An analysis of Zircon U-Pb age, geochemistry and tectonic setting of Dongfu pluton in Tuquan, middle Da Hinggan Mountains
-
摘要:
对突泉地区东福岩体二长岩进行了LA-ICP-MS锆石U-Pb年代学和地球化学研究,探讨其形成构造背景。结果显示,二长岩形成于161.8±1.1 Ma,时代为晚侏罗世早期;二长岩具有弱负Eu异常、富大离子亲石元素、贫高场强元素特征,原始岩浆应来自地壳物质的部分熔融;较高的Sr含量表明源区有少量斜长石残留,轻稀土元素富集、重稀土元素亏损暗示源区富集重稀土元素矿物(如石榴子石)的残留,二者共同揭示二长岩形成于中-高压环境,是加厚陆壳坍塌或拆沉到一定阶段部分熔融的产物。结合区域资料,认为该区晚侏罗世二长岩的形成与蒙古-鄂霍茨克缝合带演化至后碰撞阶段构造环境有关,蒙古-鄂霍茨克洋南西段在晚侏罗世早期已闭合。
Abstract:LA-ICP-MS zircon U-Pb geochronology and geochemistry of the monzonite in Dongfu pluton of Tuquan area was studied to explore the tectonic background of its formation.The results show that the monzonite was formed in Late Jurassic(161.8±1.1 Ma).The monzonite displays slightly negative Eu anomalies, enrichment of LILEs and depletion of HFSEs, suggesting that its primitive magma was derived from partial melting of the crust.High content of Sr shows the existence of a small amount of residual plagioclase in the source region.The enrichment of LREEs and depletion of HREEs suggest that the minerals such as pomegranate were enriched in HREEs in the source region.The residues of plagioclase and pomegranate reveal that the monzonites were formed in the environment with medium-high pressure, and were products of the partial melting of the thickened crust which delaminated or collapsed to a certain extent.Combined with regional geology, the authors hold that the formation of the monzonites was related to the post-collisional tectonic environment of the evolution in Mongolia-Okhotsk suture zone, and the southwestern part of the Mongolia-Okhotsk Ocean was closed in Late Jurassic.
-
Keywords:
- Tuquan area /
- geochemistry /
- Late Mesozoic /
- monzonites /
- tectonic environment /
- the Mongol-Okhotsk Ocean /
- post-collision
-
关于国际地层年表中的侏罗系/白垩系界线年龄,在21世纪80年代初国际地学界分别提出了144Ma和130Ma两种方案。英国剑桥大学Harland等[1]提出了侏系系/白垩系界线年龄为144Ma,是用“年龄平摊法”算出的;法国居里大学Kennedy等[2]根据各国海相地层中海绿石年龄的测定结果提出侏罗系/白垩系界线年龄为130Ma [3](包括世界各国20个实验室、136位专家提供的研究成果)。
对上述2种方案,144Ma(现在国际地层年表修改为145Ma)方案被认为不可取[4]。王思恩等[3]评述中国陆相生物地层的侏罗系/白垩系界线在河北滦平盆地;王思恩等[5]确认130.7Ma为中国陆相地层侏罗系/白垩系的界线年龄。本文依据全国地层委员会组织的滦平盆地中生代地层野外考察时采集的凝灰岩样品,对大北沟组顶部凝灰岩(斑脱岩)锆石实测年龄数据表明:侏罗系/白垩系界线的年龄应在129.9±1.1Ma,该数据与Odin为首的各国专家提出的130Ma方案一致,考虑了法国、英国、前苏联、瑞典、美国的侏罗系/白垩系界线附近地层中多国的海绿石测年数据,建议采用法国侏罗系/白垩系界线为标准[2]。
“国际地层表说明” [6]明确指出,“侏罗系—白垩系界线无疑是所有系(纪)中最成问题的界线之一”。究其原因,无论海相或陆相均未找到沉积连续和化石丰富的界线地层剖面,更未建立层型,使研究者讨论问题缺乏统一的标准。中国陆相侏罗纪—白垩纪地层发育得天独厚,自Grabau于1923年提出“热河生物群”开始,两系界线划分一直存在激烈争论,争论焦点是热河生物群的发展演化和层位归属[7-8]。
1. 地质背景
