• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

胶东谢家沟金矿热液蚀变作用过程的元素迁移规律

杜泽忠, 程志中, 姚晓峰, 于晓飞, 陈辉, 李少华, 鲍兴隆

杜泽忠, 程志中, 姚晓峰, 于晓飞, 陈辉, 李少华, 鲍兴隆. 2020: 胶东谢家沟金矿热液蚀变作用过程的元素迁移规律. 地质通报, 39(8): 1137-1152.
引用本文: 杜泽忠, 程志中, 姚晓峰, 于晓飞, 陈辉, 李少华, 鲍兴隆. 2020: 胶东谢家沟金矿热液蚀变作用过程的元素迁移规律. 地质通报, 39(8): 1137-1152.
DU Zezhong, CHENG Zhizhong, YAO Xiaofeng, YU Xiaofei, CHEN Hui, LI Shaohua, BAO Xinglong. 2020: Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province. Geological Bulletin of China, 39(8): 1137-1152.
Citation: DU Zezhong, CHENG Zhizhong, YAO Xiaofeng, YU Xiaofei, CHEN Hui, LI Shaohua, BAO Xinglong. 2020: Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province. Geological Bulletin of China, 39(8): 1137-1152.

胶东谢家沟金矿热液蚀变作用过程的元素迁移规律

基金项目: 

国家重点研发计划项目课题《深部矿产资源三维找矿预测评价示范》 2017YFC0601506

中国地质调查局项目《整装勘查区找矿预测与技术方法示范》 DD20160050

《整装勘查区矿产地质调查与找矿预测》 DD20190159

详细信息
    作者简介:

    杜泽忠(1986-), 男, 博士, 高级工程师, 从事矿床学和找矿预测研究。E-mail:27793009@qq.com

  • 中图分类号: P618.51

Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province

  • 摘要:

    谢家沟金矿床位于胶西北焦家断裂带和招平断裂带之间。通过详细的野外地质观测与室内研究,查明了谢家沟金矿床的蚀变类型及空间分带,系统采集不同蚀变类型的岩石样品,进行岩石元素地球化学分析,运用Isocon方法分析探讨了热液蚀变过程中的元素迁移规律及其对成矿流体性质、矿质沉淀的制约。蚀变从中心到两侧分别为含陡立石英脉的黄铁绢英岩化、黄铁绢英岩化、钾长石化;从早到晚依次为钾长石化、黄铁绢英岩化、含陡立石英脉的黄铁绢英岩化。钾长石化蚀变表现为钾长石和黑云母分别交代玲珑黑云母花岗岩中的斜长石和角闪石,K明显的迁入,Si轻微迁入,Ca、Mg为迁出,Fe轻微迁出。黄铁绢英岩化蚀变叠加于钾长石化蚀变之上,主要表现为斜长石、钾长石、黑云母等矿物在含H+、HS-溶液中失稳,被绢云母、石英替代,Fe、Mg、Ca为迁入,K、Na、Si表现为元素迁出。从钾长石化阶段到黄铁绢英岩化阶段,流体从碱性转变为酸性;Au迁移形式也逐渐由氯的络合物转化为硫氢络合物。随着成矿流体的不断演化,成矿流体与围岩不断反应,含矿热液化学性质不断变化促进了金的沉淀。

    Abstract:

    The Xiejiagou gold deposit is located between the Jiaojia fault zone and the Zhaoyuan-Pingdu fault zone in northwest Jiaodong.Based on detailed field geological observations and laboratory study, the authors identified the alteration types and spatial zoning of the Xiejiagou gold deposit.In this paper, the authors systematically collected rock samples of different alteration types, and carried out geochemical analysis of rock elements.The Isocon method was used to analyze the element migration law during hydrothermal alternation and its constraint on the properties of ore-forming fluids and mineral precipitation.The alterations of the gold deposit are beresitization of steep quartz veins as well as beresitization and K-feldspathization from the center to both sides; they are K-feldspathization, beresitization, and ferritic lithology with steeply dipping quartz veins from early to late period.The K-feldspathization shows that K-feldspars and biotite replaced the plagioclases and hornblende in the Linglong biotite granite, respectively, the potassium obviously migrated in, silicon slightly migrated in, calcium and magnesium migrated out, and iron migrated slightly out.The beresitization is superimposed on the K-feldspathization, which mainly demonstrates that plagioclase, K-feldspar and biotite were destabilized in the solution containing H+ and HS-, and were replaced by sericite and quartz.Iron, magnesium, and calcium moved in, potassium, sodium, and silicon moved out.From the K-feldspar stage to the beresitization stage, the fluid changed from alkaline to acidic, and the migration form of Au also gradually changed from a chloride complex to a sulfur-hydrogen complex.With the continuous evolution of the ore-forming fluid, the ore-forming fluid and the surrounding rock continuously reacted, and the chemical properties of the ore-bearing hydrothermal fluid continued to change to promote the precipitation of gold.

