U-Pb age and geochemical characteristics of quartz diorite in Early Carboniferous from Langshan area of Inner Mongolia, and its implication for subduction of Paleo-Asian Ocean
-
摘要:
内蒙古狼山山脉西侧分布大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世石英闪长岩体出露于潮格温都尔镇西侧。该岩体岩性为石英闪长岩,LA-ICP-MS锆石U-Pb年龄显示,石英闪长岩的206Pb/238U年龄加权平均值为337.4±6.6 Ma。岩石暗色矿物以角闪石为主,黑云母次之,富铁,富钠,高钠钾比值,为钙碱性系列;富集大离子亲石元素Rb、K、Pb,不同程度的亏损高场强元素Nb、Ta、P、Ti的特点,稀土元素配分型式为轻稀土元素富集,重稀土元素亏损,弱的负Eu异常,总体反映岩浆弧的地球化学特征。构造环境判别图显示样品点落在大陆边缘弧范围,岩石地球化学特征表明狼山地区早石炭世处于大陆边缘弧构造背景,古亚洲洋石炭纪存在向南俯冲。对比北部造山带西乌旗地区的早石炭世石英闪长岩,两者地球化学特征基本相同。因此,早石炭世古亚洲洋发生了双向俯冲,形成了以石英闪长岩为主的岩石类型。
Abstract:The Late Paleozoic magmatites are distributed in the west of Inner Mongolian Langshan Mountain, with the formation concentrated in Early Carboniferous and Late Permian.The quartz diorite body of Early Carboniferous strata are outcropped in the west of Chaogewenduer Town.LA-ICP-MS zircon U-Pb age shows that the 206Pb/238U weighted average age of quartz diorite is 337.4±6.6 Ma.The characteristics of quartz diorite exhibit that the amphibole is the main dark mineral, characterized by enrichment in TFeO(TFeO=4.18%~6.95%) and Na2O (Na2O=3.11%~4.07%), high Na2O/K2O (Na2O/K2O 1.27~2.50), being calc alkaline series, enrichment in LILE (K, Rb, Ba), depletion in Nb, Ta, P and Ti, enrichment in LREE, and depletion in HREE as well as negligible Eu anomalies, which reflects the geochemical characteristics of magmatic arc.Th/Yb-Ta/Yb discriminant diagram shows the samples plot in the area of the continental margin arc.The geochemical characteristics of quartz diorite shows that the tectonic setting of Langshan area belonged to the continental margin arc in Early Carboniferous, the existence of the southward subduction of the paleo-Asian Ocean, and that, compared with the Early Carboniferous quartz diorite in Xiwuqi area of the northern orogenic belt, their geochemical characteristics are basically the same.Therefore, the paleo-Asian Ocean underwent bidirectional subduction in Early Carboniferous and formed the rock type dominated by quartz diorite.
-
Keywords:
- Inner Mongolia /
- Langshan area /
- Early Carboniferous /
- quartz diorite /
- continental margin arc
-
中亚造山带作为世界上最大的显生宙造山带,横贯东西和南北数千千米,其复杂的构造演化过程被认为与古亚洲洋的构造运动密切相关[1-5]。古亚洲洋盆的形成、演化及增生造山与地体拼贴过程造就了现有的构造格架(图 1-a)[1, 6-18]。
华北地块北缘位于中亚造山带与华北地块的结合部位,其特殊的构造位置为研究区域构造演化过程提供了有利条件。区内发育大面积的晚古生代岩浆岩,尤以古生代岩体最广泛[19-28]。多数学者认为,在早石炭世,古亚洲洋发生了向北的俯冲消减作用,形成了北部造山带岛弧性质的岩浆岩,分布在苏尼特左旗—西乌旗一带[29-31];然而,近年来,在华北地块北缘也有零星的早石炭世弧岩浆岩的报道,分布在商都-隆化附近[20]及狼山地区乌拉特后旗附近[32]。狼山地区位于华北地块北缘西部,北侧为中亚造山带(图 1-a)[32-34],其发育的早石炭世侵入岩的属性对于探讨晚古生代古亚洲洋的向南俯冲具有重要的意义。
本文基于狼山地区查干呼舒庙等六幅1:5万区域地质调查的基础上,对新识别出的大面积早石炭世石英闪长岩进行岩石学、锆石年龄、地球化学及Hf同位素特征的深入研究,探讨该期侵入岩的构造背景,进而为华北地块北缘早石炭世的构造演化提供有力的证据。
1. 地质概况及岩相学特征
石炭纪岩体位于潮格温都尔镇西侧,中心地理坐标约为北纬41°25′、东经106°47′40″(图 1-b)。石英闪长岩岩体构成石炭纪岩体的主要单元,呈大的岩基产出,总体呈北东向展布,出露面积约70 km2,稍早的辉长岩呈团块状分布在石英闪长岩岩体中,稍晚的花岗闪长岩呈岩枝状侵入其中。该岩体东西两侧侵入到晚志留世二长花岗岩体或宝音图岩群中,西南侧被中二叠世花岗闪长岩侵入,北侧被中新生代地层角度不整合覆盖。
石英闪长岩整体露头较好,突出于地表,具球状风化特征,其内部多见花岗斑岩、石英脉等脉体。可见闪长质包体,包体呈椭圆状、浑圆状,部分具不规则的形态(图 2-a),大小不一,包体大小在5~20 cm之间,岩性为微粒的闪长岩,闪长质包体中发育细粒的斜长石颗粒,明显与包体本身颗粒不匹配,反映了壳幔岩浆的混合作用。根据矿物成分、含量及颗粒大小,岩石种类主要为细粒石英闪长岩(图 2-b)。