中国陆相侏罗系—白垩系相当发育,分布广泛。在中国东部地区主要分布于各种断陷盆地和山间小盆地中。中国侏罗纪和白垩纪的陆相地层中赋存丰富的煤、石油、天然气资源;火山岩地层中含有多种金属矿产,因此,对侏罗纪—白垩纪地层的研究有重要的意义。通过建立“陆相层型”工作[9-22],于冀北滦平盆地火斗山乡张家沟找到了大北沟组-大店子组-西瓜园组沉积连续剖面,该剖面出露完整、化石丰富、无后期构造干扰;该剖面属单一断陷湖盆沉积,以半深湖-深湖相夹扇三角洲相为特征,夹多层火山岩。剖面上发育丰富的多门类化石,富含三尾拟蜉蝣、介形虫、叶肢介、腹足类、双壳类、两栖类龟鳖类、节肢动物虾类、脊椎动物狼鳍鱼、鲟等。特别是张家沟下营榆树下剖面,大北沟组顶部—大店子组底部界线为典型的陆相地层剖面,属单一浅湖相泥岩夹砂岩沉积。经过多学科的综合研究,建立陆相侏罗系—白垩系界线层型,确定界线点位以介形虫Cypridea stenolonga的始现为标志。
目前侏罗系/白垩系界线附近的生物地层学研究,对地层的划分和对比仍存在不同的意见,例如,以冀北—辽西地区为例,侏罗系/白垩系界线划在义县组底,还是划在义县组之中?这是依然需要研究与讨论的问题。
2. 地层序列及采样层位
陆相侏罗系—白垩系界线过渡地层在冀北滦平盆地分别称大北沟组和大店子组,发育于该地区南部,(从东到西)沿西沟—大北沟—大店子—张家沟—兴隆沟—柏砬沟一线呈带状出露(图 1)。大北沟组剖面位于榆树下村的西侧,起点坐标:北纬40o49' 20″、东经117o12'99″;终点坐标:北纬40o 49' 144″、东经117o 12' 50″,总厚226.95m。出露完好且化石丰富。笔者对冀北滦平盆地侏罗系/白垩系界线附近大北沟组顶部的凝灰岩进行了采样(图版Ⅰ)。
图 1 冀北滦平县榆树下侏罗系与白垩系界线剖面[23]Figure 1. The section of the boundary between Jurassic and Cretaceous in Yushuxia, Luanping County, Hebei Province下白垩统义县阶(下部)大店子组一段(K1d1)黄褐色厚层细砾岩和含砾粗砂岩
—————————整合—————————
上侏罗统大北沟阶大北沟组三段(J3d3)
27.黄绿色粉砂质泥岩、粉砂岩,夹大量小泥灰岩透镜体。含介形类Eoparacypris surriensis, E.jingshangensis, Torinina obesa, Darwinula leguminella,D.xiayingensis;叶肢介Nestoria pissovi 10.96m
26.灰绿色泥岩、粉砂质泥岩,夹灰色薄层泥灰岩和黑色页岩。由下至上发育4个韵律,每一韵律下部为均一的泥岩,上部夹泥灰岩和黑色页岩。含丰富的介形类Luanpingella postacuta, L. dorsincurva, Torinina obesa, Eoparacypris surriensis, E. jingshangensis, E. aff. macroselina, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, P. dorsalta, Limnocypridea subplana, Rhinocypris dadianziensis, R. subechinata, Djungarica sp. 1, Djungarica sp. 2, Darwinula xiayingensi, D. leguminella, D. dadianziensis等;叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, Pseudograpta zhangjiagouensis, P.dadianziensis, Nestoria sp., Yanshania xishunjingensis, Y. subovata, N. latiovata, P. huodoushanensis;双壳类Arguniella lingyuanensis, A. yanshanensis 18.27m
25.厚层土黄色钙质泥岩为底,上覆灰绿色钙质粉砂岩和深灰色钙质泥岩,夹灰黑色钙质泥页岩和薄板状粉砂岩、泥灰岩。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. longipoda, Pseudograpta zhangjiagouensis, P. dabeigouensis 21.23m
24.灰绿色粉砂质泥岩和钙质粉-细砂岩,夹深灰色钙质页岩、硅质泥岩和薄层泥灰岩。向上粉砂岩增多。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis, Djungarica sp. 2等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. ovata 38.20m
23.灰黄色、灰绿色中-厚层中-粗粒凝灰质砂岩,层理发育欠佳 7.94m
22.灰紫色凝灰角砾岩。角砾粒径小,岩层内分布不均,具有流动构造,横向呈透镜状 1.77m
————————整合—————————
上侏罗统大北沟阶大北沟组二段(J3d2)
21.黄褐色中薄层钙质粉砂岩、粉砂质泥岩 5.43m
20.黄褐色泥岩夹薄中层粉砂岩。产昆虫Ephemeropsis trisetailis;叶肢介Nestoria pissovi, N. xishunjingensis,Yanshania xishunjingensis, N. cf. krasinetzi, Pseudograpta cf. dadianziensis 20.18m
19.灰色中-薄层钙质泥岩,夹黑色页岩和灰黄色粉砂岩。含叶肢介Nestoria pissovi, N. xishunjingensis 1.39m
18.黄褐色粉砂岩,夹灰色薄层钙质泥岩。含叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, N. karaica, N. Rotalaria 11.88m
17.黄褐色粉砂岩,夹灰色薄层泥灰岩 5.28m
