A discussion on the distribution pattern of tectonic stress field in northern hemisphere continental crust based on the finite element analysis
-
摘要:
北半球大陆现今地貌形态是板块作用的产物,其动力学机制相当复杂,而目前尚无统一的应力分布模式。采用三维弹性有限元模型,综合考虑构造边界与地壳结构的影响,并以震源机制解作为验证手段,正演出北半球陆壳现今构造应力场。结果显示,板块边界力对区域构造应力场起主导作用,而地壳深部莫霍面与均衡面的深度差会伴生垂向构造力使局部地区应力性质发生改变。受地壳结构的影响,板块的汇聚边界、转换边界仍可存在高张应力值,地壳内部构造活动强烈地区往往差应力值较大。北半球现今地应力场是地壳长期演化的一个瞬时状态,三维弹性球壳模型模拟结果可靠,可以作为北半球陆壳构造应力场分析的定量参考模型。
Abstract:The current geomorphology of the northern hemisphere continent results from plate tectonics, which manifests the complicated dynamic mechanism.However, there is no unified stress distribution pattern at present.In this paper, a three-dimensional elastic finite element model was applied to calculating the tectonic stress field in northern hemisphere continental crust by comprehensively considering the influence of tectonic boundaries and crustal structure, which was then tested by the focal mechanism solutions.The results show that the boundary force plays a key role in the regional tectonic stress field, and the depth difference between the Moho and the equilibrium interface will contribute to the vertical tectonic stress and to changing the stress properties afterwards.Influenced by the crustal structure, the convergent and transform boundaries can also partially have high tensile stress, while the tectonic active regions tend to have large differential stress values.The current stress field of the northern hemisphere is in a transient state of the long-term crustal evolution process.The simulation results of the three-dimensional elastic spherical model are reliable and can be used as a quantitative reference for the northern hemisphere tectonic stress field analysis.
-
-
图 1 北半球陆壳受力模式(a)和三维有限元模型网格剖分与边界条件(b)
(布格重力异常数据据WGM2012[28];投影方式为正交投影;红线表示陆块边界,黑色虚线表示造山带)
Figure 1. The stress pattern of the northern hemisphere continental crust (a) and the meshing grids and boundary conditions for the 3D finite element model (b)
图 2 北半球板块(1976—2018)震源机制解(a)、震源机制解P、T轴水平投影(b)、水平最大主压应力(σ3) (c)和水平最大主拉应力(σ1) (d)
(a中数据据参考文献[18-19];b中红蓝线分别表示P轴和T轴;c中黑色箭头为水平最大主压应力(σ3)方向的模拟结果;d中黑色箭头为水平最大主拉应力(σ1)方向的模拟结果)
Figure 2. Focal mechanism solution of northern hemisphere plate (1976—2018) (a), horizontal projections of the P and T axesfor focal mechanism solution (b), the horizontal maximum principal compressive stress (σ3) (c) and the horizontal maximum principal tensile stress (σ1) (d)
图 3 北半球陆壳运动速度矢量图(a)、差应力分布云图(b)、最大主压应力(σ3)分布云图(c)和最大主拉应力(σ1)分布云图(d)
(最大主压应力(σ3)表示为负(-),最大主拉应力(σ1)表示为正(+),差应力(σ1-σ3)表示为正(+))
Figure 3. Velocity vector map of thenorthern hemisphere continental crust (a), differential stress distribution cloud map (b), maximum principal compressive stress (σ3) distribution cloud map (c) and maximum principal tensile stress (σ1) distribution cloud map (d)
表 1 地壳承载的垂向构造应力
Table 1 Vertical tectonic stress carried by the crust
参数 科迪勒拉造山带 盆岭省 欧洲平原 欧亚中部 欧亚东部 北美中东部 阿尔卑斯造山带 喜马拉雅造山带 布格重力异常/mGal -200~0 -300~-200 60~100 0~60 -100~60 40~100 -200~0 -600~-400 莫霍面与均衡面深度差/km -5~0 -7.5~-5 1.5~2.5 0~1.5 -2.5~1.5 1~2.5 -5~0 -15~-10 法向应力值/MPa -33~0 -48~-33 +10~+16 0~+10 -16~+10 +6.5~+16 -33~0 -100~-65 注:“-”表示应力方向垂直球面向下,“+”表示应力方向垂直球面向上 -
Sperner B, Muller B, Heidbach O, et al.Tectonic stress in the Earth's crust:advances in the World Stress Map project[J].Geological Society London Special Publications, 2003, 212(1):101-116. doi: 10.1144/GSL.SP.2003.212.01.07
Heidbach O, Tingay M, Barth A, et al.Global crustal stress pattern based on the World Stress Map database release 2008[J].Tectonophysics, 2010, 482(1/4):0-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fdcf298fabfc582ea418fa27b5d85e13