石英闪长岩:岩石新鲜面为青灰色,细粒结构,块状构造,主要由斜长石(50%~60%)、钾长石(1%~5%)、石英(5%~10%)、角闪石(15%~30%)、黑云母(1%~5%)组成(图 2-c)。斜长石呈半自形板状,杂乱分布,粒径一般为0.2~2 mm的细粒,2~3.9 mm的次之,具绢云母化、局部黝帘石化、碳酸盐化(图 2-d),局部隐约可见环带结构。钾长石呈半自形-他形粒状,填隙状分布,粒径一般小于0.5 mm,具轻高岭土化、局部碳酸盐化。黑云母呈鳞片-叶片状,杂乱分布,粒径一般为0.1~2.4 mm,可见绿泥石化,局部绿帘石化,局部穿插交代角闪石、辉石,有时可见角闪石、辉石反应边。角闪石呈他形-半自形柱粒状,粒径一般为0.1~3 mm,杂乱分布,具绿泥石化、褐铁矿化、绿帘石化(图 2-d),多色性较明显,Ng'=棕褐色,Np'=淡黄棕色。岩体内可见铁质、帘石、硅质、碳酸盐充填的裂隙。
2. 分析方法
采集新鲜的石英闪长岩同位素样品1件、全岩分析样品10件。先将样品手工粗碎后进行缩分, 在玛瑙研钵内磨至2(X)目后, 进行主量、微量和稀土元素分析。锆石按常规方法分选, 在双目镜下挑纯, 挑选晶形完好、有代表性的颗粒进行制靶,然后在北京锆年领航科技有限公司透、反射及阴极发光(CL)照相,并进行锆石U-Pb定年。
2.1 锆石U-Pb测年
样品无污染碎样和锆石的挑选工作在河北省廊坊区域地质矿产调查研究所实验室完成。在北京锆年领航科技有限公司制靶,锆石粘贴制成环氧树脂样品靶,经过打磨抛光使锆石露出中心后进行透射光、反射光和阴极发光(CL)显微照相。锆石U-Pb年代学和Lu-Hf同位素分析在天津地质矿产研究所实验室的193 nm激光剥蚀系统(New Wave)和多接收器电感耦合等离子体质谱仪(MC-ICP-MS,Neptune)上完成。U-Pb年龄测试方法见参考文献[35]。采用GJ-1为外部标准校正锆石的U、Th和Pb同位素;采用NIST610玻璃为标样计算锆石中的U、Th和Pb含量;利用ICPMSDataCal程序[36]和Isoplot程序[37]进行数据处理。分析结果见表 1。
表 1 石英闪长岩锆石U-Th-Pb定年数据Table 1. LA-ICP-MS zircon U-Th-Pb data for quartz biorite分析号 Pb U 232Th/238U 207Pb/206Pb比值 1σ 207Pb/235U比值 1σ 206Pb/238U比值 1σ 206Pb/238U年龄/Ma 1σ 含量/10-6 p17.22.2.1 143 2113 0.3843 0.0951 0.0018 0.8119 0.0192 0.0619 0.0007 387 4 p17.22.2.2 81 1307 0.7755 0.0570 0.0007 0.4532 0.0065 0.0577 0.0006 362 4 p17.22.2.3 61 863 0.4421 0.1082 0.0014 0.9201 0.0125 0.0617 0.0007 386 4 p17.22.2.4 97 1088 0.5966 0.2065 0.0046 1.8161 0.0498 0.0638 0.0007 399 5 p17.22.2.5 107 1494 0.4979 0.1304 0.0020 1.0525 0.0214 0.0585 0.0006 367 4 p17.22.2.6 43 730 0.2528 0.0542 0.0007 0.4512 0.0064 0.0604 0.0006 378 4 p17.22.2.7 111 1140 0.7122 0.1756 0.0026 1.6888 0.0259 0.0698 0.0007 435 4 p17.22.2.8 19 348 0.2359 0.0657 0.0013 0.4991 0.0098 0.0551 0.0006 346 4 p17.22.2.9 352 6519 0.1317 0.1152 0.0015 0.7746 0.0113 0.0488 0.0005 307 3 p17.22.2.10 23 436 0.1736 0.0664 0.0012 0.4958 0.0090 0.0541 0.0005 340 3 p17.22.2.11 60 994 0.5383 0.0654 0.0009 0.5067 0.0083 0.0562 0.0006 352 4 p17.22.2.12 40 765 0.1878 0.0558 0.0007 0.4111 0.0060 0.0535 0.0005 336 3 p17.22.2.13 483 3235 0.5315 0.3513 0.0042 3.7886 0.0527 0.0782 0.0008 486 5 p17.22.2.14 42 681 0.2982 0.0855 0.0015 0.6624 0.0111 0.0562 0.0006 353 4 p17.22.2.15 42 782 0.2557 0.0681 0.0009 0.4910 0.0071 0.0523 0.0005 329 3 p17.22.2.16 61 934 0.5025 0.1010 0.0017 0.7602 0.0162 0.0546 0.0006 343 4 p17.22.2.17 41 661 0.4798 0.0943 0.0026 0.6890 0.0181 0.0530 0.0005 333 3 p17.22.2.18 63 1056 0.3903 0.0649 0.0009 0.5160 0.0092 0.0576 0.0006 361 4 p17.22.2.19 190 944 0.5889 0.4358 0.0056 5.3796 0.0960 0.0895 0.0011 553 7 p17.22.2.20 60 740 0.7560 0.1314 0.0019 1.1110 0.0206 0.0613 0.0007 384 4 p17.22.2.21 168 2714 0.0784 0.0940 0.0012 0.7544 0.0113 0.0582 0.0006 365 4 p17.22.2.22 37 568 0.5283 0.0925 0.0014 0.7154 0.0132 0.0561 0.0006 352 4 p17.22.2.23 47 1141 0.8544 0.0731 0.0015 0.3502 0.0071 0.0348 0.0003 220 2 p17.22.2.24 77 1330 0.2758 0.0704 0.0009 0.5421 0.0076 0.0558 0.0005 350 3 2.2 全岩化学成分
主量、微量和稀土元素分析在天津地质矿产研究所元素分析实验室完成。将样品熔制成玻璃饼,然后采用X射线荧光光谱仪XRF-1500进行主量元素测定,分析精度优于1%。称取40 mg样品于Tenon罐中,加入HNO3和HF充分溶解后,用1%的HNO3稀释,在Finigan MAT公司生产的双聚焦电感耦合等离子质谱仪(ICP-MS)ELEMENT上测定微量和稀土元素,分析精度优于5%。分析结果见表 2。