16.灰褐色硅质页岩和钙质页岩。含叶肢介Nestoria pissovi, N.karaica, N. xishunjingensis, N. rotalaria, N. mirififormis, N. oblonga,Jibeilimnadia ovata, Yanshania cf. xishunjingensis, Pseudograpta cf. zhangjiagouensis 1.92m
15.黄褐色中-厚层中-粗粒长石石英砂岩、块状粉砂岩 0.96m
14.深灰色钙质泥岩和土黄褐色粉砂岩、粉砂质泥岩,夹褐黑色钙质页岩和硅质页岩。含叶肢介Jibeilimnadia ovata, J. curtiovata, J. latiovata, J. elliptica, Nestoria pissovi,N. karaica, N. krasinetzi,N. xishunjingensis,Yanshania zhangjiagouensis 5.28m
13.灰黄色中-薄层粉砂岩,夹褐黑色钙质页岩和薄层泥灰岩。含叶肢介Nestoria pissovi, Nestoria sp.及大量植物碎片 7.25m
12.褐黑色薄片状硅质泥页岩、褐黄色钙质页岩和灰绿色泥岩,夹粉砂质泥岩,泥灰岩透镜体和薄层凝灰质中粗砂岩。含叶肢介Nestoria xishunjingensis, N. pissovi, N. luanpingensis, N. karaica, N. krasinetzi, Yanshania xishunjingensis, Y. subovata, Y. zhangjiagouensis 7.25m
11.黄褐色薄-中层粗粉砂岩,夹透镜状细砂岩和硅质泥岩 3.02m
10.灰褐色薄-中层硅质泥岩,夹灰绿色薄层粉砂泥岩。含叶肢介N. pissovi, Yanshania xishunjingensis 6.04m
9.浅灰黄色中-薄层状粗粉砂岩和细砂岩。形成下细上粗的5个旋回 4.23m
8.灰褐色薄层状硅质泥岩、硅质页岩,顶部为浅灰色中层凝灰质细砂岩 2.42m
7.灰褐色中-厚层状硅质泥岩和黄绿色粉砂质泥岩互层。含叶肢介Yanshania xishunjingensis, Y. subovata, Nestoria cf. reticulata, N. pissovi, N. xishunjingensis, Jibeilimnadia ovata 4.23m
—————————整合————————
上侏罗统大北沟阶大北沟组一段(J3d1)
6.灰绿色中-厚层凝灰质砂岩、含砾砂岩与粉砂岩、泥岩互层 12.90m
5.灰绿色厚层含砾粗砂岩与粗砾岩,砾石分布不均,局部透镜状,岩层横向变化较大 2.20m
4.灰绿色中-厚层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩,发育斜层理层 6.20m
3.灰绿色砂屑沉凝灰岩,层理发育 3.50m
2.褐灰色中薄层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩互层 8.80m
1.灰绿色、褐灰色中薄层夹厚层凝灰质含砾砂岩、夹薄层沉凝灰岩 1.50m
——————火山喷发不整合——————
下伏地层:上侏罗统待建阶张家口组灰绿色凝灰岩
3. 分析方法和结果
3.1 分析方法
锆石U-Th-Pb同位素测定在北京离子探针中心的SHRIMP-Ⅱ上进行,参照分析流程[24]。原始数据的处理[24-25]和锆石U-Pb谐和图的绘制采用Ludwig博士编写的Squid和Isoplot程序[26]。所扣除普通铅的组成根据Stacey等给出的模式计算得出[27](表 1),同位素比值和年龄的误差为1σ相对误差,206Pb/238U年龄加权平均值为95%的置信度误差。
表 1 滦平盆地侏罗纪—白垩纪斑脱岩样品(2PDBG-2-1) SHRIMP锆石U-Th-Pb测定结果Table 1. SHRIMP U-Th-Pb results for zircons bentonate(2PDBG-2-1) from the Luanping Basin, Hebei Province测点 206Pbc/% U/10-6 Th/10-6 232Th/
238U206Pb*/10-6 206Pb/238U
年龄/Ma207Pb*/235U 206Pb*/238U 误差相关系数 比值 ±1 比值 ±1σ 2PDBG-2-1-1.1 0.64 825 446 0.56 14.4 129.0±2.2 0.1136 7.6 0.02022 1.7 0.229 2PDBG-2-1-2.1 0.57 435 189 0.45 7.77 131.8±2.4 0.128 8.4 0.02066 1.8 0.215 2PDBG-2-1-3.1 0.21 509 221 0.45 8.93 130.0±2.3 0.1299 7.1 0.02038 1.8 0.248 2PDBG-2-1-4.1 0.00 545 327 0.62 9.49 130.6±2.4 0.151 9.4 0.02047 1.8 0.195 2PDBG-2-1-5.1 1.24 595 366 0.64 10.5 129.6±2.2 0.0967 9.6 0.02031 1.8 0.183 2PDBG-2-1-6.1 0.22 676 395 0.60 12.1 132.6±2.2 0.1311 3.9 0.02079 1.7 0.433 2PDBG-2-1-7.1 3.45 432 184 0.44 7.52 125.0±2.7 0.054 51 0.01958 2.2 0.043 2PDBG-2-1-8.1 0.00 836 556 0.69 14.9 132.4±2.2 0.1407 3.4 0.02075 1.7 0.482 2PDBG-2-1-9.1 0.62 644 337 0.54 11.2 128.3±2.2 0.1128 8.7 0.02010 1.8 0.201 2PDBG-2-1-10.1 9.71 848 696 0.85 16.3 128.8±3.9 0.074 76 0.02019 3.1 0.041 