Age and geochemistry of amphibolite in Shuangsheng area eastern Inner Mongolia New evidence from the Paleoproterozoic basement of Bainaimiao island arc
-
摘要:
白乃庙岛弧位于兴蒙造山带南缘,是研究古亚洲洋早古生代地质的重要单元,其基底属性存在争议。在内蒙古东部阿鲁科尔沁旗附近开展地质调查过程中,在双胜地区发现了一套古元古代变质杂岩,为白乃庙岛弧基底属性研究提供了新素材。对该杂岩中的斜长角闪岩进行岩相学、年代学和地球化学研究。该斜长角闪岩原岩属于辉长岩类,至少经历了2期变质作用,LA-ICP-MS锆石U-Pb年龄研究表明变质年龄为1924±17 Ma和1814.2±9.4 Ma。地球化学研究显示,该岩石原岩属拉斑玄武岩系列,具有富铁、镁、钙、钛,贫碱,高Na2O/K2O(2.05~3.12),中等Mg#值(41.09~51.71)等特征,稀土和微量元素曲线特征与洋岛玄武岩相似,推测其来源于岩石圈地幔,形成于大洋板内背景。双胜地区变质杂岩可能记录了古元古代哥伦比亚超大陆聚合过程中的洋陆转化事件。结合区域资料,推测白乃庙岛弧具有统一的前寒武纪基底,与华北克拉通具有极好的构造亲缘性。
Abstract:Located on the south margin of the Xing'an-Mongolian orogenic belt, Bainaimiao arc is an important part for studying the early Paleozoic geology of the Paleo-Asian Ocean, but its basement property is still controversial.During the geological survey in Ar Horqin Banner, eastern Inner Mongolia, the authors discovered a set of Paleoproterozoic metamorphic complexes in Shuangsheng area, which provides new evidence for the study of the basement property of Bainaimiao arc.In this paper, amphibolite in the metamorphic complex was studied in the aspects of petrography, geochronology and geochemistry.The results show that the protolith of the amphibolite belongs to gabbronite, and had undergone at least two stages of metamorphism at 1924±17 Ma和1814.2±9.4 Ma respectively.Geochemical features show that the protolith of the amphibolite belongs to tholeiitic series, characterized by relatively high Fe, Mg, Ca, Ti, and Na2O/K2O(2.05~3.12), medium Mg#(41.09~51.71), and relatively low alkali, with curve characteristics of rare earth and trace elements similar to those of OIB, suggesting that the protolith originated from lithosphere mantle and was formed in ocean intraplate.The metamorphic complex from Shuangsheng area may have recorded the event of ocean-continent transformation during the assembly of the Columbia supercontinent in the Paleoproterozoic.Combined with regional data, it is concluded that Bainaimiao arc had a uniform Precambrian basement, which had tectonic affinity to the North China Craton definitely.
-
Keywords:
- Xing'an-Mongolian orogenic belt /
- Paleoproterozoic /
- amphibolite /
- Shuangsheng area /
- Bainaimiao arc
-
致谢: 测试分析过程中得到中国地质科学院地质所深地动力学实验室、河北省廊坊市宇恒矿岩技术服务有限公司和自然资源部东北矿产资源监督检测中心等相关单位和个人的大力支持与帮助;成文过程中得到中国地质调查局沈阳地质调查中心付俊彧和杨晓平教授级高工的指导和帮助;审稿专家对本文提出了宝贵的建议,在此表示最诚挚的谢意。
-
图 1 研究区地质简图及采样位置剖面
a—中亚地区构造简图(据参考文献[9]修改);b—兴蒙造山带东部构造简图(据参考文献[14]修改);c—双胜地区地质简图;d—采样位置剖面图; (1)—斜长角闪岩;(2)—透辉石碎斑岩;(3)—变粉晶灰岩;(4)—含透辉石硅灰石大理岩;(5)—变玄武岩;(6)—斜长角闪岩;(7)—长石石英岩;(8)—闪长玢岩;(9)—斜长辉岩;(10)—辉石岩;(11)—透辉钾长变粒岩;(12)—变微晶闪长岩;(13)—含阳起黑云母绿泥石透辉石岩;(14)—含镁橄榄石白云石大理岩;(15)—黝帘石透辉石岩;(16)—含石榴石蛇纹石大理岩;(17)—变玄武岩(阳起片岩);(18)斜长角闪岩;(19)—黑云钾长变粒岩
Figure 1. Geological sketch map of the study area and profile of sampling sites
图 6 双胜地区斜长角闪岩稀土元素模式图(a)及微量元素蛛网图(b)(OIB、N-MORB、E-MORB数据及标准化值据参考文献[64])
OIB—洋岛玄武岩地幔; N-MORB—正常大洋中脊地幔; E-MORB—富集地幔
Figure 6. Chondrite-normalized REE patterns(a)and primitive mantle normalized trace element spider diagram(b)of the amphibolite from Shuangsheng area