表 2 石英闪长岩主量、微量和稀土元素分析结果Table 2. Result of whole-rock major, trace elements and REE of quartz biorite样品号 P17-25-1 P17-104-1 P17-116-1 P17-135-1 PM001-36-1 PM001-18-1 P17-22-1 P17-114-1 P17-129-1 P17-143-1 SiO2 54.13 55.76 55.54 55.49 56.49 61.58 61.97 57.98 58.69 61.11 TiO2 1.00 1.57 0.94 0.90 0.90 0.56 0.79 0.78 0.58 1.09 Al2O3 17.37 17.06 18.29 16.84 17.41 15.92 16.92 17.01 17.47 17.72 Fe2O3 1.02 0.88 0.77 0.87 0.04 0.21 0.32 0.61 1.18 0.54 FeO 4.93 6.16 4.54 5.45 5.81 3.99 4.00 4.58 3.41 3.88 MnO 0.11 0.12 0.096 0.11 0.11 0.08 0.069 0.094 0.084 0.079 MgO 6.18 4.41 5.15 6.36 5.13 3.29 3.10 3.77 4.10 2.25 CaO 8.44 6.48 7.50 6.53 7.61 4.67 4.50 6.29 6.32 4.98 Na2O 3.12 3.43 3.30 3.11 3.13 3.50 3.61 3.38 3.44 4.07 K2O 1.52 1.75 1.32 1.36 1.54 2.75 1.98 1.94 1.86 2.01 P2O5 0.13 0.28 0.16 0.18 0.13 0.16 0.15 0.12 0.10 0.26 H2O+ 1.31 1.25 1.46 1.88 0.95 1.28 1.69 1.90 1.70 1.36 CO2 0.09 0.02 0.32 0.14 0.04 1.57 0.31 0.92 0.52 0.10 烧失量 1.51 1.42 1.90 2.18 1.07 2.86 2.13 2.94 2.38 1.59 总和 99.46 99.32 99.51 99.38 99.37 99.57 99.54 99.49 99.61 99.58 TFeO 5.85 6.95 5.23 6.23 5.85 4.18 4.29 5.13 4.47 4.37 Fe2O3 5.46 6.42 4.86 5.77 5.27 3.80 3.92 4.73 4.25 4.03 Cs 3.34 2.24 2.95 2.82 3.77 3.38 2.98 2.82 3.71 2.33 Rb 59.30 70.90 47.40 54.50 43.00 94.00 84.90 70.70 77.30 76.60 Sr 332.00 558.00 629.00 540.00 560.00 479.00 406.00 523.00 475.00 484.00 Ba 291.00 457.00 533.00 510.00 254.00 550.00 392.00 561.00 519.00 547.00 Ga 17.00 17.20 16.70 18.20 18.70 19.90 17.80 17.50 17.20 19.70 Nb 5.51 9.71 6.39 5.44 3.89 5.95 5.86 6.26 5.64 9.18 Ta 0.50 0.76 0.45 0.43 0.36 0.70 0.25 0.59 0.50 0.73 Zr 102.00 80.60 98.30 128.00 51.00 49.10 161.00 92.20 95.40 80.60 Hf 3.18 2.52 3.06 3.70 1.68 1.96 4.33 2.90 2.92 2.55 Th 5.10 3.84 3.34 5.25 3.69 4.21 8.04 6.22 6.03 5.15 V 150.00 126.00 166.00 194.00 168.00 72.70 89.50 107.00 96.80 60.40 Cr 203.00 66.00 105.00 126.00 80.20 87.60 89.60 43.70 57.50 20.90 Co 24.70 23.90 18.40 23.60 23.30 13.30 14.40 16.00 14.90 11.40 Ni 23.00 34.70 11.60 29.80 20.80 31.70 19.70 20.10 15.20 9.99 Li 14.40 20.30 24.30 31.80 24.90 25.20 20.70 28.20 28.00 26.60 Sc 26.20 21.70 23.90 26.80 21.80 13.20 15.10 19.90 18.60 13.10 U 1.52 1.10 1.11 1.39 0.73 1.80 1.61 1.16 1.00 1.28 Pb 9.59 9.24 8.05 8.70 10.70 17.20 11.9 14.2 10.8 12.3 Zn 58.20 54.80 44.00 65.80 62.30 56.70 56.70 43.60 52.30 53.40 Cu 18.80 25.10 16.50 46.40 21.90 19.70 15.70 16.30 12.80 12.60 La 18.00 18.60 16.20 19.30 15.60 14.20 19.00 18.70 19.00 21.70 Ce 49.40 56.80 44.30 49.00 30.80 25.30 40.30 45.40 42.70 50.20 Pr 4.59 6.63 4.37 5.12 3.87 3.22 3.75 4.18 3.98 5.12 Nd 17.70 31.10 18.00 21.50 14.90 12.30 13.00 15.80 15.00 20.90 Sm 4.00 7.26 3.93 4.78 2.97 2.70 2.64 3.22 3.00 4.37 Eu 1.20 1.91 1.39 1.44 1.29 1.06 0.99 1.10 1.19 1.34 Gd 3.92 7.98 3.78 4.52 2.91 2.68 2.63 3.03 2.79 4.01 Tb 0.66 1.20 0.61 0.74 0.49 0.45 0.42 0.49 0.44 0.62 Dy 4.04 6.92 3.67 4.44 2.80 2.72 2.30 2.91 2.60 3.65 Ho 0.82 1.38 0.72 0.90 0.58 0.52 0.46 0.59 0.52 0.71 Er 2.22 3.62 1.96 2.38 1.51 1.42 1.29 1.57 1.43 1.86 Tm 0.32 0.49 0.27 0.34 0.23 0.23 0.19 0.24 0.21 0.25 Yb 2.10 2.87 1.81 2.24 1.52 1.48 1.25 1.58 1.36 1.53 Lu 0.32 0.42 0.27 0.32 0.24 0.24 0.21 0.24 0.20 0.23 Y 19.90 32.60 17.40 21.20 14.00 13.20 11.60 14.50 12.70 17.10 ΣREE 129.19 179.78 118.68 138.22 93.71 81.72 100.03 113.55 107.12 133.59 LREE 94.89 122.30 88.19 101.14 69.43 58.78 79.68 88.40 84.87 103.63 HREE 34.30 57.48 30.49 37.08 24.28 22.94 20.35 25.15 22.25 29.96 LREE/HREE 2.77 2.13 2.89 2.73 2.86 2.56 3.92 3.51 3.81 3.46 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 3. 分析结果
3.1 形成时代
本次对青灰色细粒石英闪长岩(Tw P17-22-1)进行了锆石U-Pb年龄测试。测年锆石多呈自形长柱状,表面光滑、干净,CL图像显示其具清晰的韵律环带(图 3-a),长100~250 μm,长宽比为1.5:1~3:1,具岩浆锆石特征,锆石点较分散,有较多的捕获锆石的年龄信息。8、10、12及15~17锆石点显示出了一致的206Pb/238U加权平均年龄,且这些点均在谐和线及其附近,给出的206Pb/238U年龄加权平均值为337.4±6.6 Ma(图 3-b)。