Zhang S.The modeling of the tectonic stress field-theroy, method and related research progress on the finite element method[J].Progress in Geophysics, 2011, 26(1):52-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201101005
Brenner, Susanne C, Scott L.The mathematical theory of finite element methods[J].Texts in Applied Mathematics, 2002, 3(298):263-291. doi: 10.1007/978-0-387-75934-0
Tian Y, Liu X, Li X.Finite Element Method of 3-D Numerical Simulation on Tectonic Stress Field[J].Earth Science, 2011, 36(2):375-380. doi: 10.3799/dqkx.2011.041
Liu M, Yang Y.Extensional collapse of the Tibetan Plateau:Results of three-dimensional finite element modeling[J].Journal of Geophysical Research:Solid Earth, 2003, 108(B8):2361-2376. doi: 10.1029/2002JB002248
Wei J, Sun W.Tectonic fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China Part one:Characteristics and controlling factors[J].Journal of Petroleum Science and Engineering, 2016, 146:617-625. doi: 10.1016/j.petrol.2016.07.042
Peng G, Yao L, Ren D.Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China[J].Journal of Structural Geology, 2016, 86:211-223. doi: 10.1016/j.jsg.2016.03.007
Wu Z, Zuo Y, Wang S, et al.Numerical study of multi-period palaeotectonic stress fields in Lower Cambrian shale reservoirs and the prediction of fractures distribution:A case study of the Niutitang Formation in Feng'gang No.3 block, South China[J].Marine and Petroleum Geology, 2017, 80:369-381. doi: 10.1016/j.marpetgeo.2016.12.008
Reynolds S D, Coblentz D D, Hillis R R.Tectonic forces controlling the regional intraplate stress field in continental Australia:Results from new finite element modeling[J].Journal of Geophysical Research:Solid Earth, 2002, 107(B7):2131-2146. doi: 10.1029/2001JB000408
Müller R D, Yatheesh V, Shuhail M.The tectonic stress field evolution of India since the Oligocene[J].Gondwana Research, 2015, 28(2):612-624. doi: 10.1016/j.gr.2014.05.008
Richardson R M, Reding L M.North American Plate Dynamics[J].Journal of Geophysical Research, 1991, 96(B7):12201-12223. doi: 10.1029/91JB00958
Bird P.Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting[J].Computers and Geosciences, 1999, 25(4):383-394. doi: 10.1016/S0098-3004(98)00142-3
武永彩, 李昂, 唐红涛.滇西北地区近年来应力场的数值模拟研究[J].大地测量与地球动力学, 2018, 38(12):1238-1242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201812005 Lei X.Three-dimensional thermo-mechanical modeling of the Cenozoic uplift of the Tianshan mountains driven tectonically by the Pamir and Tarim[J].Journal of Asian Earth Sciences, 2013, 62(30):797-811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f886785bcef3c4dfd3b369c1c84c0bc
范桃园, 龙长兴, 杨振宇, 等.中国大陆现今地应力场黏弹性球壳数值模拟综合研究[J].地球物理学报, 2012, 55(4):1249-1260. doi: 10.6038/j.issn.0001-5733.2012.04.020 Min G, Hou G.Geodynamics of the East African Rift System~30 Ma ago:A stress field model[J].Journal of Geodynamics, 2018, 117:1-11. doi: 10.1016/j.jog.2018.02.004
Dziewonski A M, Chou T A, Woodhouse J H.Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J].Journal of Geophysical Research:Solid Earth, 1981, 86(B4):2825-2852. doi: 10.1029/JB086iB04p02825
Ekström G, Nettles M, Dziewonski AM.The global CMT project 2004-2010:Centroid-moment tensors for 13, 017 earthquakes[J].Physics of the Earth and Planetary Interiors, 2012, 200:1-9. doi: 10.1016/j.pepi.2012.04.002
Richardson R M.Finite element modeling of stress in the Nazca plate:driving forces and plate boundary earthquakes[J].Tectonophysics, 1978, 50(2/3):223-248.