2PDBG-2-1-11.1 0.51 789 540 0.71 13.6 127.0±2.1 0.1195 4.4 0.01990 1.7 0.385 2PDBG-2-1-12.1 0.00 381 192 0.52 6.74 134.9±3.0 0.204 13 0.02115 2.2 0.175 2PDBG-2-1-13.1 0.00 521 286 0.57 9.11 130.8±2.3 0.145 8.3 0.02049 1.8 0.217 2PDBG-2-1-14.1 0.41 611 233 0.39 10.9 132.1±2.4 0.1325 4.3 0.02070 1.8 0.424 2PDBG-2-1-15.1 1.66 744 437 0.61 12.8 126.2±2.2 0.091 15 0.01977 1.8 0.122 2PDBG-2-1-16.1 0.00 745 430 0.60 13.1 131.1±2.2 0.1444 3.4 0.02054 1.7 0.490 2PDBG-2-1-17.1 0.00 443 225 0.53 7.63 128.0±2.2 0.1448 4.7 0.02005 1.8 0.379 2PDBG-2-1-18.1 0.00 940 767 0.84 16.3 129.2±2.1 0.1375 3.2 0.02024 1.6 0.510 3.2 分析结果
样品中的锆石晶体呈无色透明-浅黄色自形,粒度多在150~200μm之间,长宽比为2~3。阴极发光图像(CL)显示,锆石具典型的岩浆生长环带,古锆石属于岩浆结晶的产物(图版Ⅰ-g、h)。根据可见光图像和CL图像选择合适的位置进行测定,即根据可见光图像剔出裂隙发育和含包裹体较多的颗粒,选取无裂缝、无包裹体的区域;同时根据CL图像,避免测定位置跨越不同世代的混合区域。
凝灰岩样品(2PDBG-2-1)共测试18颗锆石;其中U含量为381×10-6~848×10-6;个别可达940×10-6;Th含量为184×10-6~696×10-6;个别可达767×10-6;Th/U值为0.21~3.45,个别可到9.71(表 1)。样品2PDBG-2-1测试了18个数据点,15个数据点位于谐和线上(图 2),排除受后期普通铅影响的3个数据点(7.1、10.1、15.1)的年龄值。15个数据点的206Pb/238U年龄为129.9±1.1 Ma,MSWD=0.79,该年龄代表了大北沟组顶部凝灰岩的形成时代。
4. 结论
(1) 依据生物地层的研究,将中国陆相侏罗系/白垩系界线划在大北沟组与大店子组之间,由此结合前人资料推测,国际海相侏罗系/白垩系界线的年龄应接近130.7Ma。
(2) 参考前人资料土城子组(后城组)下部年龄为142.6 ± 1.9Ma,中部为139.6 ± 1.5Ma,上部为136.4±1.9~137.3±1.1Ma;张家口组底部锆石年龄为133.7±1.1Ma,张家口组顶部锆石年龄为130.8± 0.7Ma;本文获得大北沟组顶部精确锆石年龄129.9±1.1M,建议将大北沟组顶部凝灰岩(斑脱岩)锆石年龄129.9±1.1Ma视为中国陆相侏罗系/白垩系界线年龄。
(3) 冀北滦平盆地侏罗系—白垩系同位素年龄测定表明,侏罗系/白垩系界线年龄值可能接近130Ma,而非145Ma。
致谢: 感谢中国地震局地壳应力研究所王晓先副研究员,中国地质调查局沈阳地质调查中心孙巍、马永非、李斌工程师,唐振、陈井胜和江斌高级工程师在成文过程中提出的有益讨论意见。 -
图 1 研究区地质简图(a据参考文献[5]修改)
Figure 1. Geological sketch map of the study area
图 6 二长岩SiO2-K2O图解[31]
Figure 6. Plot of SiO2 versus K2O for the monzonite
图 7 研究区二长岩A/CNK-A/NK图解[32]
Figure 7. Plot of A/CNK versus A/NK for the monzonite in the study area
图 10 研究区二长岩R1-R2构造判别图解[38]
Figure 10. R1-R2 tectonic discrimination diagram for the monzonite in the study area
表 1 突泉地区东福岩体二长岩锆石U-Th-Pb同位素分析结果
Table 1 Zircon U-Th-Pb isotopic analyses of the Dongfu monzonite in Tuquan area
样品点号 元素含量/10-6 同位素原子比值 年龄/Ma Pb U Th 232Th/238U 208Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb G012-1-1 2 12 2 0.18 0.0441 0.0513<4> 0.378<43> 0.0522<60> 323±3 326±31 300±297 G012-1-2 6 73 21 0.29 0.0616 0.0251<2> 0.174<11> 0.0497<29> 160±1 163±9 189±142 G012-1-3 5 64 16 0.24 0.0564 0.0256<2> 0.175<9> 0.0502<26> 163±1 163±8 211±122 G012-1-4 7 89 45 0.51 0.0787 0.0256<4> 0.175<10> 0.0494<25> 163±3 164±9 165±119 G012-1-5 3 45 12 0.26 0.0564 0.0255<1> 0.177<10> 0.0501<29> 163±1 165±9 211±137 G012-1-6 3 38 7 0.18 0.0417 0.0252<2> 0.175<20> 0.0508<59> 160±1 164±17 232±248 G012-1-7 3 34 6 0.19 0.0407 0.0261<2> 0.178<14> 