Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai Province
-
摘要:
青海省东昆仑成矿带西段的祁漫塔格地区与三叠纪花岗岩、斑岩有关的斑岩型、接触交代矽卡岩型、热液型矿产广泛分布。近年以缺位预测成矿理论为指导,在祁漫塔格发现了一处新类型矿床——楚阿克拉千隐爆角砾岩型铅锌矿床。开展了流体包裹体和氢、氧、硫同位素研究,结果表明矿床内存在明显的2类流体,一类为中高温低盐度低密度NaCl-CO2-H2O流体,另一类为低温中等盐度中低密度NaCl-H2O流体,2类流体反映的成矿压力明显不同,与隐爆作用吻合,压力的突然释放是成矿的关键。氢、氧同位素结果表明,成矿热液来源于岩浆水和大气降水的混合,硫同位素显示硫来源于岩浆。对矿床特征分析总结,综合认为,矿床的形成与斑岩活动密切相关,结合卡尔却卡A区斑岩成矿特征,建立了楚阿克拉千矿床成矿模式,提出了楚阿克拉千地区具有斑岩型找矿潜力的认识。该矿床的发现对于促进东昆仑地区斑岩找矿突破和斑岩成矿规律研究具有重要的科学意义和勘查意义。
Abstract:There are many skarn, hydrothermal and porphyry type deposits which are closely related to Triassic granite and porphyry in Qimantag area of western East Kunlun metallogenic belt, Qinghai Province.A new type deposit, i.e., Chuakelaqian cryptoexplosion breccia type lead-zinc deposit, was discovered recently by vacancy prediction metallogenic theory.Based on a study of fluid inclusions and H-O-S isotopes, the authors found that there were two kinds of fluids in the Chuakelaqian deposit.One was middle-high temperature low salinity low density NaCl-CO2-H2O fluid and the other was low temperature middle salinity middle-low density NaCl-H2O fluid.Metallogenic pressures of two types of fluids were different.This coincides with the key of cryptoexplosion and mineralization that pressure is suddenly released.Ore-forming fluids originated from the mixing of magmatic and meteoritic water and S originated from magmatic activity.Based on summary of deposit characteristics, it is considered that the deposit was closely related to porphyry. The metallogenic model of the deposit was built up in combination with porphyry metallogenic characteristics of A area in the Kaerqueka deposit. The opinion that there exists large potential in prospecting for porphyry type deposits in the Chuakelaqian area was put forward. The discovery of this deposit has important scientific and exploration significance for promoting the breakthrough of porphyry prospecting and the study on metallogenic regularity of porphyry in Eastern Kunlun area.
-
致谢: 野外工作得到青海省第三地质勘查院刘国燕高级工程师等的帮助,论文编写过程中审稿专家提出了许多宝贵意见,在此一并表示最诚挚的感谢。
-
图 1 楚阿克拉千地区地质矿产图
a—楚阿克拉千地区大地构造位置图;b—楚阿克拉千及邻区地质矿产图;c—楚阿克拉千矿区地质图。1—第四系;2—上三叠统鄂拉山组;3—中元古界金水口岩群;4—中三叠世花岗闪长岩;5—中三叠世二长花岗岩;6—中三叠世似斑状二长花岗岩;7—隐爆角砾岩;8—花岗斑岩;9—破碎蚀变带;10—铜矿体;11—实测性质不明断层;12—推测性质不明断层;13—钻孔;14—勘探线及编号;15—地质界线;16—卡尔却卡A区;Ⅰ—北昆仑构造带;Ⅰ-1—昆北三弧盆地;Ⅰ-1-1—滩北雪峰-乌兰乌珠尔盆地;Ⅰ-1-2—野马泉-苏海图盆地;Ⅰ-1-3—那陵格勒河盆地;Ⅰ-2—昆中岩浆弧;Ⅱ—南昆仑构造带;Ⅱ-1—东昆仑南坡俯冲碰撞杂岩带
Figure 1. Geological and mineral resources map of the Chuakelaqian area
表 1 楚阿克拉千矿区流体包裹体测试结果
Table 1 The analyses of fluid inclusions from the Chuakelaqian lead-zinc deposit