图 7 双胜地区斜长角闪岩构造环境判别图解
a—Zr/Y-Nb/Y图解[68];b—Ti/1000-V图解[69];c—Y-Cr图[70];d—Zr-Zr/Y图解[71];e—TiO2-TFeO/MgO图解[72];f—Ta/Hf-Th/Hf图解[73];图f:Ⅰ—板块发散边缘N-MORB区;Ⅱ—板块汇聚边缘(Ⅱ1—大洋岛弧玄武岩区;Ⅱ2—陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ—大洋板内洋岛、海山玄武岩区及T-MORB、E-MORB区;Ⅳ—大陆板内(Ⅳ1—陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2—陆内裂谷碱性玄武岩区;Ⅳ3—大陆拉张带(或初始裂谷)玄武岩区);Ⅴ—地幔热柱玄武岩区;其他图中:DM—亏损地幔;N-MORB—正常大洋中脊地幔;PM—原始地幔;E-MORB—富集地幔;MORB—洋中脊玄武岩;CA—钙碱性玄武岩;ALK—碱性玄武岩;IAT—岛弧拉斑玄武岩;IAB—岛弧玄武岩;BABB—弧后盆地玄武岩;WPB—板内玄武岩;OIB—洋岛玄武岩;CFB—大陆溢流玄武岩
Figure 7. Tectonic discrimination diagrams of the amphibolite from Shuangsheng area
表 1 双胜地区斜长角闪岩(D7054b18)LA-ICP-MS锆石U-Th-Pb年龄测试结果
Table 1 LA-ICP-MS U-Th-Pb data of zircons of the amphibolite(D7054b18)from Shuangsheng area
点号 同位素比值及误差 同位素年龄及误差/Ma 含量/10-6 Th/U 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ Th U Pb 1 0.1176 0.0010 0.3399 0.0081 5.5144 0.1387 1920.7 16.2 1886.0 39.4 1902.8 22.6 89.0 578.0 509 0.15 2 0.1060 0.0009 0.3166 0.0088 4.6263 0.1251 1731.5 181.3 1773.2 43.5 1754.0 23.3 72.4 142.7 294 0.51 3 0.1111 0.0010 0.3132 0.0039 4.8008 0.0700 1818.2 13.1 1756.3 19.7 1785.0 13.7 245.8 791.0 1074 0.31 4 0.1085 0.0008 0.3149 0.0061 4.7144 0.0953 1775.9 12.4 1765.0 30.4 1769.8 18.0 123.9 626.6 584 0.20 5 0.1102 0.0009 0.3161 0.0074 4.8018 0.1053 1802.2 16.2 1770.8 36.8 1785.2 19.4 101.1 572.1 492 0.18 6 0.1120 0.0010 0.3157 0.0082 4.8746 0.1134 1831.8 15.5 1768.5 40.3 1797.9 20.5 169.4 870.0 809 0.19 7 0.1095 0.0011 0.2947 0.0077 4.4474 0.0961 1790.4 17.7 1664.9 38.5 1721.2 18.8 245.3 1190.2 1091 0.21 8 0.1106 0.0008 0.3149 0.0065 4.8017 0.0953 1809.3 17.7 1765.0 32.2 1785.2 17.7 117.7 659.6 574 0.18 9 0.1118 0.0009 0.3153 0.0067 4.8614 0.0931 1828.7 10.0 1766.9 33.2 1795.6 17.2 158.3 842.8 768 0.19 10 0.1085 0.0008 0.3161 0.0047 4.7303 0.0702 1775.9 11.6 1770.8 23.4 1772.6 13.8 102.4 250.2 433 0.41 11 0.1099 0.0007 0.3129 0.0049 4.7428 0.0738 1798.2 39.4 1755.0 24.3 1774.8 14.4 83.8 480.2 399 0.17 12 0.1104 0.0008 0.3147 0.0058 4.7882 0.0818 1805.6 16.2 1763.6 28.9 1782.8 15.6 120.3 683.9 583 0.18 13 0.1220 0.0008 0.3638 0.0060 6.1220 0.1100 1987.0 10.8 2000.1 29.0 1993.4 17.1 181.3 584.6 919 0.31 14 0.1261 0.0012 0.3703 0.0087 6.4369 0.1376 2044.1 17.0 2030.9 41.4 2037.3 20.0 366.4 574.0 1719 0.64 15 0.1099 0.0007 0.3157 0.0055 4.7869 0.0828 1798.5 37.8 1768.7 27.2 1782.6 15.7 111.1 664.8 543 0.17 16 0.1100 0.0007 0.3136 0.0056 4.7592 0.0833 1799.7 10.0 1758.6 28.0 1777.7 15.9 196.7 835.3 888 0.24 17 0.1611 0.0014 0.4705 0.0123 10.4547 0.3244 2477.8 13.1 2485.7 54.6 2475.9 30.0 339.7 407.6 1953 0.83 18 0.1069 0.0006 0.3151 0.0041 4.6439 0.0639 1746.6 14.7 1765.9 20.4 1757.2 13.0 73.3 461.0 356 0.16 19 0.1184 0.0011 0.3531 0.0051 5.7639 0.0759 1931.8 17.0 1949.4 24.8 1941.0 13.2 93.2 196.8 427 0.47 20 0.1122 0.0007 0.3149 0.0094 4.8732 0.1409 1836.1 9.2 1764.7 46.3 1797.6 25.1 119.3 767.2 594 0.16 21 0.1122 0.0008 0.3447 0.0090 5.3370 0.1525 1836.1 13.9 1909.4 43.4 1874.8 25.3 60.1 210.9 287 0.29 22 0.1215 0.0008 0.3646 