0.0490<38> 166±1 166±12 150±174 G012-1-8 6 74 21 0.29 0.0625 0.0255<3> 0.179<14> 0.0508<40> 162±2 167±12 232±183 G012-1-9 2 31 6 0.19 0.0336 0.0252<2> 0.174<19> 0.0492<54> 161±1 163±16 167±228 G012-1-10 3 40 4 0.09 0.0251 0.0258<2> 0.177<11> 0.0498<32> 164±1 166±10 183±148 G012-1-11 3 44 8 0.19 0.0336 0.0252<2> 0.172<17> 0.0492<48> 160±1 161±15 167±206 G012-1-12 3 42 8 0.19 0.0381 0.0251<1> 0.174<13> 0.0500<37> 159±1 163±11 195±175 G012-1-13 4 51 11 0.21 0.0427 0.0250<1> 0.172<11> 0.0498<31> 159±1 161±9 183±143 G012-1-14 4 46 12 0.26 0.0527 0.0259<2> 0.177<19> 0.0492<51> 165±1 165 ±16 167±217 G012-1-15 3 44 9 0.22 0.0426 0.0254<1> 0.176<11> 0.0498<31> 162±1 165±10 187±144 G012-1-16 11 147 21 0.14 0.0293 0.0262<5> 0.179<9> 0.0495<27> 167±3 167±8 172±128 G012-1-17 6 86 59 0.69 0.0522 0.0231<2> 0.161<11> 0.0500<33> 147±1 151±10 195±154 G012-1-18 3 36 7 0.20 0.0465 0.0290<2> 0.206<18> 0.0510<45> 184±1 190±15 239±199 G012-1-19 3 43 9 0.22 0.0362 0.0257<3> 0.177<22> 0.0499<61> 164±2 166±19 191±259 G012-1-20 3 17 3 0.18 0.0343 0.0498<5> 0.386<48> 0.0559<70> 313±3 331±35 450±281 G012-1-21 3 36 7 0.20 0.0332 0.0251<3> 0.171<23> 0.0504<67> 160±2 160±20 213±285 表 2 突泉地区东福岩体二长岩主量、微量和稀土元素分析结果
Table 2 Representative major, trace and rare earth element data of the Dongfu monzonite in Tuquan area
样品编号 G012-1 G012-2 G012-3 G012-4 G012-5 G012-6 SiO2 62.38 61.15 61.15 61.55 61.52 61.34 TiO2 0.79 0.8 0.81 0.77 0.78 0.79 Al2O3 15.8 16.29 16.53 16.38 16.26 16.25 Fe2O3 2.24 2.4 2.31 2.82 2.5 2.73 FeO 3.07 3.07 3 2.53 2.96 2.71 MnO 0.08 0.09 0.07 0.08 0.07 0.09 MgO 2.43 2.66 2.99 2.29 2.38 2.35 CaO 2.54 2.99 2.76 2.46 3.25 2.23 Na2O 7.04 6.77 5.86 7.96 6.26 8.34 K2O 1.53 1.67 1.99 1.04 1.83 1.28 P2O5 0.19 0.21 0.21 0.22 0.21 0.23 烧失量 1.38 1.39 1.8 1.43 1.46 1.17 总计 99.47 99.49 99.48 99.53 99.48 99.51 Na2O+K2O 8.57 8.44 7.85 9 8.09 9.62 K2O/Na2O 0.22 0.25 0.34 0.13 0.29 0.15 A/CNK 0.885 0.886 0.983 0.876 0.894 0.848 La 21 20.7 19.3 21 20.9 21.6 Ce 48.7 46.8 44.4 49.6 48.7 49.5 Pr 6.21 6.11 5.74 6.3 6.18 6.41 Nd 26.8 26.4 25.1 27.2 27.2 28.2 Sm 5.22 4.85 4.81 5.3 5.15 5.38 Eu 1.26 1.33 1.22 1.22 1.24 1.43 Gd 4.56 4.29 4.11 4.28 4.48 4.59 Tb 0.72 0.68 0.65 0.71 0.72 0.74 Dy 4.13 3.91 3.72 4.01 4.05 4.24 Ho 0.76 0.74 0.71 0.75 0.77 0.79 Er 2 1.92 1.88 1.97 2.04 2.08 Tm 0.35 0.35 0.32 0.32 0.37 0.36 Yb 2.54 2.51 2.37 2.39 2.63 2.6 Lu 0.37 0.38 0.35 0.37 0.39 0.39 (La/Yb)N 5.6 5.6 5.5 5.9 5.4 5.6 δEu 0.78 0.88 0.82 0.76 0.78 0.86 ΣREE 124.62 120.97 114.68 125.42 124.82 128.31 LREE/HREE 7.1 7.2 7.1 7.5 7.1 7.1 Ba 690 638 683 533 628 915 Rb 46.9 45.5 60.4 37.7 49.6 43.7 Sr 303 361 444 303 386 