序号 样品号 包体类型 测试数 大小/μm 气液比/% Tm/℃ Tht/℃ S/%NaCI ρ/(g·cm-3) p/MPa Hs/km 1 W1 L+V型 12 6~11 20~30 -6.9~-3.0 133.2~200.0 4.98~10.15 0.92~1.01 13.58~20.50 1.36~2.05 L+V+V型 8 7~15 20~25 -58.9~-58.0 230.9~379.9 1.67~4.23 0.87~0.95 15.62~29.38 1.57~2.94 2 W2 L+V型 16 6~12 20~30 -6.6~-3.1 130.4~190.7 5.37~10.31 0.94~0.98 11.09~19.00 1.11~1.92 L+V+V型 20 7~15 20~30 -58.8~-57.1 256.2~362.2 1.49~4.16 0.85~0.94 17.55~26.55 1.76~2.66 3 W3 L+V型 19 6~12 20~30 -6.8~-3.0 121.1~196.0 5.43~9.76 0.94~1.01 10.94~19.46 1.10~1.95 L+V+V型 14 7~15 20~30 -59.0~-56.7 178.7~377.2 1.51~4.19 0.85~0.95 12.98~28.79 1.30~2.88 4 W4 L+V型 15 6~12 20~30 -6.7~-3.3 142.2~194.8 5.11~10.46 0.92~0.99 14.15~19.44 1.42~1.95 L+V+V型 10 7~15 20~30 -59.0~-56.9 187.5~344.8 1.53~3.71 0.87~0.94 14.21~26.45 1.43~2.65 表 2 楚阿克拉千矿区隐爆角砾岩氢、氧、硫同位素分析结果
Table 2 H-O-S isotopes of cryptoexplosion breccias in the Chuakelaqian deposit
送样编号 δDV-SMOW/‰ δ18O矿物V-SMOW/‰ δ18O水V-SMOW/‰ 测试矿物 δ34SV-CDT/‰ W1 -51 6.3 -4.1 W2 -61 9.3 -1.1 W3 -39 6.7 -3.7 W4 -61 5.7 -4.7 TW2 黄铁矿 8.6 TW3 黄铁矿 8.4 TW4-S 闪锌矿 8.9 TW5-F 方铅矿 6.1 TW5-S 闪锌矿 8.8 表 3 楚阿克拉千隐爆角砾岩与支家地隐爆角砾岩对比
Table 3 Comparison of cryptoexplosion breccias between Chuakelaqian and Zhijiadi
矿床 分带 角砾 蚀变 矿化 可拼贴性 大小/cm 成分 支家地[37] 裂隙相 强 20~50,最大200以上 围岩 不发育 裂隙脉状 震碎相 可拼合 5~20 围岩 碳酸盐化,其次是硅化 角砾状充填 爆裂相 差 2~5,少数5~15 围岩、基底岩系及斑岩 硅化,其次是绢云母化、碳酸盐化 浸染状、细脉状 通道相 0.2~1 斑岩 硅化 裂隙脉状 楚阿克拉千 可拼合-差 通常3~10,部分大于15 围岩及斑岩 绢云母化、硅化、绿泥石化、碳酸
盐化、高岭土化中部发育,浸染状构造
为主,局部为块状构造
和脉状构造 -
李世金, 孙丰月, 王力, 等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究[J].矿床地质, 2008, 27(3):399-406. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803010 何书跃, 李东生, 李良林, 等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学, 2009, (2):236-242. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200902007 张爱奎, 莫宣学, 李云平, 等.青海西部祁漫塔格成矿带找矿新进展及其意义[J].地质通报, 2010, 29(7):1062-1074. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100713&flag=1 赵一鸣, 丰成友, 李大新, 等.青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J].矿床地质, 2013, 32(1):1-19. http://d.old.wanfangdata.com.cn/Periodical/kcdz201301001 张爱奎, 莫宣学, 袁万明, 等.东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J].矿物学报, 2016, 36(2):157-173. 张爱奎, 李东生, 何书跃, 等.青海省祁漫塔格地区主要矿产成矿规律与成矿系列[M].北京:地质出版社, 2017:13-264. 李东生, 张占玉, 苏生顺, 等.青海卡尔却卡铜钼矿床地质特征及成因[J].西北地质, 2010, 43(4):239-244. http://d.old.wanfangdata.com.cn/Periodical/xbdz201004028 潘彤, 王秉璋, 李东生, 等.青海东昆仑成矿环境成矿规律与找矿方向[M].北京:地质出版社, 2015:57-130. Marta F, Agnes L, Dabid L, et al.Porphyry to epithermal transition in the Agua Rica polymetallic deposit, Catamarca, Argentina:An Integrated petrologic analysis of ore and alteration paragenesen[J]. Ore Geology Reviews, 2011, 41(1):49-74.
孟祥金, 侯增谦, 董光裕, 等.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限[J].地质学报, 2009, 83(12):1951-1967. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200912011 翟裕生, 姚书振, 崔彬, 等.成矿系列研究[M].武汉:中国地质大学出版社, 1996. Bryner L.Breccia and pebble columns associated with epigenetic ore deposits[J]. Econ.Geol., 1961, 56(2):488-508.