0.0063 6.1091 0.1107 1988.9 10.8 2004.0 30.2 1991.6 17.2 124.1 458.7 632 0.27 23 0.1558 0.0070 0.4473 0.0383 9.7217 1.2569 2410.2 77.1 2383.3 170.7 2408.8 119.3 68.2 764.4 660 0.09 24 0.1170 0.0011 0.3451 0.0058 5.5689 0.0915 1922.2 13.1 1911.2 28.3 1911.3 15.6 73.5 416.2 404 0.18 25 0.1112 0.0008 0.3145 0.0054 4.8222 0.0701 1820.4 13.1 1762.9 26.7 1788.8 13.6 286.2 826.5 1227 0.35 26 0.1115 0.0008 0.3147 0.0075 4.8372 0.1044 1823.8 16.2 1763.7 37.2 1791.4 19.2 262.5 1074.6 1194 0.24 27 0.1110 0.0008 0.2725 0.0074 4.1705 0.1232 1816.7 11.6 1553.5 37.9 1668.2 24.9 342.6 1913.4 1504 0.18 28 0.1113 0.0008 0.3138 0.0062 4.8170 0.0924 1820.7 37.8 1759.6 30.5 1787.9 17.2 105.5 574.5 508 0.18 29 0.1110 0.0008 0.3289 0.0065 5.0328 0.0991 1816.7 11.6 1833.1 31.9 1824.8 17.8 58.4 504.6 332 0.12 30 0.1123 0.0010 0.3395 0.0055 5.2577 0.0807 1838.9 13.1 1884.2 26.7 1862.0 14.5 70.3 449.0 393 0.16 表 2 双胜地区斜长角闪岩主量、微量和稀土元素含量
Table 2 Major, trace and rare earth elements compositions of the amphibolite from Shuangsheng area
样号 GS1 GS2 GS3 GS4 GS5 SiO2 49.04 47.71 44.55 46.54 46.69 Al2O3 12.67 12.56 12.36 13.11 12.64 Fe2O3 2.69 2.81 3.80 3.99 3.23 FeO 10.15 10.74 13.12 11.23 10.56 CaO 10.94 11.54 12.06 12.00 12.12 MgO 7.55 7.59 6.76 5.80 7.35 K2O 0.60 0.60 0.36 0.40 0.72 Na2O 1.88 1.73 0.86 1.17 1.49 TiO2 1.76 2.09 2.97 3.24 2.24 P2O5 0.21 0.25 0.31 0.39 0.25 MnO 0.26 0.28 0.35 0.33 0.28 烧失量 2.06 1.88 2.07 1.77 2.14 总计 99.81 99.77 99.58 99.95 99.71 TFeO 12.57 13.27 16.54 14.82 13.46 Mg# 51.71 50.49 42.15 41.09 49.32 Na2O/K2O 3.12 2.89 2.39 2.90 2.05 Na2O+K2O 2.48 2.33 1.22 1.57 2.21 m/f 0.92 0.97 1.36 1.42 1.02 σ 0.90 0.99 0.58 0.58 1.06 Y 21.52 23.02 21.74 36.87 29.06 La 18.07 16.49 13.13 20.86 20.71 Ce 39.65 37.62 32.83 49.34 47.06 Pr 5.24 4.95 4.48 6.84 6.05 Nd 24.70 23.20 22.32 32.92 29.05 Sm 5.01 5.02 4.90 7.39 6.22 Eu 1.53 1.37 1.39 2.02 1.90 Gd 4.38 4.41 4.38 6.38 5.49 Tb 0.77 0.83 0.79 1.28 1.01 Dy 4.31 4.59 4.43 7.07 5.71 Ho 0.84 0.92 0.84 1.49 1.11 Er 2.35 2.64 2.39 3.99 3.29 Tm 0.32 0.35 0.31 0.58 0.43 Yb 2.01 2.19 2.00 3.49 2.76 Lu 0.30 0.32 0.29 0.48 0.41 ΣREE 109.48 104.89 94.49 144.13 131.18 LREE 94.21 88.65 79.06 119.38 110.99 HREE 15.27 16.25 15.43 24.76 20.20 L/H 6.17 5.46 5.12 4.82 5.50 LaN/YbN 6.44 5.41 4.70 4.29 5.39 δCe 0.99 1.01 1.05 1.01 1.02 δEu 0.98 0.87 0.90 0.88 0.97 Li 4.36 2.74 3.35 4.13 3.44 Be 1.48 1.35 1.01 1.38 1.44 Sc 36.15 32.48 27.71 37.66 40.21 V 248.27 275.40 372.31 311.58 288.02 Cr 488.11 550.51 243.68 133.37 546.92 Co 68.62 59.66 43.91 49.62 65.10 Ni 355.95 286.12 82.93 130.50 316.97 Ga 17.95 17.46 20.36 18.50 18.68 Rb 13.34 9.27 5.29 5.79 12.05 Sr 328.00 324.93 318.14 445.66 394.24 Zr 165.24 163.46 212.27 250.26 167.99 Nb 20.36 23.26 23.42 26.70 22.59 Ba 428.97 347.11 348.55 307.87 576.10 Hf 1.51 1.56 1.26 1.71 2.16 Ta 1.37 0.60 0.66 0.84 0.57 Th 1.09 0.87 0.43 0.85 1.14 U 0.50 0.46 0.13 0.26 0.56 注:TFeO= FeO+0.8998*Fe2O3;Mg#=100*(MgO)/(TMgO+FeO)(mol);m/f=(TFeO/72)/(MgO/40);组合指数(σ)=(Na2O+K2O)2/(SiO2-43);L/H为LREE/HREE值;主量元素单位含量为%,微量和稀土元素单位含量为10-6 表 3 白乃庙岛弧前寒武纪地质记录信息