294 Y 21.5 20.9 20.3 20.8 22.1 22.1 Zr 299 244 254 255 279 239 Th 7.28 6.67 5.52 6.24 6.19 6.38 U 1.32 1.05 1.21 1.18 1.04 1.14 Nb 9 8.14 8.46 9.5 8.5 8.87 Ta 0.61 0.48 0.44 0.55 0.5 0.48 Hf 6.79 6.12 5.58 6.05 6.93 6.26 Ni 18.4 15.7 18.3 17.7 15.9 15.4 Cr 54.2 52.6 56.5 48.4 48.6 41.4 Zr/Y 13.91 11.67 12.51 12.26 12.62 10.81 Th/Yb 2.87 2.66 2.33 2.61 2.35 2.45 Ta/Yb 0.24 0.19 0.19 0.23 0.19 0.18 Sr/Y 14.09 17.27 21.87 14.57 17.47 13.3 Ti/Zr 15.82 19.66 19.03 18.18 16.84 19.71 Ce/Yb 19.17 18.65 18.73 20.75 18.52 19.04 注:主量元素含量单位为%,稀土和微量元素含量单位为10-6 -
Li J Y.Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn
Li Y, Xu W L, Wang F, et al.Geochronology and geochemistry of Late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massifs[J].Lithos, 2014, 205:394-410. doi: 10.1016/j.lithos.2014.07.008
Wu F Y, Sun D Y, Li H M, et al.A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology, 2002, 187(1/2):143-173. http://cn.bing.com/academic/profile?id=cef384bd4182cdaef656d285fa678ce8&encoded=0&v=paper_preview&mkt=zh-cn
Wu F Y, Zhao G C, Sun D Y, et al.The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China[J].Journal of Asian Earth Sciences, 2007, 30(3/4):542-556. http://cn.bing.com/academic/profile?id=9aa18d061bb3ea799b22dbd85995796e&encoded=0&v=paper_preview&mkt=zh-cn
Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016-j.jseaes.2010.11.014/
Cao H H, Xu W L, Pei F P, et al.Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern Margin of the North China Block[J].Lithos, 2013, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006
林强, 葛文春, 吴福元, 等.大兴安岭中生代花岗岩类的地球化学[J].岩石学报, 2004, 20(3):403-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403004 武广, 陈衍景, 孙丰月, 等.大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义[J].岩石学报, 2008, 24(4):899-910. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804028 Wu F Y, Jahn B M, Wilde S A, et al.Highly fractionated Ⅰ-type granites in NE China(Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos, 2003, 67:191-204. doi: 10.1016/S0024-4937(03)00015-X
Jahn B M, Litvinovsky B A, Zanvilevich A N, et al.Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution, petrogenesis and tectonic significance[J].Lithos, 2009, 113:521-539. doi: 10.1016/j.lithos.2009.06.015
Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J].Lithos, 2014, 205:168-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e60f13bbc248303233ab4186a7d6a13d