结合侵入其中的岩枝状花岗闪长岩的锆石年龄(331.1±0.85~330.0±4.2 Ma[①]),笔者认为,石英闪长岩体的结晶年龄为337.4±6.6 Ma,侵位时代为早石炭世。
3.2 岩石地球化学
3.2.1 主量元素
石英闪长岩SiO2含量在54.13%~61.97%之间,TFeO在4.18%~6.95%之间,全碱含量Na2O+K2O在4.47%~6.25%之间,Na2O在3.11%~4.07%之间,Na2O/K2O值在1.27~2.50之间(平均值为1.95),显示富铁、富钠、高钠钾比值的特点。SiO2-(Na2O+K2O)图解(图 4-a)显示,岩石类型为石英闪长岩。AFM图解(图 4-b)中,岩石位于钙碱性系列范围,且具有一定的演化趋势,反映了同源岩浆演化的特点。
3.2.2 微量和稀土元素
在微量元素蛛网图(图 5-a)中,所有样品具相似的分布型式,富集大离子亲石元素Rb、K、Pb、Sr,不同程度亏损高场强元素Nb、Ta、P、Ti,显示与弧岩浆岩类似的特点。西乌旗达其浑迪、金星岩体的石英闪长岩显示了与测区岩石相似的蛛网图特征,相比较而言,金星岩体P、Ti的亏损较弱,达其浑迪岩体P、Ti的亏损更显著。
图 5 石英闪长岩微量元素蛛网图(a)和稀土元素配分曲线(b)(标准化数据据参考文献[40])Figure 5. Primitive mantle-normalized trace element spidergrams (a)and chondrite-normalized REE patterns (b) of quartz biorite稀土元素配分图(图 5-b)中,所有样品显示出一致的曲线,轻稀土元素略富集,重稀土元素弱亏损,具弱Eu异常(δEu=0.75~1.62),显示了与后造山岩浆岩不同的特征。石英闪长岩的稀土元素总量(ΣREE)为81.72×10-6~179.78×10-6,(La/Sm)N=1.65~4.65,轻稀土元素分馏不明显。(La/Yb)N =4.65~10.90,轻、重稀土元素分馏弱-中等。西乌旗达其浑迪、金星岩体的石英闪长岩显示了与测区岩石相似的稀土元素配分型式,金星岩体的重稀土元素分馏较弱。
4. 讨论
4.1 岩石成因及构造背景
Zhang等[20-22]指出,华北地块北缘早华力西期的岩浆岩岩石组合主要为闪长岩、石英闪长岩、花岗闪长岩及花岗岩,其形成与俯冲作用有关。
研究区石英闪长岩暗色矿物以角闪石为主,黑云母次之,富铁(TFeO含量在4.18%~6.95%之间),富钠(Na2O含量在3.11%~4.07%之间),高钠钾比值(Na2O/K2O在1.27~2.50之间),钙碱性系列,La/Nb-La/Ba图解(图 6)显示岩石来源于俯冲交代的岩石圈地幔,反映了源区复杂的特点。
图 6 石英闪长岩La/Nb-La/Ba图解[41]HIMU—高U/Pb值地幔;MORB—大洋中脊玄武岩;OIB—洋岛玄武岩Figure 6. La/Nb-La/Ba diagram of quartz biorite微量元素蛛网图显示富集大离子亲石元素Rb、K、Pb,不同程度亏损高场强元素Nb、Ta、P、T的特点,稀土元素配分型式为轻稀土元素富集,重稀土元素亏损,具弱的Eu异常,总体反映了岩浆弧的地球化学特征,重稀土元素平坦,与典型的岛弧岩浆岩特点不同[42]。Y-Sr/Y判别图解(图 7-a)中,该岩体投点落在典型的岛弧岩石区域。Ta/Yb- Th/Yb判别图解(图 7-b)中,该岩体投点落在ACM区域(大陆边缘弧区域)。结合岩体呈带状展布,早石炭世侵入岩组合为石英闪长岩+花岗闪长岩+辉长岩,围岩地层为具有古老陆块属性的宝音图岩群,所以,早石炭世测区处于大陆边缘弧的构造背景。测区缺少早石炭世地层,上石炭统出露地层为阿木山组,阿木山组二段砂岩中可见珊瑚化石Arachnolasma sp.,三段灰岩中可见植物化石Cordaites sp.,Cordaites principalis Gein,反映了活动陆缘的构造背景。
综上所述,狼山地区石炭纪处于活动的大陆边缘弧构造背景。刘晔[32]报道了东升庙地区早石炭世晚期的花岗闪长岩的锆石年龄为320.5±2.9 Ma;周志广等[24]报道了四子王旗地区早石炭世闪长岩的锆石年龄为331± 5 Ma;Zhang等[20]在华北地块北缘的商都-隆化附近(图 8)也发现了零星的早石炭世石英闪长岩,锆石年龄为324± 6 Ma。因此,华北地块北缘从东到西断续出露早石炭世俯冲岩浆岩,岩石组合为闪长岩+石英闪长岩+花岗闪长岩,古亚洲洋在早石炭世存在向南的俯冲作用。
图 8 华北地块北缘地质简图(据参考文献[45]修改)Figure 8. Geological map of northern margin of North China block4.2 早石炭世古亚洲洋俯冲作用
石玉若等[46]指出,若古亚洲洋在石炭纪存在洋壳俯冲,该双向俯冲消减应很剧烈,与其对应的岩浆活动也应很活跃。越来越多的研究表明,在北部造山带苏左旗—西乌旗地区(图 8)发育晚古生代岩浆弧[29-31],早石炭世中—晚期,古亚洲洋板块存在向北俯冲,形成的花岗岩叠加在北部造山带的锡林郭勒杂岩及早古生代岛弧之上[29-31, 45, 47-48]。
西乌旗南部地区出露最老的地层单元是锡林郭勒变质杂岩,又称宝音图岩群;在锡林郭勒杂岩之上发育的地层为晚石炭世—二叠纪本巴图组、阿木山组、大石寨组,岩浆岩包括奥陶纪—早志留世的岛弧花岗岩、晚志留世的同碰撞花岗岩及早石炭世的陆缘弧花岗岩[29, 45]。测区发育的地层单位及岩浆岩类型与西乌旗地区基本一致,因此,笔者认为,2个区域早石炭世的石英闪长岩可以对比。通过岩石学及地球化学特征的对比可以发现,岩石类型一致,微量元素蛛网图、稀土元素配分图显示了高度的一致性,构造判别图也显示所有样品均具有大陆边缘弧的特点,因此,两者可能反映了相同的构造背景。刘建峰等[29]指出,西乌旗南部地区早石炭世侵入岩岩石组合为闪长岩+石英闪长岩+花岗闪长岩,这一岩石组合与华北地块北缘基本一致。
综上所述,早石炭世古亚洲洋发生了双向俯冲,在华北地块北缘及北部造山带都形成了闪长岩+石英闪长岩+花岗闪长岩的岩石组合。
5. 结论
(1) 狼山地区早石炭世石英闪长岩具有富铁,富钠,高钠钾比值,富集大离子亲石元素Rb、K、Pb,不同程度亏损高场强元素Nb、Ta、P、Ti的特点,稀土元素配分型式为轻稀土元素富集,重稀土元素亏损,弱的Eu异常,反映了大陆边缘弧的构造背景。
(2) 早石炭世古亚洲洋发生了双向俯冲,在华北地块北缘及北部造山带形成了闪长岩+石英闪长岩+花岗闪长岩的岩石组合。
致谢: 写作过程中得到中国地质调查局天津地质调查中心赵凤清研究员、辛后田教授级高级工程师的建议,审稿专家对本文进行了审阅,在此一并表示衷心的感谢。 -
图 5 石英闪长岩微量元素蛛网图(a)和稀土元素配分曲线(b)(标准化数据据参考文献[40])
Figure 5. Primitive mantle-normalized trace element spidergrams (a)and chondrite-normalized REE patterns (b) of quartz biorite
图 6 石英闪长岩La/Nb-La/Ba图解[41]
HIMU—高U/Pb值地幔;MORB—大洋中脊玄武岩;OIB—洋岛玄武岩
Figure 6. La/Nb-La/Ba diagram of quartz biorite
图 8 华北地块北缘地质简图(据参考文献[45]修改)
Figure 8. Geological map of northern margin of North China block