  • 致谢: 野外工作期间得到招金集团金亭岭矿业公司的大力帮助,成文期间得到中国地质调查局发展研究中心矿产勘查处同事和成都理工大学程文斌老师的帮助,审稿专家提出了宝贵的修改建议;在此致以诚挚的感谢。
  • 图  1   胶东区域地质简图[36]

    1—古近纪沉积物;2—白垩纪沉积物;3—新元古代蓬莱群大理岩、板岩和石英岩;4—古元古代粉子山和荆群片岩、片麻岩、大理岩和少量麻粒岩、角闪岩;5—新太古代胶东群角闪岩和麻粒岩;6—超高压变质岩;7—早白垩世晚期花岗岩;8—早白垩世中期花岗岩;9—晚侏罗世花岗岩;10—晚三叠世花岗岩;11—岩石圈断裂;12—区域断裂;13—地质界线;14—蚀变岩型金矿;15—石英脉型金矿;16—蚀变砾岩型金矿

    Figure  1.   Regional geological map of Jiaodong

    图  2   谢家沟金矿地质简图[4-5]

    1—玲珑黑云母花岗岩;2—中基性脉岩;3—硫铁矿带;4—断层及编号;5—蚀变带及编号;6—金矿体

    Figure  2.   Geological map of the Xiejiagou gold deposit

    图  3   谢家沟金矿床矿化蚀变分带

    1—陡立含石英脉叠加黄铁绢英岩化;2—黄铁绢英岩化;3—钾长石化;4—钾长石化呈近水平脉状穿插于玲珑黑云母花岗岩

    Figure  3.   Characteristics of alteration and mineralization zoning in the Xiejiagou gold deposit

    图版Ⅰ  

    a、b、c.由钾长石和乳白色石英组成的钾长石化;d.含少量晶形较好黄铁矿的钾长石化;e、f、g、h.由黄铁矿、绢云母和石英组成的黄铁绢英岩化;i、j、k、l.由烟灰色石英和黄铁矿组成陡立石英细脉;b、f为透射光单偏光下照片;c、g为透射光正交偏光下照片;d、h、k、l为反射光单偏光下照片。Kf—钾长石;Qz—石英;Ser—绢云母;Mt—磁铁矿;Py—黄铁矿;Au—金

    图版Ⅰ.  

    图  4   谢家沟金矿床蚀变岩惰性元素CiA-CiO图解

    a:CiO—玲珑黑云母花岗岩样品平均值,CiA—钾长石化样品平均值;b:CiO—钾长石化样品平均值,CiA—黄铁绢英岩化样品平均值;c:CiO—黄铁绢英岩化样品平均值,CiA—含陡立石英脉黄铁绢英岩化样品平均值

    Figure  4.   CiA-CiO diagrams for altered rocks from the Xiejiagou gold deposit

    图  5   谢家沟金矿蚀变岩Isocon图解

    (参照Grant[13-14]的方法,以Al2O3作为不活动组分分析元素的迁入或迁出)
    Cref—玲珑黑云母花岗岩样品平均值; Ci1—钾长石化样品平均值; Ci2—黄铁绢英岩化样品平均值; Ci3—含陡立石英脉黄铁绢英岩化样品平均值

    Figure  5.   Isocon diagrams for altered rocks from the Xiejiagou gold deposit

    图  6   玲珑黑云母花岗岩原岩及其蚀变产物稀土元素球粒陨石标准化分布曲线

    a—玲珑黑云母二长花岗岩;b—钾长石化;c—黄铁绢英岩化;d—含陡立石英脉的黄铁绢英岩化

    Figure  6.   Chondrite-normalized REE patterns of altered granitic porphyry compared with unaltered Linglong biotite granite

    表  1   谢家沟金矿各类蚀变岩主量、微量和稀土元素组成及特征值

    Table  1   Analytical results of whole-rock major, trace elements and REE of alterative rocks in the Xiejiagou gold deposit

