Geochronology and geochemistry of Late Mesozoic igneous rocks inJifeng area of Northern Da Hinggan Mountains and their tectonic significance
-
摘要:
大兴安岭及其邻区广泛发育燕山期岩浆岩,其时空分布和成因类型对约束东北地区中生代构造演化具有重要意义。吉峰花岗-火山岩区位于大兴安岭北段,LA-ICP-MS锆石U-Pb年龄结果显示,该区岩浆活动可分为约145.2 Ma和约125.4~125.8 Ma两期;岩石地球化学结果表明,这2期岩浆岩均具有高SiO2、高Al2O3、高Na2O+K2O、高TZr、大离子亲石元素富集、高场强元素亏损等特征,大多数样品的Ga/Al×10000>2.6,Zr>250×10-6,岩石成因类型划属A型花岗岩。综合大兴安岭及其邻区170~100 Ma岩浆岩的时空展布和地球化学特征认为,第一期A型花岗岩可能受蒙古-鄂霍茨克构造体系域控制,为以挤压加厚为主、向伸展转换的构造背景下地壳底侵作用的产物;而第二期A型花岗岩可能为强烈拉伸环境下大兴安岭加厚地壳大规模拆沉的产物。
-
关键词:
- 大兴安岭 /
- 蒙古-鄂霍茨克构造体系 /
- 古太平洋构造体系 /
- 锆石U-Pb年龄 /
- A型花岗岩
Abstract:The Da Hinggan Mountains in Northeast China are typically characterized by extensive and large-scale Mesozoic magmatism.The temporal-spatial distribution and petrogenetic type of the magmatic rocks offer a potential method for constraining tectonic background and geodynamic mechanism.This paper reports the LA-ICP-MS zircon U-Pb ages and geochemical data for the Late Mesozoic granitic rocks in Jifeng area of the Da Hinggan Mountains.U-Pb age data show that magmatism in Jifeng area can be subdivided into two stages:ca.145.2 Ma and ca.124.2~125.8 Ma.The magmatic rocks in two different stages show consistent geochemical characteristics of high SiO2 (66.88%~75.03%), high Al2O3 (13.26%~16.44%), high Na2O+K2O (7.35%~9.30%) and high zircon saturation temperature as well as enrichment of LILE and depletion of HFSE.What's more, most of samples display characteristics of Ga/Al×10000>2.6 and Zr> 250×10-6.These rocks were considered to be the highly-fractionated A-type granite, indicating a regional crustal extension background.In combination with a large number of precise geochronological data between 170~100 Ma published for the Da Hinggan Mountains and their vicinities in the last few years, the authors hold that the first stage A-type granites may be products of partial melting of the lower crust under the tectonic background of transformation from compression to extension controlled by Mongol-Okhotsk Tectonic Domain, while the second stage A-type granitic rocks might have resulted from delamination of thickened lower crust under the tectonic setting of strong stretching.
-
中国东北地区位于西伯利亚板块、华北板块和西太平洋板块的交汇部位[1],由额尔古纳地块、兴安地块、松嫩地块、佳木斯地块、兴凯地块等造山微陆块(图 1-a)在古生代拼合而成[2-5]。大兴安岭包含额尔古纳地块、兴安地块和松嫩地块南西部(图 1-b),以发育巨量显生宙岩浆岩为典型特征,为研究东亚地区构造演化提供了天然的实验室。以往研究表明,大兴安岭显生宙岩浆活动可分为古生代和中生代2个阶段,其中古生代岩浆活动常作为古亚洲洋闭合的产物,标志中亚造山带东段构造演化的结束[2, 6-7];而中生代岩浆活动则与软流圈地幔上涌[8-9]和新生地壳的卷入[2, 10-15]密切相关。
受大兴安岭中生代岩浆活动分布面积广、时间跨度大等因素制约,相关构造背景和动力学机制仍存有较多分歧,目前主要有3种主流观点:①幔柱模式[16-18]; ②蒙古-鄂霍茨克洋闭合及后碰撞造山模式[19-23];③古太平洋板块俯冲模式[7, 24-31]。大兴安岭中生代岩浆岩呈北东向展布,岩浆活动时间跨度可达70 Ma,且未见同时代OIB的发育,加之地震层析成像识别出板片状高速异常[32],因此,本区发育地幔柱的可能性较小。蒙古-鄂霍茨克洋的闭合常被认为发生于中侏罗世[19, 21],大兴安岭仅额尔古纳等少数区域受其控制。另外,据前人对东亚晚中生代岩浆活动的统计分析可知,自大兴安岭向松辽盆地、吉黑东部直至朝鲜半岛,中生代岩浆岩年龄呈现逐渐年轻的趋势[25],蒙古-鄂霍茨克洋的闭合及后造山拉伸很难造成如此宽广的影响。但若为古太平洋板块的西向俯冲的结果,那古太平洋板块是如何俯冲如此远的距离(大于2000 km)触发额尔古纳等地区大规模的钙碱性系列岩浆活动,而对松辽盆地及其东部地区无明显影响呢?