表 1 石英闪长岩锆石U-Th-Pb定年数据
Table 1 LA-ICP-MS zircon U-Th-Pb data for quartz biorite
分析号 Pb U 232Th/238U 207Pb/206Pb比值 1σ 207Pb/235U比值 1σ 206Pb/238U比值 1σ 206Pb/238U年龄/Ma 1σ 含量/10-6 p17.22.2.1 143 2113 0.3843 0.0951 0.0018 0.8119 0.0192 0.0619 0.0007 387 4 p17.22.2.2 81 1307 0.7755 0.0570 0.0007 0.4532 0.0065 0.0577 0.0006 362 4 p17.22.2.3 61 863 0.4421 0.1082 0.0014 0.9201 0.0125 0.0617 0.0007 386 4 p17.22.2.4 97 1088 0.5966 0.2065 0.0046 1.8161 0.0498 0.0638 0.0007 399 5 p17.22.2.5 107 1494 0.4979 0.1304 0.0020 1.0525 0.0214 0.0585 0.0006 367 4 p17.22.2.6 43 730 0.2528 0.0542 0.0007 0.4512 0.0064 0.0604 0.0006 378 4 p17.22.2.7 111 1140 0.7122 0.1756 0.0026 1.6888 0.0259 0.0698 0.0007 435 4 p17.22.2.8 19 348 0.2359 0.0657 0.0013 0.4991 0.0098 0.0551 0.0006 346 4 p17.22.2.9 352 6519 0.1317 0.1152 0.0015 0.7746 0.0113 0.0488 0.0005 307 3 p17.22.2.10 23 436 0.1736 0.0664 0.0012 0.4958 0.0090 0.0541 0.0005 340 3 p17.22.2.11 60 994 0.5383 0.0654 0.0009 0.5067 0.0083 0.0562 0.0006 352 4 p17.22.2.12 40 765 0.1878 0.0558 0.0007 0.4111 0.0060 0.0535 0.0005 336 3 p17.22.2.13 483 3235 0.5315 0.3513 0.0042 3.7886 0.0527 0.0782 0.0008 486 5 p17.22.2.14 42 681 0.2982 0.0855 0.0015 0.6624 0.0111 0.0562 0.0006 353 4 p17.22.2.15 42 782 0.2557 0.0681 0.0009 0.4910 0.0071 0.0523 0.0005 329 3 p17.22.2.16 61 934 0.5025 0.1010 0.0017 0.7602 0.0162 0.0546 0.0006 343 4 p17.22.2.17 41 661 0.4798 0.0943 0.0026 0.6890 0.0181 0.0530 0.0005 333 3 p17.22.2.18 63 1056 0.3903 0.0649 0.0009 0.5160 0.0092 0.0576 0.0006 361 4 p17.22.2.19 190 944 0.5889 0.4358 0.0056 5.3796 0.0960 0.0895 0.0011 553 7 p17.22.2.20 60 740 0.7560 0.1314 0.0019 1.1110 0.0206 0.0613 0.0007 384 4 p17.22.2.21 168 2714 0.0784 0.0940 0.0012 0.7544 0.0113 0.0582 0.0006 365 4 p17.22.2.22 37 568 0.5283 0.0925 0.0014 0.7154 0.0132 0.0561 0.0006 352 4 p17.22.2.23 47 1141 0.8544 0.0731 0.0015 0.3502 0.0071 0.0348 0.0003 220 2 p17.22.2.24 77 1330 0.2758 0.0704 0.0009 0.5421 0.0076 0.0558 0.0005 350 3 表 2 石英闪长岩主量、微量和稀土元素分析结果
Table 2 Result of whole-rock major, trace elements and REE of quartz biorite
样品号 P17-25-1 P17-104-1 P17-116-1 P17-135-1 PM001-36-1 PM001-18-1 P17-22-1 P17-114-1 P17-129-1 P17-143-1 SiO2 54.13 55.76 55.54 55.49 56.49 61.58 61.97 57.98 58.69 61.11 TiO2 1.00 1.57 0.94 0.90 0.90 0.56 0.79 0.78 0.58 1.09 Al2O3 17.37 17.06 18.29 16.84 17.41 15.92 16.92 17.01 17.47 17.72 Fe2O3 1.02 0.88 0.77 0.87 0.04 0.21 0.32 0.61 1.18 0.54 FeO 4.93 6.16 4.54 5.45 5.81 3.99 4.00 4.58 3.41 3.88 MnO 0.11 0.12 0.096 0.11 0.11 0.08 0.069 0.094 0.084 0.079 MgO 6.18 4.41 5.15 6.36 5.13 3.29 3.10 3.77 4.10 2.25 CaO 8.44 6.48 7.50 6.53 7.61 4.67 4.50 6.29 6.32 4.98 Na2O 3.12 3.43 3.30 3.11 3.13 3.50 3.61 3.38 3.44 4.07 K2O 1.52 1.75 1.32 1.36 1.54 2.75 1.98 1.94 1.86 2.01 P2O5 0.13 0.28 0.16 0.18 0.13 0.16 0.15 0.12 0.10 0.26 H2O+ 1.31 1.25 1.46 1.88 0.95 1.28 1.69 1.90 1.70 1.36 CO2 0.09 0.02 0.32 0.14 0.04 1.57 0.31 0.92 0.52 0.10 烧失量 1.51 1.42 1.90 2.18 1.07 2.86 2.13 2.94 2.38 1.59 总和 99.46 99.32 99.51 99.38 99.37 99.57 99.54 99.49 99.61 99.58 TFeO 5.85 6.95 5.23 6.23 5.85 4.18 4.29 5.13 4.47 4.37 Fe2O3 5.46 6.42 4.86 5.77 5.27 3.80 3.92 4.73 4.25 4.03 Cs 3.34 2.24 2.95 2.82 3.77 3.38 2.98 2.82 3.71 2.33 Rb 59.30 70.90 47.40 54.50 43.00 94.00 84.90 70.70 77.30 76.60 Sr 332.00 558.00 629.00 540.00 560.00 479.00 406.00 