    元素 玲珑黑云母花岗岩 钾长石化带样品 黄铁绢英岩化样品 含陡立石英脉黄铁绢英岩化样品
    XJG
    41
    XJG
    53-1
    XJG
    53-2
    XJG
    28
    XJG
    32-2
    XJG
    46
    XJG
    49
    XJG
    14
    XJG
    21
    XJG
    27-2
    XJG
    42
    XJG
    51
    XJG
    34-1
    XJG
    40
    XJG
    22
    XJG
    50
    XJG
    25
    XJG
    35-2
    XJG
    44
    SiO2 69.50 71.36 71.26 69.88 74.23 72.52 72.13 66.72 67.39 68.52 67.51 71.91 65.22 68.39 71.70 69.37 67.86 75.45 67.83
    Al2O3 14.42 14.79 14.45 15.17 14.22 14.39 13.41 13.27 16.18 15.46 15.79 13.21 12.23 13.93 13.09 13.72 15.21 11.89 16.33
    Fe2O3 2.27 2.34 2.05 2.59 0.84 1.92 1.68 3.34 2.95 2.96 2.58 2.65 12.93 2.85 3.64 4.27 3.70 3.93 2.95
    MgO 0.45 0.42 0.45 0.27 0.13 0.14 0.19 0.38 0.39 0.36 0.44 0.26 0.59 0.68 0.26 0.40 0.43 0.27 0.64
    CaO 2.21 2.42 2.52 1.20 1.20 1.31 2.11 3.53 2.31 2.27 2.73 2.18 1.20 3.31 1.82 1.74 1.78 0.53 1.69
    Na2O 3.74 3.98 4.16 4.16 3.85 4.37 3.52 3.16 3.90 4.34 3.07 3.04 0.83 3.63 3.03 3.10 3.68 4.14 2.83
    K2O 3.71 3.43 3.69 4.06 3.34 4.32 3.94 4.03 3.73 3.32 4.06 3.76 4.57 2.81 3.94 3.58 3.87 2.62 3.90
    MnO 0.05 0.07 0.07 0.04 0.02 0.03 0.03 0.07 0.06 0.05 0.07 0.05 0.05 0.10 0.05 0.04 0.06 0.02 0.06
    TiO2 0.23 0.18 0.21 0.15 0.04 0.02 0.03 0.10 0.21 0.19 0.19 0.16 0.13 0.21 0.15 0.18 0.21 0.10 0.24
    P2O5 0.07 0.08 0.10 0.07 0.01 0.02 0.01 0.08 0.06 0.05 0.06 0.05 0.04 0.06 0.06 0.05 0.08 0.02 0.08
    烧失量 3.35 0.91 0.91 2.31 2.07 0.89 2.84 3.71 2.74 2.42 3.43 2.69 2.17 3.93 2.21 3.40 3.05 0.99 3.39
    FeO 1.96 1.82 1.59 1.49 0.61 1.66 1.16 2.51 2.38 2.56 1.65 2.07 4.58 1.98 2.53 1.49 2.38 2.44 1.85
    Li 6.19 7.48 7.01 3.84 5.43 1.52 1.52 19.30 4.69 4.45 5.28 2.75 4.41 6.14 2.27 3.47 15.70 6.03 7.21
    Be 1.15 1.61 1.45 1.48 1.12 1.55 1.20 1.47 1.82 1.58 1.31 1.18 2.32 1.42 1.38 1.54 2.46 1.47 1.62
    Sc 2.59 3.55 3.00 7.64 1.30 2.05 1.80 4.21 4.53 2.68 3.25 2.29 2.72 4.46 2.96 3.11 13.90 2.38 4.30
    V 18.80 25.10 24.40 21.40 6.12 8.94 7.77 28.40 26.80 14.00 25.50 9.91 32.00 24.00 19.00 20.20 63.40 22.20 23.10
    Cr 56.10 48.80 5.81 5.80 2.46 107.00 1.77 158.00 111.00 153.00 69.00 101.00 98.20 9.05 131.00 3.36 89.40 161.00 7.96
    Co 2.87 2.90 2.26 2.41 0.53 2.02 15.90 4.97 5.48 3.27 1.92 6.64 8.20 2.13 7.00 88.30 4.16 3.98 1.28
    Ni 7.68 7.74 4.18 2.31 1.21 10.00 4.24 18.90 14.10 17.20 9.36 11.40 17.50 6.17 16.30 11.40 14.60 13.00 2.62
    Cu 6.59 5.06 4.19 4.15 1.55 4.56 3.56 39.90 7.85 26.10 5.39 7.47 17.60 15.10 7.36 5.08 21.10 7.39 4.44
    Zn 42.40 45.30 45.60 19.50 9.67 10.30 11.40 54.40 22.00 25.50 16.40 20.20 37.50 108.00 16.90 26.60 73.30 15.60 43.20
    Ga 18.20 18.10 17.70 21.70 16.20 15.70 18.10 17.30 20.40 20.10 21.00 18.40 25.60 17.40 16.60 20.30 18.80 15.60 26.00
    Rb 104 86 86 137 82 104 117 133 125 114 162 120 166 87 119 121 85 84 173
    Sr 1113 663 666 323 269 601 413 605 693 625 237 513 115 491 389 386 341 290 109
    Y 11.70 15.40 17.00 11.50 4.08 5.85 6.41 12.70 10.40 11.90 9.58 10.80 5.81 12.00 9.10 8.39 10.40 1.79 8.27
    Mo 5.23 4.85 0.25 0.48 0.24 11.60 0.29 16.30 12.50 18.20 6.22 10.80 10.90 1.13 13.90 16.80 8.97 14.20 0.34
    Cd 0.03 0.04 0.04 0.02 0.01 0.04 0.03 0.21 0.06 0.05 0.03 0.05 0.06 0.32 0.05 0.07 0.05 0.04 0.02
    In 0.02 0.02 0.02 0.06 0.01 0.02 0.03 0.04 0.03 0.03 0.08 0.03 0.11 0.03 0.03 0.03 0.05 0.03 0.09
    Sb 0.11 0.09 0.08 0.11 0.11 0.19 0.10 0.39 0.36 0.29 0.15 0.20 0.23 0.16 0.30 0.13 0.24 0.25 0.10
    Cs 1.12 0.55 0.49 1.06 0.64 0.73 0.82 1.56 1.21 1.16 0.93 0.76 1.71 0.92 0.55 0.95 2.28 1.03 0.89