Table 3 Information of Precambrian geological record of Bainaimiao arc
构造位置 位置 岩石 年龄说明 年龄范围/Ma 峰期年龄值或范围/Ma 文献 白乃庙岛弧西段
(温都尔庙—白乃庙地区)白乃庙铜矿 白乃庙群绿片岩 锆石Hf二阶段年龄 693~2843 971~1238 [34] 白云鄂博北部地区 早古生代辉长岩 锆石Hf模式年龄 1000~3670 1000~1300 1600~2050 [25] 白乃庙地区 白乃庙组绿片岩(火山岩) 捕获锆石U-Pb年龄 1421 1928、2027 2316 [24] 白乃庙铜矿 早古生代花岗闪长岩 捕获锆石U-Pb年龄 1082 [33] 太仆寺地区 早古生代镁铁质岩脉 捕获锆石U-Pb年龄 961 1796~1985 2343 [23] 大庙地区 早古生代花岗岩 捕获锆石U-Pb年龄 1235 2427~2532 [22] 白乃庙地区 白乃庙组绿片岩(火山岩) 捕获锆石U-Pb年龄 1731~1757 [18] 锆石Hf二阶段年龄 1073~1470 1285 [16] 达茂旗地区 早古生代变质砂岩 碎屑锆石U-Pb年龄 458~3109 622 960~1158 [30] 达茂旗地区 早古生代变质砂岩 碎屑锆石U-Pb年龄 612、845 986~1254 1607 白乃庙地区 早古生代黑云母石英片岩 碎屑锆石U-Pb年龄 446~2954 591、889 981、1134 2174 白乃庙地区 石英二长闪长玢岩 捕获锆石U-Pb年龄 1231~1277 1709~1881 白乃庙岛弧中段
(赤峰北部—翁牛特旗地区)翁牛特旗 晚志留世二长花岗岩 捕获锆石U-Pb上交点年龄 2504±53 [39] 翁牛特旗解放营子 石英闪长岩 锆石U-Pb年龄(结晶年龄) 2502.6±9.1
2551±7.3[27] 新太古代石英闪长岩 锆石Hf二阶段年龄 2705~2744 2705~2744 赤峰东北部 宝音图群斜长角闪岩 锆石U-Pb年龄(变质年龄) 1738~1976 1860.1±7.9 [38] 翁牛特旗解放营子 早泥盆世火山岩 锆石Hf二阶段年龄 2423~2770 2423~2770 [36] 翁牛特旗解放营子 中三叠世花岗岩 锆石Hf二阶段年龄 936~1126 936~1126 [35] 阿鲁科尔沁旗双胜 古元古代变斜长角闪岩 锆石U-Pb年龄 1731~2478 1987~2044 2478 本文 白乃庙岛弧东段
(吉南地区)吉林南部地区 机房沟群和桦甸杂岩 碎屑锆石U-Pb年龄 582、642、
837-865950~960 1770~1880 2284~2644 [26] -
Sengör A M C, Natal'in B A, Burtman V S.Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J].Nature, 1993, 364:299-307. doi: 10.1038/364299a0
吴福元, 孙德有.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15(2):181-189. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902003 Jahn B M, Wu F Y, Chen B.Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92. doi: 10.18814/epiiugs/2000/v23i2/001
Badarch G, Cunningham W D, Windley B F.A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J].Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2
Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:termination of the Central Asian orogenic belt[J].Tectonics, 2003, 22(6):1069. http://cn.bing.com/academic/profile?id=4f70f4625c75e2c67f49e664df0bc8b5&encoded=0&v=paper_preview&mkt=zh-cn
洪大卫, 王式洸, 谢锡林, 等.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报, 2003, (2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008 Li J Y.Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate[J].Journal of Asian Earth Sciences, 2006, 26(3):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn
Windley B F, Alexeiew D, Xiao W J, et al.Tectonic Models for Accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society, 2007, 164(12):31-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=407c8a0b623113b1dd6b69ee8fde6a21
Jian P, Liu D Y, Kröner A, et al.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian orogenic belt, Inner Mongolia of China:Implications for continental growth[J].Lithos, 2008, 101:233-259. doi: 10.1016/j.lithos.2007.07.005
Kröner A, Kovach V, Belousova E, et al.Reassessment of continental growth during the accretionary history of the Central Asian orogenic belt[J].Gondwana Research, 2014, 25(1):103-125. doi: 10.1016/j.gr.2012.12.023
