Geochemical anomaly characteristics and mineral potential mapping in Milashan area of Tibet
-
摘要:
水系沉积物地球化学异常分析在勘查找矿方面一直发挥着重要作用。采用中位数+2倍绝对中位差和C-A分形法,对米拉山地区1:5万水系沉积物Cu元素及由R型因子分析确定的Cu+Au+Ag组合元素进行了异常分析,确定了阈值。结果显示C-A分形法能更好地识别异常下限,且C-A分形模型确定的Cu元素异常比Cu+Au+Ag组合元素能更有效地反映米拉山地区与铜矿相关的化学异常特征。进而对Cu元素进行了S-A多重分形滤波处理,筛选出背景场和异常场,为圈定异常区提供更精准的依据。借助S-A分形模型和中位数方法划分了甲类异常2处(驱龙、甲玛)、乙类异常3处(达布、拉抗俄、程巴)、丙类异常2处(普雄、甲布纳)。甲类异常区包含冈底斯最大的2个斑岩铜矿,异常强,具有四级浓度分带,异常面积最大,外围找矿潜力巨大。乙类异常区包含3个大中型铜矿,都具有四级浓度分带,具有很好的找矿潜力。丙类异常区目前尚未发现铜矿,但值得进一步开展地质工作,查明成矿潜力。
Abstract:The analysis of geochemical anomalies derived from stream sediment geochemical data is a fundamental task in mineral prospecting.In this study, median+2 median absolute deviations(median+2MAD)and concentration-area(C-A)were applied to analyze geochemical anomaly delineation of Cu and Cu+Au+Ag association from factor analysis of stream sediment geochemical data in Milashan area of Tibet.The results show that the C-A fractal method is a favorable means for identifying the anomaly.Cu anomaly provides more information than Cu+Au+Ag associated anomaly.Furthermore, the S-A analysis was used to decompose the Cu element and distinguish the background from anomaly components, which provides a more accurate basis for delineating the anomalous area.Six anomalous areas have been classified into classes A(Qulong and Jiama), B(Dabu, Lakange and Chengba)and C(Puxiong and Jiabuna).Class A anomalous areas containing two largest porphyry copper deposits in the Gangdise belt are characterized by great anomalous intensity and largest anomalous area, and have great potential for periphery prospecting.Class B prospective areas contain three large and medium-sized copper deposits.Particularly, the Chengba anomalous area has similar anomalous intensity to Qulong and Jiama anomalous areas and thus has good prospecting potential.Copper deposits have not been discovered in Class C anomalous areas, but it deserves exploration work for identifying the mineral potential.
-
Keywords:
- stream sediment data /
- anomaly /
- factor analysis /
- ore prospecting /
- Milashan area
-
-
表 1 米拉山水系沉积物数据特征统计
Table 1 Statistics of stream sediment geochemical data from Milashan area
参数 Au Ag Cu Pb Zn Ba Mo Sn Sb Bi W 采样点个数 15622 15622 15622 15622 15622 15622 15622 15622 15622 15622 15622 平均值 3.29 0.14 47.57 54.58 94.2 435.96 1.71 3.22 2.13 1.1 4.19 中位数 1.86 0.09 22.5 30 71.8 431 0.78 3.04 1.18 0.48 3.37 标准偏差 17 0.49 277 1391 972 94 14 3 27 10 9 方差 278 0.25 77133 193526 944468 8831 188 8 741 103 74 偏度 58 31 35 93 75 2 60 19 71 31 33 峰度 3887 1267 1779 9658 6109 10 4523 487 5439 1182 1584 最小值 0.01 0.01 2.10 4.90 10.40 3.00 0.10 0.44 0.04 0.04 0.23 最大值 1236 26 18600 153000 89200 1852 1206 103 2384 501 528 25%累计频率 1.24 0.07 18.30 25.90 61.00 398.00 0.59 2.39 0.90 0.35 2.61 50%累积频率 1.86 0.09 22.50 30.00 71.80 431.00 0.78 3.04 1.18 0.48 3.37 75%累积频率 2.82 0.13 28.10 34.40 83.40 467.00 1.10 3.71 1.52 0.61 4.10 95%累积频率 7.4 0.25 62.1 53.79 119 577 3.16 4.77 3.75 1.18 7.84 98%累积频率 16.2 0.45 266.54 88.35 184.54 658 9.08 5.32 7.01 2.69 15.5 注:元素含量Au的单位为10-9,其他元素均为10-6 表 2 米拉山地区正交旋转因子(F1-F3)载荷矩阵
Table 2 Orthometric rotating factor(F1-F3)loading matrix in Milashan area
因子 F1 F2 F3 Au 0.007 0.856 -0.035 Ag 0.259 0.739 0.403 Cu 0.480 0.686 0.186 Pb 0.960 0.041 0.001 Zn 0.975 0.079 0.020 Ba -0.078 0.052 -0.39 Mo 0.929 0.230 0.033 Sn -0.017 0.203 0.807 Sb 0.957 0.192 0.015 Bi -0.02 0.204 0.839 W 0.794 0.121 0.174 累计方差贡献率/% 46 66 75 表 3 Cu元素及Cu+Au+Ag组合元素异常下限值确定
Table 3 Anomaly threshold values calculated for Cu and Cu+Au+Ag
元素 异常下
限方法异常
下限总矿
床数覆盖
矿床
个数异常面积
出现矿床
概率(n)/%异常面积
占比(s)
/%n/s Cu C-A分形法 70 16 7 43.8 5.2 8.4 中位数方法 32 16 10 62.5 15.4 4.1 Cu+Au+Ag C-A分形法 72 16 8 50.0 7.8 6.4 中位数方法 59 16 9 56.3 13.7 4.1 -
Xie X J, Wang X Q, Zhang Q, et al.Multi-scale geochemical mapping in China[J].Geochemistry:Exploration, Environment, Analysis, 2008, 8(3/4):333-341. https://www.researchgate.net/publication/249545254_Multi-scale_geochemical_mapping_in_China?ev=auth_pub