    Ba 2741 1534 1569 1637 481 2551 2079 10391 1542 1403 1116 1623 882 1107 1346 1209 158 694 716
    La 28.00 16.60 20.60 21.60 5.16 1.00 3.53 16.10 22.20 23.20 16.50 29.60 10.90 24.20 15.50 23.20 9.35 7.18 16.70
    Ce 46.80 28.90 36.00 37.90 9.92 1.65 6.60 27.30 38.20 39.10 28.60 48.00 18.50 42.00 27.10 39.10 19.90 11.50 29.50
    Pr 5.00 3.30 4.08 4.16 1.21 0.21 0.83 3.07 4.24 4.24 3.14 4.92 2.04 4.75 2.92 4.13 2.63 1.20 3.25
    Nd 17.70 12.30 15.00 15.20 4.85 0.93 3.48 11.30 14.90 15.00 11.10 16.90 7.05 16.90 10.30 14.40 11.70 4.05 11.60
    Sm 2.69 2.21 2.57 2.72 1.05 0.30 0.86 1.96 2.41 2.49 1.84 2.46 1.12 2.78 1.58 2.23 2.68 0.59 1.91
    Eu 1.27 0.80 0.85 0.77 0.35 0.68 0.79 2.67 0.83 0.90 0.59 0.89 0.38 0.73 0.60 0.74 0.69 0.28 0.50
    Gd 2.52 2.03 2.36 2.51 0.83 0.36 0.73 1.98 2.11 2.25 1.70 2.34 0.98 2.44 1.57 1.99 2.19 0.53 1.70
    Tb 0.36 0.36 0.43 0.42 0.14 0.10 0.17 0.32 0.32 0.36 0.27 0.35 0.16 0.39 0.24 0.29 0.39 0.07 0.26
    Dy 1.83 2.19 2.46 2.16 0.74 0.75 0.84 1.84 1.71 2.46 1.54 1.79 0.86 2.00 1.36 1.46 2.03 0.31 1.47
    Ho 0.37 0.48 0.55 0.39 0.15 0.17 0.19 0.39 0.39 0.38 0.32 0.34 0.19 0.40 0.29 0.27 0.36 0.06 0.32
    Er 1.12 1.44 1.59 1.12 0.44 0.46 0.69 1.14 1.03 1.10 0.93 1.01 0.58 1.18 0.92 0.90 0.94 0.20 0.85
    Tm 0.21 0.29 0.32 0.21 0.09 0.10 0.14 0.22 0.20 0.21 0.18 0.19 0.11 0.21 0.18 0.16 0.15 0.04 0.16
    Yb 1.32 1.98 2.09 1.52 0.54 0.65 1.02 1.53 1.36 1.29 1.30 1.14 0.68 1.40 1.21 1.01 0.93 0.26 1.16
    Lu 0.19 0.29 0.30 0.19 0.08 0.09 0.17 0.23 0.19 0.19 0.19 0.16 0.10 0.21 0.19 0.16 0.12 0.04 0.17
    W 0.84 0.73 0.21 4.27 0.61 1.55 0.53 4.71 2.05 2.76 1.82 2.32 2.71 1.18 2.86 1.32 4.78 5.89 1.90
    Tl 0.59 0.53 0.52 0.85 0.52 0.63 0.63 0.88 0.66 0.63 0.79 0.64 1.01 0.50 0.62 0.62 0.61 0.73 0.81
    Pb 28.80 27.20 26.90 27.70 22.90 37.40 23.00 33.30 13.60 12.30 11.20 16.00 25.90 109.00 16.20 18.20 9.00 7.48 7.16
    Bi 0.03 0.05 0.07 0.64 0.07 0.04 0.47 0.93 0.16 0.03 0.07 0.18 1.67 0.11 0.98 2.69 0.30 0.37 0.07
    Th 4.41 3.48 4.35 5.98 2.21 0.29 1.37 3.91 4.29 4.77 3.74 5.14 2.41 4.75 3.40 4.90 0.84 1.76 4.59
    U 1.18 1.07 1.24 3.16 0.95 0.41 1.36 3.28 1.67 1.92 0.90 1.08 1.15 1.49 1.87 1.50 0.65 0.67 0.92
    Nb 9.37 10.60 11.20 27.50 3.17 5.89 3.57 11.60 10.10 14.50 12.20 6.71 7.99 10.70 9.47 9.17 9.22 3.35 11.70
    Ta 0.65 0.65 0.68 3.30 0.17 0.44 0.17 0.75 0.57 1.17 0.70 0.55 0.54 0.66 0.64 0.60 0.62 0.21 0.68
    Zr 27.80 14.00 18.40 28.60 18.70 8.02 60.40 14.60 11.70 40.90 8.73 10.20 9.86 12.70 9.23 14.80 9.38 9.13 15.70
    Hf 0.84 0.56 0.71 2.11 0.67 0.45 2.34 0.55 0.48 1.21 0.35 0.46 0.44 0.58 0.35 0.53 0.52 0.40 0.55
    ΣREE 109.37 73.17 89.19 90.87 25.53 7.46 20.04 70.04 90.09 93.16 68.22 110.09 43.65 99.58 63.96 90.04 54.06 26.31 69.55
    LREE 101.46 64.11 79.10 82.35 22.54 4.77 16.09 62.40 82.78 84.93 61.77 102.77 39.99 91.36 58.00 83.80 46.95 24.80 63.46
    HREE 7.91 9.07 10.09 8.52 2.99 2.68 3.95 7.64 7.31 8.23 6.44 7.31 3.65 8.23 5.96 6.24 7.12 1.51 6.09
    LREE/HREE 12.83 7.07 7.84 9.66 7.53 1.78 4.08 8.17 11.33 10.32 9.59 14.05 10.95 11.10 9.72 13.43 6.60 16.40 10.41
    (La/Yb)N 0.56 0.74 0.81 9.60 6.52 1.04 2.34 7.11 0.68 0.32 0.45 0.62 0.36 0.61 0.45 0.45 0.59 0.29 0.47
    δEu 2.15 1.77 0.51 8.20 2.02 4.32 1.33 8.48 4.86 6.71 3.70 5.83 4.88 3.33 7.04 3.42 13.02 15.30 3.86
    δCe 3.92 3.73 3.68 3.72 3.79 3.42 4.19 3.77 3.50 3.77 3.74 3.85 3.82 3.88 3.87 4.20 3.66 3.98 3.53
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  2   谢家沟金矿床蚀变岩Isocon分析数据