Safonova I Y, Seltman R, Kröner A, et al.A new concept of continental construction in the Central Asian orogenic belt (compared to actualistic examples from the western Pacific)[J].Episodes, 2011, 34:186-196. doi: 10.18814/epiiugs/2011/v34i3/005
Safonova I Y, Santosh M.Accretionary complexes in the Asia-Pacific region:tracing archives of ocean plate stratigraphy and tracking mantle plumes[J].Gondwana Research, 2014, 25(1):126-158. doi: 10.1016/j.gr.2012.10.008
徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 潘桂棠, 肖荣阁.中国大地构造图说明书[M].北京:地质出版社, 2015:1-160. Zhou J B, Wilde S A, Zhao G C, et al.Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J].Earth-Science Reviews, 2018, 186:76-93. doi: 10.1016/j.earscirev.2017.01.012
Zhang S H, Zhao Y, Ye H, et al.Origin and evolution of the Bainaimiao arc belt:implications for crustal growth in the southern Central Asian orogenic belt[J].Geological Society of America Bulletin, 2014, 126(9/10):1275-1300. http://cn.bing.com/academic/profile?id=92d2f000cbaad7dee324970aef1e6a37&encoded=0&v=paper_preview&mkt=zh-cn
Zhang W, Jian P, Kröner A, et al.Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J].Journal of Asian Earth Sciences, 2013, 72(Complete):63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8389815332903d0031c5655e2776f34
柳长峰, 刘文灿, 王慧平, 等.华北克拉通北缘白乃庙组变质火山岩锆石定年与岩石地球化学特征[J].地质学报, 2014, 88(7):67-81. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201407005 Li W B, Hu C S, Zhong R C, et al.U-Pb, 39Ar/40Ar geochronology of the metamorphosed volcanic rocks of the Bainaimiao Group in central Inner Mongolia and its implications for ore genesis and geodynamic setting[J].Journal of Asian Earth Sciences, 2015, 97:251-259. doi: 10.1016/j.jseaes.2014.06.007
李俊建, 党智财, 赵泽霖, 等.内蒙古白乃庙铜矿床成矿时代的研究[J].地质学报, 2015, 89(8):1448-1457. doi: 10.3969/j.issn.0001-5717.2015.08.008 Teng X M, Yang Q Y, Santosh M.Devonian magmatism associated with arc-continent collision in the northern North China Craton:Evidence from the Longwangmiao ultramafic intrusion in the Damiao area[J].Journal of Asian Earth Sciences, 2015, 113(2):626-643. http://cn.bing.com/academic/profile?id=2a505d3a4464694a469ae8b2ca3b3e47&encoded=0&v=paper_preview&mkt=zh-cn
Wu C, Liu C F, Zhu Y, et al.Early Paleozoic magmatic history of central Inner Mongolia, China:implications for the tectonic evolution of the Southeast Central Asian Orogenic Belt[J].Berlin Heidelberg:Springer, 2016, 105(5):1307-1327. http://cn.bing.com/academic/profile?id=c2d63feb9d87dcece40c23a392c1da7b&encoded=0&v=paper_preview&mkt=zh-cn
Wu J H, Li H, Xi X S, et al.Geochemistry and geochronology of the mafic dikes in the Taipusi area, northern margin of North China Craton:Implications for Silurian tectonic evolution of the Central Asian Orogen[J].Journal of Earth System Science, 2017, 126(5):64. doi: 10.1007/s12040-017-0841-z
Zhou Z H, Mao J W, Ma X H, et al.Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications[J].Journal of Asian Earth Sciences, 2017, 144:323-338. doi: 10.1016/j.jseaes.2016.11.005