许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩石组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 莫申国, 韩美莲, 李锦轶.蒙古-鄂霍茨克造山带的组成及造山过程[J].山东科技大学学报(自然科学版), 2005, 24(3):50-64. doi: 10.3969/j.issn.1672-3767.2005.03.014 张允平.东北亚地区晚侏罗-白垩纪构造格架主体特点[J].吉林大学学报(地球科学版), 2011, 41(5):1267-1284. doi: 10.1007/s12583-011-0162-0 佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018 Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range(NE China):Timing and implications for the dynamic setting of NE Asia[J].Earth and Planetary Science Letters, 2006, 251:179-198. http://cn.bing.com/academic/profile?id=d1660018b51444bdcc4baaaad24c7e8e&encoded=0&v=paper_preview&mkt=zh-cn
Jahn B M, Wu F Y, Capdevila R, et al.Highly evolved juvenile granites with letrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an mountains in NE China[J].Lithos, 2001, 59:171-198. doi: 10.1016/S0024-4937(01)00066-4
吴福元, 孙德有, 林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15:181-189. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902003 李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017 葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-407. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903008 葛文春, 林强, 李献华, 等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石, 2000, 20(3):14-18. doi: 10.3969/j.issn.1001-6872.2000.03.003 邵济安, 张履桥, 牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑), 1998, 28(3):193-200. doi: 10.3321/j.issn:1006-9267.1998.03.003 邵济安, 刘福田, 陈辉.西北太平洋地震层析剖面及地球动力学启示[J].自然科学进展, 2000, 10(8):757-760. doi: 10.3321/j.issn:1002-008X.2000.08.014 李宇, 丁磊磊, 许文良, 等.孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定[J].岩石学报, 2015, 31(1):56-66. 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002, 48(增刊):26-30. http://www.cnki.com.cn/Article/CJFDTotal-DZLP2002S1006.htm Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
侯可军, 李延河, 田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 Koschek G.Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111-j.1365-2818.1993.tb03379.x/
Irvine T N, Baragar W R A.A guide to the chemical classification of the common volcanic rocks[J].Canadian Journal of Earth Sciences, 1971, 8(5):523-548. doi: 10.1139/e71-055
Rickwood P C.Boundary lines within petrologic diagrams which use oxides of Major and minor elements[J].Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5
Peccerillo A, Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of American Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Element Geochemistry.Amsterdam: Elsevier, 1984: 63-114.
Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society, London, Special Publication, 1989, 42(1): 313-345.
Rollinson H R.Using geochemical data: Evaluation, presentation, interpretation[M].Longman Scientific Technical, Harlow, United Kingdom, 1993: 1-351.