    Table  2   Isocon analyses of alteration rocks in the Xiejiagou gold deposit

    元素 Cref 钾长石化样品组 Ci1 黄铁绢英岩化组 Ci2 含陡立石英脉黄铁绢英岩化组
    Ci1 ΔCi Ci1/Cref scale Cref Ci1 Ci2 ΔCi Ci2/Ci1 scale Ci1 Ci2 Ci3 ΔCi Ci3/Ci2 scale Ci2 Ci3
    SiO2 70.70 72.31 -1.21 1.02 1.13 80.00 81.83 72.31 68.48 -1.10 0.95 1.13 81.83 77.49 68.48 70.81 0.38 1.03 1.13 77.49 80.13
    Al2O3 14.55 13.98 0.96 0.96 5.43 79.00 75.91 13.98 14.54 1.04 1.04 5.43 75.91 78.95 14.54 14.14 0.97 0.97 5.43 78.95 76.78
    Fe2O3 2.22 2.05 -0.25 0.92 9.46 21.00 19.41 2.05 4.46 2.59 2.17 9.46 19.41 42.18 4.46 3.72 -0.84 0.83 9.46 42.18 35.17
    MgO 0.44 0.20 -0.24 0.46 174.83 77.00 35.67 0.20 0.45 0.27 2.23 174.83 35.67 79.52 0.45 0.40 -0.06 0.89 174.83 79.52 70.45
    CaO 2.38 1.77 -0.68 0.74 31.90 76.00 56.58 1.77 2.35 0.67 1.33 31.90 56.58 75.06 2.35 1.52 -0.87 0.65 31.90 75.06 48.65
    Na2O 3.96 3.84 -0.27 0.97 18.95 75.00 72.77 3.84 3.16 -0.56 0.82 18.95 72.77 59.85 3.16 3.37 0.12 1.07 18.95 59.85 63.87
    K2O 3.61 4.21 0.43 1.17 20.49 74.00 86.25 4.21 3.72 -0.34 0.88 20.49 86.25 76.24 3.72 3.61 -0.21 0.97 20.49 76.24 73.91
    MnO 0.06 0.04 -0.03 0.58 1160.92 73.00 42.57 0.04 0.06 0.03 1.70 1160.92 42.57 72.52 0.06 0.04 -0.02 0.69 1160.92 72.52 50.33
    TiO2 0.20 0.06 -0.14 0.31 351.46 72.00 22.63 0.06 0.18 0.12 2.82 351.46 22.63 63.84 0.18 0.18 -0.01 0.97 351.46 63.84 61.68
    P2O5 0.08 0.03 -0.05 0.42 881.26 71.00 29.97 0.03 0.05 0.02 1.55 881.26 29.97 46.58 0.05 0.06 0.00 1.08 881.26 46.58 50.33
    FeO 1.79 1.49 -0.36 0.83 10.61 19.00 15.78 1.49 2.53 1.15 1.70 10.61 15.78 26.89 2.53 2.15 -0.45 0.85 10.61 26.89 22.76
    Cr 36.90 71.45 31.75 1.94 0.46 17.00 32.91 71.45 77.80 9.47 1.09 0.46 32.91 35.84 77.80 74.18 -5.67 0.95 0.46 35.84 34.17
    Co 2.68 4.97 2.09 1.85 1.87 5.00 9.27 4.97 16.56 12.26 3.34 1.87 9.27 30.94 16.56 39.40 21.75 2.38 1.87 30.94 73.59
    Ni 6.53 9.04 2.15 1.38 1.07 7.00 9.68 9.04 12.45 3.91 1.38 1.07 9.68 13.34 12.45 13.58 0.76 1.09 1.07 13.34 14.55
    Cu 5.28 9.26 3.62 1.75 1.70 9.00 15.79 9.26 12.08 3.30 1.30 1.70 15.79 20.60 12.08 8.89 -3.44 0.74 1.70 20.60 15.15
    Zn 44.43 19.27 -25.92 0.43 1.35 60.00 26.02 19.27 36.60 18.80 1.90 1.35 26.02 49.42 36.60 31.72 -5.75 0.87 1.35 49.42 42.83
    Rb 92.00 117 20.17 1.27 0.63 58.00 73.59 116.73 127.91 16.30 1.10 0.63 73.59 80.64 127.91 81.78 -48.39 0.64 0.63 80.64 51.56
    Sr 814.00 400 -430 0.49 0.07 57.00 27.98 399.57 437.14 55.05 1.09 0.07 27.98 30.61 437.14 193.72 -248.76 0.44 0.07 30.61 13.57
    Y 14.70 7.32 -14.70 0.50 3.81 56.00 27.88 7.32 9.84 2.91 1.34 3.81 27.88 37.49 9.84 5.11 -4.87 0.52 3.81 37.49 19.46
    Mo 3.44 7.66 3.92 2.22 3.19 11.00 24.46 7.66 10.94 3.71 1.43 3.19 24.46 34.92 10.94 7.22 -3.91 0.66 3.19 34.92 23.06
    Cs 0.72 0.83 0.08 1.16 70.67 51.00 58.94 0.83 1.09 0.30 1.31 70.67 58.94 77.03 1.09 0.98 -0.14 0.90 70.67 77.03 69.33
    Ba 1948 2687 634.47 1.38 0.03 50.00 68.98 2687.43 1268.86 -1368 0.47 0.03 68.98 32.57 1268.86 489.40 -792.93 0.39 0.03 32.57 12.56
    La 21.73 9.08 -13.01 0.42 2.25 49.00 20.46 9.08 21.40 13.18 2.36 2.25 20.46 48.25 21.40 8.22 -13.41 0.38 2.25 48.25 18.53
    Ce 37.23 15.94 -21.91 0.43 1.29 48.00 20.55 15.94 36.21 21.72 2.27 1.29 20.55 46.69 36.21 14.79 -21.83 0.41 1.29 46.69 19.06