ZhouH, Zhao G, Han Y, et al.Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China:Implications for the tectonic evolution of the Bainaimiao arc[J].Lithos, 2018, 314/415:119-139. doi: 10.1016/j.lithos.2018.05.020
Zhou H, Pei F P, Zhang Y, et al.Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton[J].International Journal of Earth Sciences, 2018, 107(5):1911-1933. doi: 10.1007/s00531-017-1578-2
Wang X A, Li S C, Xu Z Y, et al.Neoarchaean quartz diorites in the Jiefangyingzi area, Central Asian Orogenic Belt:geological and tectonic significance[J].International Geology Review, 2016, 58(3):358-370. doi: 10.1080/00206814.2015.1077480
Nie F J, Zhanf H T, Chen Q, et al.The zircon U-Pb age of metamorphosed basic volcanic rocks from the Bainaimiao group in Inner Mongolia[J].Chinese Science Bulletin, 1991, 36(9):738-742. http://cn.bing.com/academic/profile?id=6d92cf2a05b98412539ee72697c3213b&encoded=0&v=paper_preview&mkt=zh-cn
Nie F J, Bjorlykke A.Nd and Sr isotope constraints on the age and origin of Proterozoic meta-mafic volcanic rocks in the Bainaimiao-Wenduermiao District, south-central Inner Mongolia, China[J].Continental Dynamics, 1999, 4(1):1-14. http://cn.bing.com/academic/profile?id=b6eb588d0632dee82155793e17ffccea&encoded=0&v=paper_preview&mkt=zh-cn
张华锋, 周志广, 刘文灿, 等.内蒙中部白乃庙地区格林威尔岩浆事件记录:石英二长闪长岩脉锆石LA-ICP-MS U-Pb年龄证据[J].岩石学报, 2009, 25(6):218-224. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906022 李建锋, 张志诚, 韩宝福.内蒙古达茂旗北部闪长岩锆石SHRIMP U-Pb、角闪石40Ar/39Ar年代学及其地质意义[J].岩石矿物学杂志, 2010, 29(6):732-740. doi: 10.3969/j.issn.1000-6524.2010.06.010 李凤宪, 白新会, 万乐, 等.内蒙苏尼特右旗吉布胡楞土岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J].吉林大学学报(地球科学版), 2015, 45(2):98-109. 赵利刚, 李承东, 常青松, 等.内蒙古白乃庙铜矿区含矿中酸性侵入岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及成矿时代[J].地质通报, 2016, (4):542-552. doi: 10.3969/j.issn.1671-2552.2016.04.008 高旭, 周振华, 车合伟, 等.内蒙古白乃庙铜-金-钼矿床侵入岩和围岩成因:岩石地球化学和Hf同位素的证据[J].矿床地质, 2018, 37(2):420-440. http://d.old.wanfangdata.com.cn/Periodical/kcdz201802012 Liu J F, Li J Y, Chi X G, et al.Petrogenesis of middle Triassic post-collisional granite from Jiefangyingzi area, southeast Inner Mongolia:constraint on the Triassic tectonic evolution of the north margin of the Sino-Korean paleoplate[J].Journal of Asian Earth Sciences, 2012, 60:147-159. doi: 10.1016/j.jseaes.2012.08.012
刘建峰, 李锦轶, 迟效国, 等.华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩——锆石U-Pb定年及地球化学证据[J].地质通报, 2013, 32(2):267-278. doi: 10.3969/j.issn.1671-2552.2013.02.006 徐博文, 郗爱华, 葛玉辉, 等.内蒙古赤峰地区晚古生代A型花岗岩锆石U-Pb年龄及构造意义[J].地质学报, 2015, 89(1):60-71. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201501005 陈井胜, 李斌, 邢德和, 等.赤峰东部宝音图群斜长角闪岩锆石U-Pb年龄及地质意义[J].地质调查与研究, 2015, 38(2):81-88. doi: 10.3969/j.issn.1672-4135.2015.02.001 陈井胜, 刘淼, 李斌, 等.内蒙古翁牛特旗晚志留世二长花岗岩年代学及地球化学特征[J].地质通报, 2017, 36(8):1359-1368. doi: 10.3969/j.issn.1671-2552.2017.08.006 Cui Y L, Qu H J, Chen Y F, et al.The age of the original Silurian Badangshan formation and its ductile deformation in the northern margin of North China Craton:new evidence from zircon SHRIMP U-Pb ages[J].Acta Geologica Sinica, 2017, 91(6):2330-2332. doi: 10.1111/1755-6724.13475