张旗.有关埃达克岩实验应用中几个问题的探讨[J].岩石矿物学杂志, 2015, 34(2):257-270. doi: 10.3969/j.issn.1000-6524.2015.02.012 肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002:172-191. Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48(1/4):43-55. doi: 10.1016-0009-2541(85)90034-8/
邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, 75(1):56-63. doi: 10.3321/j.issn:0001-5717.2001.01.006 Wilde S A.Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence[J].Tectonophysics, 2015, 662:345-362. doi: 10.1016/j.tecto.2015.05.006
Fan W M, Guo F, Wang Y J, et al.Late Mesozoic calc-alkaline volcanism of post-orogenic extention in the northern Da Hinggan Mountains, northeastern China[J].Journal of Volcanology and Geothermal Research, 2003, 121:115-135. doi: 10.1016/S0377-0273(02)00415-8
Zhang L C, Zhou X H, Ying J F, et al.Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China:Implications for their origin and mantle source characteristics[J].Chemical Geology, 2008, 256(1/2):12-23. http://cn.bing.com/academic/profile?id=cb70747367171c7f8985ba969a6f8f91&encoded=0&v=paper_preview&mkt=zh-cn
Ying J F, Zhou X H, Zhang L C, et al.Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J].Journal of Asian Earth Sciences, 2010, 39(6):786-793. doi: 10.1016/j.jseaes.2010.04.035
Donskaya T V, Gladkochub D P, Mazukabzov A M, et al.Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean[J].Journal of Asian Earth Sciences, 2013, 62:79-97. doi: 10.1016/j.jseaes.2012.07.023
Mazukabzov A M, Donskaya T V, Gladkochub D P, et al.The Late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt[J].Russian Geology and Geophysics, 2010, 51(5):482-491. doi: 10.1016/j.rgg.2010.04.008
Tomurtogoo O, Windley B F, Kröner A, et al.Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogeny[J].Journal of the Geological Society, 2005, 162:125-134. doi: 10.1144/0016-764903-146
Zorin Y A.Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region(Russia)and Mongolia[J].Tectonophysics, 1999, 306(1):33-56. doi: 10.1016/S0040-1951(99)00042-6
Kravchinsky V A, Cogné J P, Harbert W P, et al.Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J].Geophysical Journal International, 2002, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x
Dmitry V M, Valery A V, Alexey Y K, et al.Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J].Gondwana Research, 2010, 18:400-419. doi: 10.1016/j.gr.2009.12.008
Xu W L, Ji W Q, Pei F P, et al.Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China:Chronology, geochemistry, and tectonic implications[J].Journal of Asian Earth Sciences, 2009, 34:392-402. doi: 10.1016/j.jseaes.2008.07.001
Maruyama S, Send T.Orogeny and relative plate motions:Example of the Japanese Islands[J].Tectonophysics, 1986, 127(3/4):305-329. http://cn.bing.com/academic/profile?id=83c470d4946bee08a381a34e6fc5d848&encoded=0&v=paper_preview&mkt=zh-cn
Maruyama S, Isozaki Y, Kimura G, et al.Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present[J].Island Arc, 1997, 6(1):121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
Kimura G, Takahashi M, Kono M.Mesozoic collision-extrusion tectonics in eastern Asia[J].Tectonophysics, 1990, 181(1/4):15-23. http://www.sciencedirect.com/science/article/pii/004019519090005S
Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J].Lithos, 2008, 102(1/2):138-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d14ba8be8a38a9512101ffec46cee93d
Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology, 2010, 276(3/4):144-165. http://cn.bing.com/academic/profile?id=9899fd96ff831a34c53621e95b8bb6fa&encoded=0&v=paper_preview&mkt=zh-cn
尹志刚, 宫兆民, 张跃龙, 等.大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质通报, 2018, 37(7):1291-1301. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180713&flag=1 李永飞, 孙守亮, 郜晓勇.大兴安岭中段突泉盆地高Mg#火山岩激光全熔40Ar/39Ar测年与地球化学特征[J].地质与资源, 2013, 22(4):264-269. doi: 10.3969/j.issn.1671-1947.2013.04.002 Zhang C H, Li C M, Deng H L, et al.Mesozoic contraction deformation in the Yanshan and northern Taihang Mountains and its implications to the destruction of the North China Craton[J].Science China(Earth Science), 2011, 54(6):789-822. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201106002
赵越, 徐刚, 张拴宏, 等.燕山运动与东亚构造体制的转变[J].地学前缘, 2004, 11(3):319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030 Gao S, Rudnick R L, Yuan H, et al.Recycling lower continental crust in the North China Craton[J].Nature, 2004, 432(7019):892-897. doi: 10.1038/nature03162
Yang W, Li S G.Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning:Implications for lithospheric thinning of the North China Craton[J].Lithos, 2008, 102(1/2):88-117. http://cn.bing.com/academic/profile?id=a5e32dc00924fa74fd7a4ad1643b32d8&encoded=0&v=paper_preview&mkt=zh-cn
沈阳地质调查中心.1 5万突泉县幅地质图.2014. 吉林省地质局.1 20万突泉县幅区域地质调查报告.1977.