的成矿时代[J].科学通报, 1996, 41(12):1107-1110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199612014 陈好寿, 徐步台.浙江主要金、银矿同位素示踪与找矿评价研究[J].地质学报, 1997, 71(1):54-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700067622 梅建明.浙江遂昌治岭头金矿床的石英标型[J].现代地质, 2001, 15(2):222-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200102020 张家菁, 陈郑辉, 王登红, 等.福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义[J].大地构造与成矿学, 2008, 32(1):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200801012 王彦斌, 刘敦一, 曾普胜, 等.安徽铜陵地区幔源岩浆底侵作用的时代-朝山辉石闪长岩锆石SHRIMP定年[J].地球学报, 2004, 25(4):423-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200404006 Wu G G, Zhang D, Di Y J, et al.SHRIMP Zircon U-Pb Dating of the Intrusives in the Tongling Metallogenic Cluster and Its Dynamic Setting[J].Science in China(Series D), 2008, 51(7):911-928. doi: 10.1007/s11430-008-0067-7
张达, 吴淦国, 狄永军, 等.铜陵凤凰山岩体SHRIMP锆石U-Pb年龄与构造变形及其对岩体侵位动力学背景的制约[J].地球科学, 2006, (6):823-829. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200606010 姚军明, 华仁民, 屈文俊, 等.湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J].中国科学(D辑), 2007, 37(4):471-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200704005 刘国庆, 伍式崇, 杜安道, 等.湘东锡田钨锡矿区成岩成矿时代研究[J].大地构造与成矿学, 2008, 32(1):63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200801009 付建明, 李华芹, 屈文俊, 等.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究[J].中国地质, 2007, 34(4):651-656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200704014 蔡杨, 马东升, 陆建军, 等.湖南邓阜仙钨矿辉钼矿铼-锇同位素定年及硫同位素地球化学研究[J].岩石学报, 2012, 28(12):3798-3808. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212002 丰成友, 丰耀东, 徐建祥, 等.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据[J].中国地质, 2007, 24(4):542-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200704013 张文兰, 华仁民, 王汝成, 等.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定[J].地质学报, 2009, 83(5):659-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200905007 刘珺, 叶会寿, 谢桂青, 等.江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义[J].地质学报, 2008, 82(11):1572-1579. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200811013 刘珺, 毛景文, 叶会寿, 等.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征[J].岩石学报, 2008, 24(8):1813-1822. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808013 穆治国, 黄福生, 卢德揆.华南某些含钨花岗岩的K-Ar年龄[J].岩石矿物学杂志, 1988, 7(2):109-118. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198802001.htm 陈郑辉, 王登红, 屈文俊, 等.赣南崇义地区淘锡坑钨矿的地质特征与成矿时代[J].地质通报, 2006, 25(4):496-501. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20060483&flag=1 丰成友, 黄凡, 曾载淋, 等.赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J].吉林大学学报(地球科学版), 2011, 41(1):111-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201101014 项新葵, 王朋, 孙德明, 等.赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义[J].地质通报, 2013, 32(11):1824-1831. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20131115&flag=1 毛景文, 谢桂青, 郭春丽, 等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 2007, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002