Chen J S, Li B, Yang H, et al.New zircon U-Pb age of granodiorite in Chifeng at the northern margin of North China Craton and constraints on plate tectonic evolution[J].Acta Geologica Sinica, 2018, 92(1):410-413. doi: 10.1111/1755-6724.13521
万渝生, 宋彪, 刘敦一, 等.鞍山东山风景区3.8~2.5 Ga古老岩带的同位素地质年代学和地球化学[J].地质学报, 2001, 75(3):363-370. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200103009 翟明国.华北克拉通的形成演化与成矿作用[J].矿床地质, 2010, 29(1):24-36. doi: 10.3969/j.issn.0258-7106.2010.01.004 Zhai M G, Santosh M.The early Precambrian odyssey of the North China Craton:a synoptic overview[J].Gondwana Research, 2011, 20(1):6-25. doi: 10.1016/j.gr.2011.02.005
Tang L, Santosh M.Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton:an overview from the central segment of the Trans-North China Orogen[J].Earth-Science Reviews, 2018, 182:1-27. doi: 10.1016/j.earscirev.2018.04.010
Cohen K M, Finney S C, Gibbard P L, et al.The ICS International Chronostratigraphic Chart[J].Episodes, 2013, 36:199-204. doi: 10.18814/epiiugs/2013/v36i3/002
胡国辉, 胡俊良, 陈伟, 等.华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境[J].岩石学报, 2009, 26(5):1563-1576. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005021 裴福萍, 叶轶凡, 王枫, 等.吉林通化地区中元古代辉绿岩墙的发现及其地质意义[J].吉林大学学报(地球科学版), 2013, 43(1):113-121. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201301015.htm Li H K, Lu S N, Su W B, et al.Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton[J].Journal of Asian Earth Science, 2013, 72(10):216-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd6a91659e1d0b9ac64b43ed32e28411
Li Z, Chen B, Wang J L.Geochronological framework and geodynamic implications of mafic magmatism in the Liaodong Peninsula and adjacent regions, North China Craton[J].Acta Geologica Sinica, 2016, 90(1):138-153. doi: 10.1111/1755-6724.12647
韩吉龙, 王清海.华北克拉通辽东半岛新元古代早期基性岩浆活动:辉绿岩墙年代学和岩石地球化学证据[J].世界地质, 2015, 34(4):886-902. doi: 10.3969/j.issn.1004-5589.2015.04.002 Wang W, Liu S W, Santosh M, et al.Late Paleoproterozoic geodynamics of the North China Craton:geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift[J].Gondwana Research, 2015, 27(1):300-325. doi: 10.1016/j.gr.2013.10.004
Zhang S H, Zhao Y, Ye H, et al.Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton[J].Precambrian Research, 2016, 272:203-225. doi: 10.1016/j.precamres.2015.11.005
Zhang S H, Zhao Y, Li X H, et al.The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton:implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton[J].Earth and Planetary Science Letters, 2017, 465(Complete):112-125. http://cn.bing.com/academic/profile?id=ede63676743105d17fe82d8ae988b67f&encoded=0&v=paper_preview&mkt=zh-cn
Tang Y J, Zhang H F, Santosh M., et al.Differential destruction of the North China Craton:a tectonic perspective[J].Journal of Asian Earth Sciences, 2013, 78:71-82. doi: 10.1016/j.jseaes.2012.11.047
Wang Q, Liu X Y.Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China[J].Tectonics, 1986, 5(7):1073-1088. doi: 10.1029/TC005i007p01073
