基于BP神经网络与数学形态学的彩色地质图面要素信息智能提取

    Intelligent extraction of area element information from colored geological map on the basis of BP neural network and mathematical morphology

    • 摘要: 地质图是一个区域地质研究的重要成果,也是前人留下的宝贵资料,更融合了地质专家的丰富知识。本研究的目的是通过新的思路将彩色地质图信息提取出来,使其结果能直接进行数据分析,并用于决策和分析。以机器学习为指导,在分析半结构化(栅格)地质图特征的基础上,根据图例信息,提出一种彩色地质图信息提取新思路,对彩色地质图进行分层信息提取,并结合数学形态学和多层前向反馈式神经网络,探索半结构化数据转换为结构数据的有效技术方法。利用图像信息提取技术将半结构化地质图转化为结构化数据,可用于成矿预测等研究。这一变化将改变传统地质数据的结构,地质研究的信息基础和来源将会增加,对于获取更多的数据源和信息源,进一步开展地质分析研究具有重要意义。

       

      Abstract: As an important result of regional geological research geological map not only belongs to the valuable information left by the previous researchers but also integrates the rich knowledgeof geological experts.The purpose of this study is to extract the color geological map information through new ideas, so that the results can be directly used for data analysis and used for decision-making and analysis. Guided by machine learning and based on the analysis of the characteristics of semi-structured grid geological maps this paper proposes a new idea for extracting the information of colored geological map according to the legend information and exploring the effective technology method for transforming semi-structured data into structured data in combination with mathematical morphology and multilayer feed forward neural network. Therefore the semi-structured geological map can be transformed into structured data available for metallogenic prediction and other researches with the help of image information extraction technology.This innovation will change the structure of traditional geological data and increase the information base and source for geological research therefore it is of important significance to obtain more data sources and information sources and to further carry out geological analysis and research.

       

    /

    返回文章
    返回