Gölke M, Coblentz D.Origins of the European regional stress field[J].Tectonophysics, 1996, 266(1/4):11-24. doi: 10.1016/S0040-1951(96)00180-1
Turcotte D L, Schubert G.Geodynamics[M].Cambridge University Press, 2014.
Richardson R M.North American plate dynamics[J].Journal of Geophysical Research:Solid Earth, 1991, 96(B7):12201-12223. doi: 10.1029/91JB00958
张庆莲, 侯贵廷, 潘校华.中西非裂谷系形成的动力学机制[J].地质力学学报, 2018, 24(2):29-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201802004 Pacanovsky K M, Davis D M, Richardson R M, et al.Intraplate stresses and plate-driving forces in the Philippine Sea Plate[J].Journal of Geophysical Research, 1999, 104(B1):1095-1110. doi: 10.1029/98JB02845
高尚华, 佘雅文, 付广裕.利用重力/GPS联合观测数据计算地壳垂向构造应力的新方法[J].地球物理学报, 2016, 59(6):2006-2013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606007 Wang C, Zhu L, Lou H, et al.Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications[J].Journal of Geophysical Research, 2010, 115(B11):301-317. doi: 10.1029/2010JB007527
Bonvalot S, Balmino G, Briais A, et al.World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids[C]//EGU General Assembly Conference.EGU General Assembly Conference Abstracts, 2012: 11091.
Finzel E S, Flesch L M, Ridgway K D.Present-day geodynamics of the northern North American Cordillera[J].Earth and Planetary Science Letters, 2014, 404:111-123. doi: 10.1016/j.epsl.2014.07.024
Zoback M D, Zoback M L, Mount V S, et al.New evidence on the state of stress of the San Andreas fault system[J].Science, 1987, 238:1105-1111. doi: 10.1126/science.238.4830.1105
Conrad C P.Influence of continental roots and asthenosphere on plate-mantle coupling[J].Geophysical Research Letters, 2006, 33(5):312-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5313e82b7744b94d22e04ddc4dce2bf
Hatzfeld D, Molnar P.Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications[J].Reviews of Geophysics, 2010, 48:2005-2053. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009RG000304
Copley A, Avouac J P, Royer J Y.India-Asia collision and the Cenozoic slowdown of the Indian plate:Implications for the forces driving plate motions[J].Journal of Geophysical Research:Solid Earth, 2010, 115(B0):3410-3424. doi: 10.1029/2009JB006634
张东宁, 许忠淮.中国大陆岩石层动力学数值模型的边界条件[J].地震学报, 1999, (2):133-139. doi: 10.3321/j.issn:0253-3782.1999.02.003 汪素云, 张琳.中国及其邻区周围板块作用力的研究[J].地球物理学报, 1996, 39(6):764-771. doi: 10.3321/j.issn:0001-5733.1996.06.006 詹文欢, 钟建强, 丘学林, 等.南海及邻域现代构造应力场的数值模拟[J].华南地震, 1992, 12(3):11-20. http://www.cnki.com.cn/Article/CJFDTotal-HNDI199203001.htm 臧绍先, 宁杰远.菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J].地球物理学报, 2002, 45(2):188-197. doi: 10.3321/j.issn:0001-5733.2002.02.005 许忠淮, 吴少武.南黄海和东海地区现代构造应力场特征的研究[J].地球物理学报, 1997, 40(6):773-781. doi: 10.3321/j.issn:0001-5733.1997.06.006 Zoback M L, Zoback M D.Tectonic stress field of the continental United States[J].Geophysical framework of the continental United States:Geological Society of America Memoir, 1989, 172:523-539. https://scits.stanford.edu/sites/g/files/sbiybj13751/f/1989-zoback-mem172-p523_1.pdf
徐纪人, 赵志新.中国大陆地壳应力场与构造运动区域特征研究[J].地球物理学报, 2008, 51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018 谢富仁, 崔效锋, 赵建涛, 等.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 2004, 47(4):654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016