Chen B, Jahn B M, Tian W.Evolution of the Solonker suture zone:constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments[J].Journal of Asian Earth Science, 2009, 34(3):245-257. doi: 10.1016/j.jseaes.2008.05.007
尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报, 2004, 49(24):2574-2579. doi: 10.3321/j.issn:0023-074X.2004.24.014 李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004 谷丛楠, 周志广, 张有宽, 等.内蒙古白乃庙地区白音都西群的碎屑锆石年龄及其构造意义[J].现代地质, 2012, 26(1):1-9. doi: 10.3969/j.issn.1000-8527.2012.01.001 王炎阳, 徐备, 程胜东, 等.内蒙古克什克腾旗五道石门基性火山岩锆石U-Pb年龄及其地质意义[J].岩石学报, 2014, 30(7):217-224. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407018 江思宏, 梁清玲, 聂凤军, 等.内蒙古林西双井子杂岩锆石LA-MC-ICP-MS测年初步研究[J].中国地质, 2014, 41(4):1108-1123. doi: 10.3969/j.issn.1000-3657.2014.04.006 李钢柱, 王玉净, 李成元, 等.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J].科学通报, 2017, 62(5):60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007 Sun S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Zhao G C, Li S Z, Sun M, et al.Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent:record in the North China Craton revisited[J].International Geology Review, 2011, 53(11):1331-1356. http://cn.bing.com/academic/profile?id=512a1be6326de1cd8ceced00c3b097d6&encoded=0&v=paper_preview&mkt=zh-cn
Rudnick R L, Gao S.Composition of the continental crust[C]//Rudnick R L.The crust.Treatise on geochemistry.Elsevier-Pergamon, Oxford, 2005: 1-64.
冯志硕, 张志诚, 李建锋, 等.敦煌三危山地区白垩纪OIB型基性岩墙的特征及地质意义[J].岩石学报, 2010, 26(2):607-616. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002021 Feng Z Q, Jia J, Liu Y J, et al.Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing'an Range, NE China:constraints on the timing of amalgamation of Xing'an and Songnen blocks[J].Journal of Asian Earth Sciences, 2015, 113:411-426. doi: 10.1016/j.jseaes.2014.12.017
Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016-0012-821X(82)90120-0/
Pearce J A.Supra-subduction zone ophiolites:the search for modern analogues[J].Special Paper of the Geological Society of America, 2003, 373:269-293. http://cn.bing.com/academic/profile?id=6803d59c8c333e7c2056da2f8b636fde&encoded=0&v=paper_preview&mkt=zh-cn
Wood D A, Joron J L, Treuil M.A reappraisal of the use of trace elements to classify and discriminate between magma series eruptedin different tectonic settings[J].Earth and Planetary Science Letters, 1979, 45(2):326-336. doi: 10.1016/0012-821X(79)90133-X
Pearce J A.Role of the sub-continental lithosphere in magma genesis at active continental margins[J].Journal of the Electrochemical Society, 1983, 147(6):2162-2173. http://cn.bing.com/academic/profile?id=1d9f03c3288877ad6e6298ff5514e194&encoded=0&v=paper_preview&mkt=zh-cn
汪云亮, 张成江, 修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 2001, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 Kusky T M, Polat A, Windley B F, et al.Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis:A record of outward growth of Precambrian continents[J].Earth-Science Reviews, 2016, 162:387-432. doi: 10.1016/j.earscirev.2016.09.002