523.00 475.00 484.00 Ba 291.00 457.00 533.00 510.00 254.00 550.00 392.00 561.00 519.00 547.00 Ga 17.00 17.20 16.70 18.20 18.70 19.90 17.80 17.50 17.20 19.70 Nb 5.51 9.71 6.39 5.44 3.89 5.95 5.86 6.26 5.64 9.18 Ta 0.50 0.76 0.45 0.43 0.36 0.70 0.25 0.59 0.50 0.73 Zr 102.00 80.60 98.30 128.00 51.00 49.10 161.00 92.20 95.40 80.60 Hf 3.18 2.52 3.06 3.70 1.68 1.96 4.33 2.90 2.92 2.55 Th 5.10 3.84 3.34 5.25 3.69 4.21 8.04 6.22 6.03 5.15 V 150.00 126.00 166.00 194.00 168.00 72.70 89.50 107.00 96.80 60.40 Cr 203.00 66.00 105.00 126.00 80.20 87.60 89.60 43.70 57.50 20.90 Co 24.70 23.90 18.40 23.60 23.30 13.30 14.40 16.00 14.90 11.40 Ni 23.00 34.70 11.60 29.80 20.80 31.70 19.70 20.10 15.20 9.99 Li 14.40 20.30 24.30 31.80 24.90 25.20 20.70 28.20 28.00 26.60 Sc 26.20 21.70 23.90 26.80 21.80 13.20 15.10 19.90 18.60 13.10 U 1.52 1.10 1.11 1.39 0.73 1.80 1.61 1.16 1.00 1.28 Pb 9.59 9.24 8.05 8.70 10.70 17.20 11.9 14.2 10.8 12.3 Zn 58.20 54.80 44.00 65.80 62.30 56.70 56.70 43.60 52.30 53.40 Cu 18.80 25.10 16.50 46.40 21.90 19.70 15.70 16.30 12.80 12.60 La 18.00 18.60 16.20 19.30 15.60 14.20 19.00 18.70 19.00 21.70 Ce 49.40 56.80 44.30 49.00 30.80 25.30 40.30 45.40 42.70 50.20 Pr 4.59 6.63 4.37 5.12 3.87 3.22 3.75 4.18 3.98 5.12 Nd 17.70 31.10 18.00 21.50 14.90 12.30 13.00 15.80 15.00 20.90 Sm 4.00 7.26 3.93 4.78 2.97 2.70 2.64 3.22 3.00 4.37 Eu 1.20 1.91 1.39 1.44 1.29 1.06 0.99 1.10 1.19 1.34 Gd 3.92 7.98 3.78 4.52 2.91 2.68 2.63 3.03 2.79 4.01 Tb 0.66 1.20 0.61 0.74 0.49 0.45 0.42 0.49 0.44 0.62 Dy 4.04 6.92 3.67 4.44 2.80 2.72 2.30 2.91 2.60 3.65 Ho 0.82 1.38 0.72 0.90 0.58 0.52 0.46 0.59 0.52 0.71 Er 2.22 3.62 1.96 2.38 1.51 1.42 1.29 1.57 1.43 1.86 Tm 0.32 0.49 0.27 0.34 0.23 0.23 0.19 0.24 0.21 0.25 Yb 2.10 2.87 1.81 2.24 1.52 1.48 1.25 1.58 1.36 1.53 Lu 0.32 0.42 0.27 0.32 0.24 0.24 0.21 0.24 0.20 0.23 Y 19.90 32.60 17.40 21.20 14.00 13.20 11.60 14.50 12.70 17.10 ΣREE 129.19 179.78 118.68 138.22 93.71 81.72 100.03 113.55 107.12 133.59 LREE 94.89 122.30 88.19 101.14 69.43 58.78 79.68 88.40 84.87 103.63 HREE 34.30 57.48 30.49 37.08 24.28 22.94 20.35 25.15 22.25 29.96 LREE/HREE 2.77 2.13 2.89 2.73 2.86 2.56 3.92 3.51 3.81 3.46 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
Windley B F, Alexeiev D, Xiao W J, et al.Tectonics models for accretion of the Central Asian Orogenic Belt[J].J.Geol.Soc., Lond., 2007, 164:31-47. https://www.researchgate.net/publication/27246576_Tectonic_models_for_accretion_of_the_Central_Asian_Orogenic_Belt
Han B F, He G Q, Wang X C, et al.Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J].Earth-Sci.Rev., 2011, 109:74-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a792742ae51038a6367bfa517217091
Xu Z, Han B F, Ren R, et al.Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China:implications for Paleozoic intraoceanic subduction-accretion process[J].Lithos, 2012, 132/133:141-161.
Xu B, Charvet J, Chen Y, et al.Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J].Gondwana Res., 2013, 23:1342-1364.
Zhang X H, Gao Y L, Wang Z J, et al.Carboniferous appinitic intrusions from the northern North China craton:geochemistry, petrogenesis and tectonic implications[J].J.Geol.Soc., Lond., 2012, 169:337-351. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301002056.htm