基于此,本文详细研究大兴安岭北段吉峰地区火山岩-花岗岩岩石学、年代学和地球化学特征,并结合大兴安岭及其邻区晚中生代岩浆岩的成岩时代、岩石成因类型及其空间展布规律,深入探讨大兴安岭及其邻区中生代构造演化特征及动力学机制。
1. 地质背景与岩石学特征
吉峰地区火山-侵入杂岩体位于大兴安岭北段金河-三望山火山喷发带金河火山岩盆地和阿南林场火山岩盆地,大地构造位置属兴安地块鄂伦春褶皱带(图 1、图 2-a)。区内植被茂密、露头条件不佳,仅出露秀山、旭光等小型花岗岩体,而广泛发育大面积中生代火山岩地层,两者呈侵入接触关系(图 2-b)。
吉峰花岗岩主要为二长花岗岩和石英二长斑岩。二长花岗岩主要由长石(约70%)、石英(约25%)和黑云母(约5%)组成,其中斜长石粒度0.2~2 mm,轻微粘土化,碱性长石粒度一般为2~5 mm,可见文象结构,石英呈他形粒状,粒度0.2~2 mm,可见轻微波状消光(图 3-a)。二长斑岩斑晶由斜长石、少量钾长石和暗色矿物构成,粒度一般0.5~3.5 mm;基质由长石、石英、少量暗色矿物构成,粒度一般小于0.05 mm(图 3-b)。
火山岩地层主要为满克头鄂博组(J3mk)和玛尼吐组(J3mn)。满克头鄂博组流纹岩斑晶由斜长石、钾长石、石英、黑云母组成,粒度0.2~2.5 mm,其中斜长石多高岭土化和绢云母化,钾长石轻微高岭土化,石英部分被熔蚀呈浑圆状、港湾状,黑云母呈片状,多色性明显;基质由长石、石英组成(图 3-c)。玛尼吐组熔结凝灰岩由晶屑、岩屑、玻屑及少量火山尘组成,以小于2.0 mm的凝灰物为主。其中晶屑由长石、黑云母构成,可见熔蚀现象,且长石可见强绢云母化,黑云母长轴多定向排列;岩屑以塑性为主、刚性次之;玻屑呈蚯蚓状、细纹状等,均脱玻为隐晶状长英质,被少量粘土交代(图 3-d)。
2. 分析方法
锆石挑选在河北省区域地质矿产调查研究所进行,将岩石样品粉碎至100 μm后,磁选和浮选出锆石精样,并在双目镜下手工挑选具代表性的锆石,粘靶、抛光和镀金后,在北京燕都中实测试技术有限公司进行阴极发光(CL)内部结构照相。LA-ICP-MS锆石U-Pb同位素定年使用布鲁克M90等离子质谱与NewWaveUP213深紫外激光剥蚀系统测定,束斑直径为30 μm,应用标准样GJ-1进行分馏校正,元素含量采用SRM610为外标,具体原理、测试条件及流程见参考文献[33]。LA-ICP-MS锆石U-Pb同位素数据列于表 1,误差为1σ,普通铅校正使用标定的240Pb,年龄加权平均值及谐和图采用Isoplot程序[34]完成。
表 1 吉峰花岗质岩石LA-ICP-MS锆石U-Th-Pb定年数据Table 1. LA-ICP-MS zircon U-Th-Pb age data of granitic rocks in Jifeng area分析点 Pb/10-6 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ TW426,英安质熔结凝灰岩,18个测点年龄加权平均值为145.2±1.1 Ma,MSWD=1.4 TW426-04 2.33 57.47 66.86 0.86 0.4450 0.0291 0.0243 0.0005 0.1284 0.0072 373.8 20.5 155 3.3 2076.8 98.2 TW426-02 1.29 34.32 41.16 0.83 0.3123 0.0141 0.0243 0.0006 0.1052 0.0058 275.9 10.9 154.7 3.5 1718.2 101.7 TW426-07 2.21 67.12 69.67 0.96 0.2290 0.0100 0.0230 0.0004 0.0773 0.0040 209.3 8.3 146.8 2.7 1127.8 103.2 TW426-01 1.95 53.86 63.03 0.85 0.2309 0.0102 0.0234 0.0004 0.0767 0.0038 210.9 8.5 148.9 2.7 1114.5 98.2 TW426-09 3.61 142.07 101.32 1.40 0.2284 0.0104 0.0231 0.0004 0.0801 0.0049 208.9 8.6 147.2 2.4 1199.1 120.4 TW426-05 2.86 106.61 82.76 1.29 0.2282 0.0107 0.0233 0.0004 0.0765 0.0039 208.7 8.8 148.4 2.6 1109.3 99.1 TW426-08 1.89 59.69 63.84 0.94 0.2246 0.0108 0.0229 0.0005 0.0759 0.0040 205.7 9.0 146.3 2.9 1094.4 106.0 TW426-06 3.22 113.47 90.03 1.26 0.2266 0.0095 0.0235 0.0004 0.0746 0.0037 207.4 7.8 149.9 2.2 1057.4 93.5 TW426-10 3.04 96.73 97.66 0.99 0.2084 0.0100 0.0230 0.0003 0.0690 0.0035 192.2 8.4 146.6 2.2 901.9 110.2 TW426-03 2.84 94.94 86.75 1.09 0.2045 0.0096 0.0231 0.0004 0.0675 0.0032 189 8.1 147.4 2.3 853.7 97.4 