Barton P B J, Bethke P M, Roedder E.Environment of ore deposition in the Creed mining district, San JuanMountains, Colorado:Part Ⅲ, Progress toward interpretation of the chemistry of the ore-forming fluid for the OH vein[J]. Econ.Geol., 1977, 72:1-24.
Henley R W.The geological framework of epithermal deposits, In:Berger B R, Bethke P M.Eds.Geology and Geochemistry of Epithermal Systems[J]. Rev.Econ.Geol.Texas:Soci.Econ.Geol., 1985, 2:1-24.
Thompson T B, Tripple A D, Dwelley P C.Mineralized vein and breccias of the Cripple Creek District, Colorado[J]. Econ.Geol., 1985, 80(6):1669-1688.
Sillitoe R H.Ore-related breccias in volcanoplutonic arcs[J]. Econmic Geology, 1985, 80(6):1467-1514.
Sillitoe R H, Bonham Jr H F.Sediment-hosted gold deposite:Distal product of magmatic-hydrothermal Systems[J]. Geology, 1990, 18:157-161.
Henly R W.Epithermal gold deposits in the volcanic terranes[C]//Forster R P.Gold metallogeny and exploration.Blackie and Sons Ltd., Glasgow, 1991: 137-142.
Barker E M, Andrew A S.Geological, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kinston, Queesland, Aust ralia[J]. Econ.Geol., 1991, 86(4):810-830.
Pirajno F.Volcanic-hosted epithermal systems in northwest Turkey[J]. S.Afr. J.Geol., 1995, 98(1):13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=75c0346202ed38ce86903ae12798ef80
马璟璟, 陈澍豪, 张鹏, 等.卡尔却卡矽卡岩带、隐爆角砾岩多金属矿矿床特征及矿床成因分析[J].世界有色金属, 2018, 7:134-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201807077 王秉璋, 陈静, 罗照华, 等.东昆仑祁漫塔格东段晚二叠世—早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J].岩石学报, 2014, 30(11):3213-3228. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009 青海省地质矿产局.青海省区域地质志[M].北京:地质出版社, 1991:56-540. 王秉璋, 张雪亭, 李建放, 等.东昆仑西段古生代—中生代主要地质事件的证据[J].青藏高原东北部地质研究, 2005, 18-24. 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703010 张爱奎.青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D].中国地质大学(北京), 2012. 林仕良, 雍永源, 高大发.西藏东部隐爆角砾岩特征及其含矿性[J].沉积与特提斯地质, 2003, 23(3):49-53. http://d.old.wanfangdata.com.cn/Periodical/yxgdl200303007 刘继顺, 马光, 舒广龙.湖北铜绿山矽卡岩型铜铁矿床中隐爆角砾岩型金(铜)矿体的发现及其找矿前景[J].矿床地质, 2005, 24(5):527-536. http://d.old.wanfangdata.com.cn/Periodical/kcdz200505007 Roedder E.Fluid inclusions[J]. Mineralogical Society of America, Reviews in Mineralogy, 1984, (12):644. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
卢焕章, 范宏瑞, 倪培, 等.流体包裹体[M].北京:科学出版社, 2004:132-208. Clayton R N, O' Neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77:3057-3067. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB077i017p03057
Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69 (6):843-883
Sheppard S M F.The Comubian batholith, SW England:D/H and 18O/16O studies of kaolinite and other alteration minerals[J]. Journal of the Geological Society, 1977, 133(6):573-591.
Sillitoe R H, Halls C, Grant J N.Porphyry tin deposits in Bolivia[J]. Economic Geology, 1975, 70:913-927. doi: 10.2113-gsecongeo.70.5.913/
Ross P S, Jebrak M, Walker B M.Discharge of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratifyied breccia zone at the Questa porphyry molybdenum deposit, New Mexico[J]. Economic Geology, 2002, 97:1679-1699.
Yang K, Bodnar R J.Orthomagmatic origin for the llkwang Cu-W breccia pipe deposit, southeastern Kyongsang Basin, South Korea[J]. Journal of Asian Earth Sciences, 2004, 24(2):259-270.
张会琼, 王京彬, 王玉往.山西灵丘支家地铅锌银矿隐爆角砾岩筒的岩相分带性研究及其勘查意义[J].地质论评, 2012, 58(6):1046-1055. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201206005 Richards J P.Alkalic-type epithermal gold deposits A review[J]. Mineralogical Association of Canada Short Course, 1995, 23:367-400.
Sillitoe R H, Hedenquist J W.Linkage between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits[J]. Society of Econmic Geology, 2003, 10:315-343.