    Pr 4.13 1.79 -2.41 0.43 11.39 47.00 20.40 1.79 3.92 214.17 2.19 11.39 20.40 44.68 3.92 1.70 -2.27 0.43 11.39 44.68 19.33
    Nd 15.00 6.66 -8.60 0.44 3.07 46.00 20.42 6.66 13.75 33.42 2.06 3.07 20.42 42.17 13.75 6.47 -7.46 0.47 3.07 42.17 19.83
    Sm 2.49 1.23 -1.31 0.49 17.67 44.00 21.78 1.23 2.19 1.05 1.78 17.67 21.78 38.70 2.19 1.20 -1.03 0.55 17.67 38.70 21.13
    Eu 0.97 0.87 -0.13 0.90 43.25 42.00 37.84 0.87 0.72 -0.12 0.83 43.25 37.84 31.27 0.72 0.37 -0.37 0.51 43.25 31.27 15.89
    Gd 2.30 1.16 -1.19 0.50 17.37 40.00 20.11 1.16 1.97 0.89 1.70 17.37 20.11 34.26 1.97 1.04 -0.96 0.53 17.37 34.26 18.01
    Tb 0.38 0.20 -0.19 0.53 99.65 38.00 20.29 0.20 0.31 0.11 1.50 99.65 20.29 30.46 0.31 0.17 -0.14 0.56 99.65 30.46 16.92
    Dy 2.16 1.13 -1.08 0.52 16.67 36.00 18.79 1.13 1.69 0.63 1.50 16.67 18.79 28.13 1.69 0.91 -0.80 0.54 16.67 28.13 15.13
    Ho 0.47 0.23 -0.24 0.50 73.07 34.00 16.99 0.23 0.33 0.11 1.40 73.07 16.99 23.79 0.33 0.18 -0.33 0.56 73.07 23.79 13.25
    Er 1.38 0.70 -0.71 0.51 23.13 32.00 16.28 0.70 0.96 0.30 1.37 23.13 16.28 22.24 0.96 0.49 -0.48 0.51 23.13 22.24 11.38
    Tm 0.27 0.14 -0.14 0.51 110.70 30.00 15.36 0.14 0.18 0.05 1.29 110.70 15.36 19.88 0.18 0.09 -0.09 0.49 110.70 19.88 9.83
    Yb 1.80 0.96 -0.87 0.53 15.58 28.00 14.95 0.96 1.17 0.26 1.22 15.58 14.95 18.22 1.17 0.58 -0.60 0.50 15.58 18.22 9.08
    Lu 0.26 0.14 -0.12 0.54 100.13 26.00 14.12 0.14 0.17 0.04 1.21 100.13 14.12 17.09 0.17 0.08 -0.09 0.48 100.13 17.09 8.25
    Pb 27.63 27.19 -1.51 0.98 0.65 18.00 17.71 27.19 29.46 3.45 1.08 0.65 17.71 19.19 29.46 63.17 31.97 2.14 0.65 19.19 41.15
    Th 4.08 2.49 -1.69 0.61 3.43 14.00 8.55 2.49 4.29 1.97 1.72 3.43 8.55 14.71 4.29 1.78 -2.55 0.42 3.43 14.71 6.12
    U 1.16 1.61 0.38 1.38 10.32 12.00 16.61 1.61 1.39 -0.17 0.86 10.32 16.61 14.31 1.39 0.69 -0.71 0.50 10.32 14.31 7.14
    Nb 10.39 8.99 -1.75 0.87 0.96 10.00 8.65 8.99 10.20 1.61 1.13 0.96 8.65 9.81 10.20 5.81 -4.55 0.57 0.96 9.81 5.59
    Ta 0.66 0.80 0.11 1.21 12.13 8.00 9.67 0.80 0.68 -0.78 0.86 12.13 9.67 8.30 0.68 0.40 -0.30 0.58 12.13 8.30 4.80
    Zr 20.07 20.85 -0.03 1.04 0.30 6.00 6.24 20.85 15.56 -4.68 0.75 0.30 6.24 4.65 15.56 8.18 -7.60 0.53 0.30 4.65 2.45
    Hf 0.70 0.96 0.22 1.37 5.69 4.00 5.48 0.96 0.58 -0.36 0.60 5.69 5.48 3.28 0.58 0.35 -0.24 0.60 5.69 3.28 1.98
    注:CrefCref'代表玲珑黑云母花岗岩样品元素含量原始值(平均值)和按比例计算过后的值;Ci1Ci1'代表钾长石化带样品元素含量原始值(平均值)和按比例计算过后的值;Ci2Ci2'代表黄铁绢英岩带样品元素含量原始值(平均值)和按比例计算过后的值;Ci3Ci3'代表含陡立石英脉黄铁绢英岩带样品元素含量原始值(平均值)和按比例计算过后的值;元素和氧化物组分含量根据Grant[14]、Mori[39]的方法确定scale(比例)进行投点
    下载: 导出CSV
  • 李洪奎, 耿科, 禚传源, 等.胶东金矿构造环境与成矿作用[M].北京:地质出版社, 2016.
    韦延光, 王建国, 邓军, 等.山东谢家沟金矿流体包裹体研究及其地质意义[J].现代地质, 2005, 19(2):224-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200502010
    邓军, 王建国, 韦延光, 等.山东谢家沟金矿床矿石与金矿物特征[J].地质科学(中国地质大学学报), 2007, 32(3):373-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200703010
    王建国, 刘洪臣, 邓军, 等.胶东谢家沟金矿稀土元素特征及其成矿意义[J].地质学报, 2009, 83(10):1497-1504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200910014
    丁东胜, 陈蕾, 巩恩普, 等.山东谢家沟金矿床流体包裹体研究及成矿机制的探讨[J].矿床地质, 2017, 36(2):345-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201702007