TW426-01-1 2.95 120.08 92.55 1.30 0.1641 0.0057 0.0222 0.0003 0.0550 0.0020 154.3 5.0 141.3 1.7 413 84.3 TW426-03-1 3.34 113.37 105.89 1.07 0.1665 0.0051 0.0230 0.0002 0.0532 0.0017 156.4 4.5 146.5 1.5 338.9 72.2 TW426-07-1 3.15 122.81 98.27 1.25 0.1649 0.0055 0.0227 0.0002 0.0534 0.0018 155 4.8 144.8 1.5 346.4 43.5 TW426-05-1 2.22 75.78 75.25 1.01 0.1606 0.0061 0.0226 0.0003 0.0528 0.0022 151.2 5.4 144 1.7 320.4 88.0 TW426-04-1 2.66 106.78 84.30 1.27 0.1593 0.0057 0.0227 0.0003 0.0517 0.0018 150.1 5.0 144.9 1.7 272.3 83.3 TW426-10-1 3.07 115.43 99.19 1.16 0.1560 0.0056 0.0226 0.0002 0.0505 0.0018 147.2 4.9 144.3 1.5 220.4 49.1 TW426-02-1 2.85 101.91 94.98 1.07 0.1496 0.0053 0.0226 0.0003 0.0491 0.0018 141.6 4.7 143.9 1.6 150.1 85.2 TW426-06-1 3.21 128.53 104.89 1.23 0.1532 0.0049 0.0223 0.0002 0.0505 0.0017 144.8 4.3 142.1 1.5 216.7 80.5 TW426-08-1 2.83 91.89 95.32 0.96 0.1560 0.0052 0.0229 0.0002 0.0508 0.0018 147.2 4.6 145.7 1.4 231.6 81.5 TW426-09-1 2.61 104.57 81.18 1.29 0.1556 0.0057 0.0230 0.0003 0.0503 0.0019 146.8 5.0 146.4 1.7 205.6 91.7 TW3,流纹岩,16个测点年龄加权平均值为125.4±0.8 Ma,MSWD=0.36 TW3-06-1 2.73 46.94 115.34 0.41 0.1582 0.0066 0.0199 0.0003 0.0607 0.0027 149.2 5.8 127 1.8 627.8 96.3 TW3-09 3.05 76.01 125.66 0.60 0.1563 0.0076 0.0197 0.0003 0.0593 0.0030 147.4 6.7 125.9 2.0 588.9 109.2 TW3-03-1 3.40 95.66 137.31 0.70 0.1526 0.0058 0.0195 0.0003 0.0581 0.0022 144.2 5.1 124.5 1.6 600 83.3 TW3-09-1 3.82 92.93 152.11 0.61 0.1509 0.0056 0.0197 0.0002 0.0572 0.0023 142.7 5.0 126 1.5 498.2 87.0 TW3-02-1 2.92 74.51 113.79 0.65 0.1551 0.0057 0.0205 0.0003 0.0562 0.0021 146.4 5.0 130.9 1.9 457.5 83.3 TW3-06 4.70 143.10 183.69 0.78 0.1465 0.0053 0.0197 0.0003 0.0547 0.0020 138.8 4.7 125.6 1.6 398.2 78.7 TW3-04-1 3.14 67.78 128.15 0.53 0.1450 0.0059 0.0197 0.0002 0.0546 0.0023 137.5 5.2 126 1.6 398.2 92.6 TW3-07-1 4.94 159.41 186.53 0.85 0.1404 0.0048 0.0195 0.0002 0.0531 0.0019 133.4 4.3 124.3 1.4 344.5 79.6 TW3-02 4.38 114.83 176.93 0.65 0.1430 0.0057 0.0197 0.0003 0.0541 0.0022 135.8 5.1 125.7 1.7 372.3 92.6 TW3-10-1 4.57 97.84 187.07 0.52 0.1419 0.0052 0.0198 0.0002 0.0533 0.0021 134.7 4.7 126.5 1.6 342.7 88.9 TW3-01 3.71 100.82 152.50 0.66 0.1396 0.0069 0.0196 0.0003 0.0542 0.0028 132.7 6.1 124.8 1.8 388.9 118.5 TW3-07 6.47 225.87 254.28 0.89 0.1352 0.0046 0.0193 0.0002 0.0514 0.0018 128.8 4.1 123.5 1.4 257.5 84.3 TW3-05-1 