Coleman R G.Continental growth of Northwest China[J].Tectonics, 1989, 8(3):621-635. https://www.researchgate.net/publication/252895163_Continental_Growth_of_Northwest_China
Windley B F, Allen M B, Zhang C, et al.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia[J].Geology, 1990, 18(2):128-131. http://adsabs.harvard.edu/abs/1990Geo....18..128W
肖序常, 格雷厄姆S A.中国西部元古代蓝片岩带——世界上保存最好的前寒武纪蓝片岩[J], 新疆地质, 1990, 8(1):12-21. http://qikan.cqvip.com/Qikan/Article/Detail?id=3001378583 肖序常, 汤耀庆, 冯益民, 等.新疆北部及其邻区大地构造[M].北京:地质出版社, 1992:1-169. Allen M B, Windley B F, Zhang C.Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J].Tectonophysics, 1992, 220(1/4):89-115. https://www.researchgate.net/publication/221995690_Palaeozoic_Collisional_Tectonics_and_Magmatism_of_the_Chinese_Tien_Shan_Central_Asia
Allen M B, Engör A M C, Natalin B A.Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia[J].Journal of the Geological Society(London), 1995, 152(2):32-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d93ec7e7a85de5d3e1296212feefd909
Sengör A M C, Natalin B A, Burtman V S.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in the Eurasia[J].Nature, 1993, 364:299-304. https://www.nature.com/articles/364299a0
Gao J, Li M S, Xiao X C, et al.Paleozoic tectonic evolution of the Tianshan orogen, northwestern China[J].Tectonophysics, 1998, 287(1/4):213-231. https://www.sciencedirect.com/science/article/abs/pii/S004019519880070X
Jahn B M, Griffin W L, Windley B F.Continental growth in the Phanerozoic:Evidence from Central Asia[J].Tectonophysics, 2000, 328(1):vii-x. https://www.sciencedirect.com/science/article/abs/pii/S0040195100001748
李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评, 2004, 50(3):304-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200403015 Xiao W J, Zhang L C, Qin K Z, et al.Paleozoic accretionary and collisional tectonics of the eastern Tianshan(CHINA):Implications for the continental growth of Central Asia[J].American Journal of Science, 2004, 304(4):370-395. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=DZDQ200412002039
Xiao W J, Han C, Yuan C, et al.Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:Implications for the tectonic evolution of Central Asia[J].Journal of Asian Earth Sciences, 2008, 32(2/4):102-117. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200901001082.htm
Xiao W J, Windley B F, Huang B C, et al.End -Permian to mid -Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J].International Journal of Earth Sciences, 2009, 98(6):1189-1217.
Wang Z Z, Han B F, Feng L X, et al.Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J].Asian Earth Sci., 2015, 97:337-351. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f4ae3595f23f841c3f99fbf2b41e60b
Zhang S H, Zhao Y, Song B, et al.Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Paleozoic active continental margin[J].J.Geol.Soc.Lond., 2007, 164:451-463.
Zhang S H, ZhaoY, Song B, et al.Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:geochronology, petrogenesis, and tectonic implications[J].Geol.Soc.Am.Bull., 2009a, 121:181-200. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/121/1-2/181/2330/Contrasting-Late-Carboniferous-and-Late-Permian?redirectedFrom=PDF
Zhang S H, Zhao Y, Kroner A, et al.Early Permain plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J].Int.J.Earth Sci., 2009b, 98:1441-1467.