    Browne P R L.Hydrothermal alteration in active geothermal fields[J].Annual Review of Earth and Planetary Sciences, 1978, 6:229-248. doi: 10.1146/annurev.ea.06.050178.001305

    Pirajno F.Hydrothermal Processes and Mineral Systems[J].Dordrecht:Springer, 2009:73-104. doi: 10.1007%2F978-1-4020-8613-7

    Chinnasamy S S, Mishra B.Greenstone metamorphism, hydrothermal alteration, and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India[J].Economic Geology, 2013, 108(5):1015-1036. doi: 10.2113/econgeo.108.5.1015

    Qiu K F, Taylor R D, Song Y H, et al.Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper-molybdenum deposit, western Qinling Orogenic Belt, China[J].Gondwana Research, 2016, 35:40-58. doi: 10.1016/j.gr.2016.03.014

    Smith D J, Naden J, Jenkin G R T, et al.Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J].Ore Geology Reviews, 2017, 89:772-779. doi: 10.1016/j.oregeorev.2017.06.028

    刘向东, 邓军, 张良, 等.胶西北寺庄金矿床热液蚀变作用[J].岩石学报, 2019, 35(5):1551-1565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201905016

    Gresens R L.Composition-volume relationships of metasomatism[J].Chemical Geology, 1967, 2:47-65. doi: 10.1016/0009-2541(67)90004-6

    Grant J A.The isocon diagrama simple solution to Gresens equation for metasomatic alteration[J].Economic Geology, 1986, 81(8):1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    Grant J A.Isocon analysis:A brief review of the method and applications[J].Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(17/18):997-1004. https://www.sciencedirect.com/science/article/pii/S1474706505000458

    陈海燕, 李胜荣, 张秀宝, 等.胶东金青顶金矿床围岩蚀变特征与金矿化[J].矿物岩石地球化学通报, 2012, 31(1):5-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201201002
    张炳林, 杨立强, 黄锁英, 等.胶东焦家金矿床热液蚀变作用[J].岩石学报, 2014, 30(9):2533-2545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201409007
    张潮, 黄涛, 刘向东, 等.胶西北新城金矿床热液蚀变作用[J].岩石学报, 2016, 32(8):2433-2450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201608014
    卫清, 范宏瑞, 蓝廷广, 等.胶东寺庄金矿热液蚀变作用与元素迁移规律[J].矿物岩石地球化学通报, 2018, 37(2):283-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201802014
    高建伟, 滕超, 赵国春, 等.山东金翅岭金矿蚀变特征与元素迁移规律[J].现代地质, 2019, 33(5):1036-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201905011
    范宏瑞, 胡芳芳, 杨进辉, 等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报, 2005, 21(25):1317-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200505001
    陆丽娜, 范宏瑞, 胡芳芳, 等.胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据[J].岩石学报, 2010, 27(5):1521-1532. http://d.wanfangdata.com.cn/Periodical/ysxb98201105024

    Wang L G, Qiu Y M, McNaughton N J, et al.Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews, 1998, 13:275-291. doi: 10.1016/S0169-1368(97)00022-X

    Hou M L, Jiang Y H, Jiang S Y, et al.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China:Implications for crustal thickening to delamination[J].Geological Magazine, 2007, 144(4):619-631. doi: 10.1017/S0016756807003494

    Zhang J, Zhao Z F, Zheng Y F, et al.Post collisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China[J].Lithos, 2010, 119:512-536. doi: 10.1016/j.lithos.2010.08.005

    Jiang N, Chen J Z, Guo J H, et al.In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China Craton:Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J].Lithos, 2012, 142/143:84-94. doi: 10.1016/j.lithos.2012.02.018

    Ma L, Jiang S Y, Dai B Z, et al.Multiple sources for the origin of Late Jurassic Linglongadakitic granite in the Shandong peninsula, eastern China:Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos, 2013, 162/163:251-263. doi: 10.1016/j.lithos.2013.01.009

    陈俊, 孙丰月, 王力, 等.胶东招掖地区滦家河花岗岩锆石U-Pb年代学、岩石地球化学及其地质意义[J].世界地质, 2015, 34(2):283-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201502003
    杨进辉, 朱美妃, 刘伟, 等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报, 2003, 19(4):692-700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200304010
    张良, 刘跃, 李瑞红, 等.胶东大尹格庄金矿床铅同位素地球化学[J].岩石学报, 2014, 30(9):2468-2480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201409002

    Yang K F, Fan H R, Santosh M, et al.Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J].Lithos, 2012, 146/147:112-127. doi: 10.1016/j.lithos.2012.04.035

    陈广俊, 孙丰月, 李玉春, 等.胶东郭家岭花岗闪长岩U-Pb年代学、地球化学特征及地质意义[J].世界地质, 2014, 33(1):39-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201401004

    Wang Z L, Yang L Q, Deng J, et al.Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China:Petrogenesis and tectonic setting[J].Journal of Asian Earth Sciences, 2014, 95:274-299. doi: 10.1016/j.jseaes.2014.03.001

    刘跃, 邓军, 王中亮, 等.胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成[J].岩石学报, 2014, 30(9):2559-2573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201409009
    杨宽, 王建平, 林进展, 等.胶东半岛艾山岩体岩石地球化学特征及成因意义[J].地质与勘探, 2012, 48(4):693-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201204004

    Goss S C, Wilde S A, Wu F Y, et al.The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J].Lithos, 2010, 120:309-326. doi: 10.1016/j.lithos.2010.08.019

    杨立强, 邓军, 王中亮, 等.胶东中生代金成矿系统[J].岩石学报, 2014, 30(9):2447-2467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201409001
    辛洪波.胶东谢家沟金矿与焦家金矿地质特征与成因对比[D].中国地质大学(北京)博士学位论文, 2005: 40-45.