王瑞廷, 毛景文, 任小华, 等.区域地球化学异常评价的现状及其存在的问题[J].中国地质, 2005, (1):168-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200501023 曾曼平, 毛晓冬.西藏米拉山地区铜钼矿化特征及找矿前景浅析[J].矿物学报, 2015, 35(S1):180-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9132890 武进.基于模糊证据权的找矿远景区预测方法研究与应用[D].成都理工大学硕士学位论文, 2016. Zuo R G.Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet(China)[J].Journal of Geochemical Exploration, 2011, 111(1/2):1-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=694199cf37b52ab4a41e9c49b4e6e091
Sun X, Zheng Y Y, Wangle C M, et al.Identifying geochemical anomalies associated with Sb-Au-Pb-Zn-Ag mineralization in North Himalaya, southern Tibet[J].Ore Geology Reviews, 2016, 73:1-12. doi: 10.1016/j.oregeorev.2015.10.020
潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, (3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 孙祥, 郑有业, 吴松, 等.冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因[J].岩石学报, 2013, 29(4):1392-1406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304023 曾忠诚, 刘德民, 王明志, 等.西藏冈底斯东段驱龙—甲马地区构造-岩浆演化与成矿[J].地质论评, 2016, 62(3):663-678. http://qikan.cqvip.com/Qikan/Article/Detail?id=668885716 李世杰, 魏启荣, 次琼, 等.西藏达布矿区含矿岩体的时代、岩石地球化学特征及岩石成因[J].地球科学, 2018, 43(9):3218-3233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201809021 周洪伟.正态性检验的几种常用的方法[J].南京晓庄学院学报, 2012, (3):13-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njxzxyxb201203004 朱裕生.矿产资源评价方法学导论[M].北京:地质出版社, 1984. 刘平.浅谈主成分分析与因子分析的异同[J].辽宁师专学报(自然科学版), 2004, (3):4-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnszxb200403003 林海明, 张文霖.主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究, 2005, (3):65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15282088 林鑫, 周军, 张兵.基于主成分分析的化探异常圈定新方法——以新疆西准噶尔地区1:50000岩屑数据为例[J].地质找矿论丛, 2012, 27(4):516-521. http://www.cqvip.com/QK/90755X/201204/44316632.html 叶红刚, 叶红锋.SPSS软件数理统计应用及异常下限确定不同方法对比研究——以鹰咀山岩屑测量为例[J].甘肃地质, 2018, 27(2):83-92. http://www.cqvip.com/QK/96503X/20182/675653403.html 丛源, 陈建平, 肖克炎, 等."三江"地区北段区域地球化学元素组合异常提取及其找矿意义[J].地质通报, 2012, 31(7):1164-1169. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120716&flag=1 李雪菲.吉林省和龙地区化探数据处理方法对比研究[D].吉林大学硕士学位论文, 2012. 宗序平, 姚玉兰.利用Q-Q图与P-P图快速检验数据的统计分布[J].统计与决策, 2010, (20):151-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjyjc201020047 Reimann C, Filzmoser P, Garrett R G.Background and threshold:critical comparison of methods of determination[J].Sci.Total Environ., 2005, 346(1/3):1-16. https://www.sciencedirect.com/science/article/pii/S0048969704007983
Cheng Q M, Agterberg F, Ballantyne S.The separation of geochemical anomalies from background by fractal methods[J].Journal of Geochemical Exploration, 1994, 51(2):109-130. doi: 10.1016/0375-6742(94)90013-2
成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学, 2004, (6):733-743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200406013 成秋明, 张生元, 左仁广, 等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘, 2009, 16(2):185-198. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200902018.htm Chen X, Zheng Y Y, Xu R K, et al.Application of classical statistics and multifractals to delineate Au mineralization-related geochemical anomalies from stream sediment data:a case study in Xinghai-Zeku, Qinghai, China[J].Geochemistry:Exploration, Environment, Analysis, 2016, 16:153-264.
Zuo R G, Xia Q L, Zhang D J.A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013, 33(6):165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dda5f6bdfd9d458017d36a7dc0a56776
向运川, 牟绪赞, 任天祥, 等.全国矿产资源潜力评价化探资料应用研究[M].北京:地质出版社.2018. Li Y, Selby D, Feely M, et al.Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet[J].Miner Deposita, 2017, 52(2):137-158. doi: 10.1007/s00126-016-0654-z
Zheng W B, Tang J X, Zhong K H, et al.Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China[J].Ore Geology Reviews, 2016, 74:151-169. doi: 10.1016/j.oregeorev.2015.11.024
唐菊兴, 王勤, 杨欢欢, 等.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报, 2017, 38(5):571-613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002 刘鹏辉.西藏林周县程巴铜多金属矿床地质特征及成矿条件研究[J].河南科技, 2015, (15):80-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnkj201515032 雷波.西藏拉萨幅1:25万Cu、Pb、Zn地球化学异常特征及找矿远景圈定[J].矿物学报, 2013, 33(S2):780-781. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2013S2435.htm 德西央宗, 多吉, 张金树, 等.西藏米拉山整装勘查区专项填图与技术应用示范报告.西藏自治区地质调查院, 2017. 泽仁扎西, 刘德民, 杨明生.西藏驱龙地区矿产远景调查报告.西藏自治区地质调查院, 2012. 陆宗德, 张圣, 何勇军, 等.西藏自治区林周县程巴矿区铜多金属矿详查报告.重庆市地质矿产勘查开发局川东南地质大队, 2008.