Zhang X H, Wilde S, Zhang H F, et al.Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China:geochemistry, origin and tectonic implications[J].J.Geol.Soc.Lond., 2011, 168:525-543. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201001096.htm
周志广, 张华锋, 刘还林, 等.内蒙中部四子王旗地区基性侵入岩锆石定年及其意义[J]岩石学报, 2009, 25(6):1519-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906023 滕学建, 田健, 刘洋, 等.内蒙古狼山地区早志留世石英闪长岩体的厘定及其地质意义[J].地球科学, 2019, 44(4):1236-1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201904013 赵闯, 苏旭亮, 薛斌, 等.内蒙古西部苦楚乌拉-英巴地区花岗岩锆石U-Pb定年及地球化学特征[J].中国地质, 2020, http://141.rm.cglhub.com/kcms/detail/11.1167.P.20200210.2231.004.html." target="_blank"> http://141.rm.cglhub.com/kcms/detail/11.1167.P.20200210.2231.004.html. 王文龙, 滕学建, 刘洋, 等.内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J].地质力学学报, 2019, 23(3):382-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201703006 Feng J Y, Xiao W J, Windley B, et al.Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:implications for Late Permian accretionary tectonics in the southern Altaids[J].Asian Earth Sci., 2013, 78:114-142. https://www.researchgate.net/publication/257940259_Field_geology_geochronology_and_geochemistry_of_mafic-ultramafic_rocks_from_Alxa_China_Implications_for_Late_Permian_accretionary_tectonics_in_the_southern_Altaids?ev=prf_cit
刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 83(3):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200903006 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J].地质学报, 2004, 78(6):789-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200406009 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报, 2005, 21(1):143-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501014 刘烨.内蒙古东升庙地区花岗片麻岩和侵入岩的地球化学、年代学特征及构造意义[D].兰州大学硕士学位论文, 2012. Wu T R, He G Q, Zhang C.On Paleozoic tectonics in the Alxa region, Inner Mongolia, China[J].Acta Geol., Sin., 1998, 72:256-263.
Zhang W, Jian P, Kröner A, et al.Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J].Asian Earth Sci., 2013, 72:63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8389815332903d0031c5655e2776f34
李怀坤, 耿建珍, 郝爽, 等.用激光烧灼多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物岩石地球化学通报, 2009, 28(增刊):77. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2009S1311.htm Liu Y S, Gao S, Hu Z C.Continental and oceanic crust recycling-induced melt -peridotite interactions in the Trans -North of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571.
Ludwig K R.Users manual for Isoplot 3.0:A geochronological toolkit for Microsoft Exccel[J].Berkeley:Berkeley Geochronology Center, California, 2003:1-39. https://www.researchgate.net/publication/245539605_Users_manual_for_IsoplotEx_a_geochronological_toolkit_for_Microsoft_Excel
Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews, 1994, 37(3/4):215-224. https://www.researchgate.net/publication/223901164_Naming_materials_in_the_magmaigneous_rock_system
Kuno H.Differentiation of basaltic magmas[C]//Hess H H, Poldervaart A.Basalts: The Poldervaart treatise on rocks of basaltic composition, Interscience, New York, 1968: 623-688.
Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. https://www.researchgate.net/publication/231575101_Chemical_and_isotopic_systematics_of_oceanic_basalts_Implications_for_mantle_composition_and_processes
Saunders A D, Storey M, Kent R W, et al.Consequences of plume-lithosphere interactions[C]//Storey B C, Alabaster T, Pankhurst R J.Magmatism and the Cause of Continental Breakup.Geological Society, Special Publications 68, London, 1992: 41-60.
Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.
Defant M J, Drummond M S.Derivation of some modern arc magmas bymelting of young subducted lithosphere[J].Nature, 1990, 347:662-665. https://www.researchgate.net/publication/253404808_Derivation_of_some_modern_arc_magmas_by_melting_of_young_subducted_lithosphere
Michael P G, Eva S S.From continents to island arcs:A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J].Canada Mineralogy, 2000, 38:1065-1073. https://www.researchgate.net/publication/250273368_From_continents_to_island_arcs_A_geochemical_index_of_tectonic_setting_for_Arc-related_and_within-plate_felsic_to_intermediate_volcanic_rocks
Jian P, Liu D, Kröner A, et al.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J].Lithos, 2008, 101:233-259. https://www.researchgate.net/publication/229097104_Time_scale_of_an_early_to_mid-Paleozoic_orogenic_cycle_of_the_long-lived_Central_Asian_Orogenic_Belt_Inner_Mongolia_of_China_Implications_for_continental_growth
石玉若, 刘翠, 邓晋福, 等.内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J].岩石学报, 2014, 30(11):3155-3171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201411005 Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J].Tectonics, 2003, 22(6), doi: 10.1029/2002TC001484.
李文国, 李庆富, 姜万德, 等.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996. 天津地质调查中心.区域地质矿产调查报告(查干呼舒庙等六幅 ).2016. -
期刊类型引用(4)
1. 付超,李俊建,张帅,党智财,唐文龙,Orolmaa Demberel. 中蒙边界地区侵入岩时空分布特征及对构造演化的启示. 华北地质. 2023(01): 1-19 . 百度学术
2. 李利阳,韩瑶,伍光英,侯红星,刘博,刘根源. 大兴安岭乌奴耳地区石炭纪花岗闪长岩锆石U-Pb年龄及形成地质背景. 地质与资源. 2022(06): 707-715+728 . 百度学术
3. 王凯垒,张学萌,李会恺,郑乐,张家兴,邢东雪,陈涛,侯占元. 内蒙古阿拉善地块北缘雅布赖地区埃达克岩锆石U-Pb年龄、岩石成因和构造背景. 地质通报. 2021(09): 1443-1458 . 本站查看
4. 田健,辛后田,滕学建,段霄龙,程先钰,孙立新,张永,任邦方. 内蒙古北山造山带白云山蛇绿混杂岩的厘定及其对北山洋俯冲消减的指示. 地质通报. 2020(09): 1436-1447 . 本站查看
其他类型引用(1)