    Cail T L, Cline J S.Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, North-central Nevada[J].Economic Geology, 2001, 96(6):1343-1359. doi: 10.2113/gsecongeo.96.6.1343

    Mori Y, Nishiyama T, Yanagi T.Mass transfer and reaction paths in alteration zones around carbonate veins in the Nishisonogi metamorphic rocks, Southwest Japan[J].American Mineralogist, 2003, 88(4):611-623. doi: 10.2138/am-2003-0415

    Riverin G, Hodgson C J.Wall-rock alteration at the Millen-bach Cu-Zn mine, Noranda[J].Economic Geology, 1980, 75:424-444. doi: 10.2113/gsecongeo.75.3.424

    Sinha A K, Hewitt D A, Rimstidt J D.Fluid interaction and element mobility in the development of ultramylonites[J].Geology, 1986, 14:883-886. doi: 10.1130/0091-7613(1986)14<883:FIAEMI>2.0.CO;2

    MacLean W H, Kranidiotis P.Immobile elements as monitors of mass transfer in hydrothermal alteration:Phelps Dodge massive sulfide deposit, Matagami, Quebec[J].Economic Geology, 1987, 82:951-962. doi: 10.2113/gsecongeo.82.4.951

    Brauhart C W, Huston D L, Groves D I, et al.Geochemical mass-transfer patterns as indicators of the Architecture of a complete volcanic-hosted massive sulfide hydrothermal alteration system, Panorama district, Pilbara, Western Australia[J].Economic Geology, 2001, 96:1263-1278. doi: 10.2113/gsecongeo.96.5.1263

    Ague J J.Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism[J].American Mineralogist, 2011, 96:333-352. doi: 10.2138/am.2011.3582

    艾金彪, 马生明, 朱立新, 等.安徽马头斑岩型钼铜矿床蚀变带常量元素迁移规律及其定量计算[J].矿床地质, 2013, 32(6):1262-1274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201306012

    Omella M E, Gong E P, Sun X D, et al.K-metasomatism of plagioclase to produce perthite in granitic rocks of Zhejiang Province, Southeast China[J].Geology and Resources, 2003, 12(3):129-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz200303001

    王玉荣, 胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学(D辑), 2000, 30(5):499-508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200005008

    Fourcade S, Allegre C J.Trace elements behavior in granite genesis:A case study.The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France)[J].Contributions to Mineralogy and Petrology, 1981, 76(2):177-195. doi: 10.1007/BF00371958

    Noyes H J, Frey F A, Wones D R.A tale of two plutons:Geochemical evidence bearing on the origin and differentiation of the red lake and eagle peak plutons, central Sierra Nevada, California[J].Journal of Geology, 1983, 91(5):487-509. doi: 10.1086/628801

    VanDongen M, Weinberg R F, Tomkins A G.REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation[J].Economic Geology, 2010, 105(4):763-776. doi: 10.2113/gsecongeo.105.4.763

    Parsapoor A, Khalili M, Mackizadeh M A.The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J].Journal of Asian Earth Sciences, 2009, 34(2):123-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fed292db3fe72c99b6420c4f9bb7028c

    胡受奚, 叶瑛, 方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社, 2004:1-264.

    Pirajno F.Hydrothermal Mineral Deposits[M].Springer-Verlag Berlin Heidelberg, 1992.

    Taylor R P, Fryer B J.Rare Earth Element Geochemistry as an aid to interpreting hydrothermal ore deposits[C]//Evans A M.Metallization Associated with Acid Magmatism.Wiley, New York, 1982: 357-365.

    Taylor R P, Fryer B J.Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey:the temporal interplay of potassic, propylitic, and phyllic fluids[J].Canadian Journal of Earth Sciences, 1980, (17):901-926. https://ui.adsabs.harvard.edu/abs/1980CaJES..17..901T/abstract

    Sverjensky D A.Europium redox equilibria in aqueous-solition[J].Earth and Planetary Science Letters, 1984, 67(1):70-78. https://www.sciencedirect.com/science/article/pii/0012821X84900396

    Liu Z K, Mao X C, Deng H, et al.Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan:Insights from geochemical effects of alteration, mineralization and trace elements in pyrite[J].Ore Geology Reviews, 2018, 102, 368-385. doi: 10.1016/j.oregeorev.2018.09.009

    张德会.成矿作用地球化学[M].北京:地质出版社, 2015.
    叶天竺, 韦昌山, 王玉往, 等.勘查区找矿预测理论(各论)[M].北京:地质出版社, 2015.
    李晓春.胶东三山岛金矿围岩蚀变地球化学及成矿意义[D].中国科学院研究生院硕士学位论文, 2012.

    Gao Z L, Kwak T A P.The geochemistry of wall rock alteration in turbidite-hosted gold vein deposits, central Victoria, Australia[J].Journal of Geochemical Exploration, 1997, 59(3):259-274. doi: 10.1016/S0375-6742(96)00079-9

图(7)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2020-03-05
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回