6.51 234.01 239.65 0.98 0.1370 0.0043 0.0197 0.0002 0.0514 0.0017 130.4 3.9 125.5 1.5 257.5 77.8 TW3-05 3.69 95.75 147.27 0.65 0.1385 0.0065 0.0199 0.0003 0.0524 0.0026 131.7 5.8 126.9 1.9 301.9 111.1 TW3-01-1 4.75 112.59 194.06 0.58 0.1314 0.0047 0.0196 0.0002 0.0492 0.0018 125.3 4.3 125.3 1.4 166.8 82.4 TW3-04 5.03 154.98 194.50 0.80 0.1325 0.0052 0.0197 0.0003 0.0491 0.0019 126.3 4.6 125.6 1.6 153.8 90.7 TW3-08 4.18 116.38 168.97 0.69 0.1313 0.0055 0.0196 0.0003 0.0494 0.0021 125.3 4.9 125 1.6 168.6 100.0 TW3-08-1 7.44 249.24 250.01 1.00 0.1462 0.0047 0.0219 0.0003 0.0489 0.0016 138.5 4.2 139.5 1.6 142.7 74.1 TW4,二长花岗岩,19个测点年龄加权平均值为125.5±1.8 Ma,MSWD=6.7 TW4-06-1 2.25 53.73 91.69 0.59 0.1659 0.0072 0.0196 0.0003 0.0665 0.0034 155.8 6.3 125.3 2.0 821.9 100.9 TW4-10-1 3.55 87.37 140.58 0.62 0.1569 0.0068 0.0201 0.0003 0.0577 0.0026 148 5.9 128.1 1.8 520.4 96.3 TW4-05-1 2.47 55.07 99.00 0.56 0.1583 0.0070 0.0203 0.0003 0.0593 0.0027 149.2 6.2 129.8 2.0 576 98.1 TW4-09-1 4.74 112.86 179.78 0.63 0.1594 0.0055 0.0207 0.0003 0.0569 0.0020 150.1 4.8 132.1 1.8 487.1 79.6 TW4-07-1 8.18 199.41 316.38 0.63 0.1509 0.0046 0.0208 0.0002 0.0528 0.0015 142.7 4.0 133 1.4 320.4 66.7 TW4-05 3.54 110.76 145.87 0.76 0.1411 0.0044 0.0198 0.0002 0.0524 0.0016 134 3.9 126.2 1.4 305.6 70.4 TW4-02 3.82 125.50 158.37 0.79 0.1301 0.0037 0.0190 0.0002 0.0507 0.0015 124.2 3.3 121.5 1.4 233.4 73.1 TW4-08 4.24 136.70 179.38 0.76 0.1262 0.0038 0.0191 0.0002 0.0483 0.0014 120.7 3.4 122.1 1.3 122.3 73.1 TW4-06 3.73 116.73 156.96 0.74 0.1286 0.0037 0.0192 0.0002 0.0497 0.0015 122.8 3.4 122.4 1.3 189 70.4 TW4-03 10.78 457.45 413.13 1.11 0.1281 0.0025 0.0192 0.0001 0.0487 0.0010 122.4 2.3 122.4 0.9 131.6 46.3 TW4-08-1 8.35 211.54 348.21 0.61 0.1318 0.0041 0.0192 0.0002 0.0499 0.0015 125.7 3.7 122.4 1.3 187.1 70.4 TW4-14 7.42 304.99 297.87 1.02 0.1349 0.0062 0.0192 0.0003 0.0512 0.0023 128.5 5.6 122.5 2.0 250.1 101.8 TW4-04-1 15.37 476.94 598.79 0.80 0.1273 0.0030 0.0194 0.0002 0.0478 0.0011 121.6 2.7 123.9 1.1 100.1 57.4 TW4-02 9.67 487.47 333.54 1.46 0.1290 0.0057 0.0197 0.0002 0.0478 0.0021 123.2 5.1 125.7 1.5 87.1 103.7 TW4-07 3.29 98.98 136.25 0.73 0.1346 0.0044 0.0198 0.0002 0.0507 0.0018 128.2 4.0 126.5 1.5 233.4 81.5 TW4-01-1 3.44 71.52 137.85 0.52 0.1400 0.0051 0.0198 0.0003 0.0536 0.0021 133 4.5 126.6 1.7 366.7 88.9 TW4-04 4.41 110.45 184.67 0.60 0.1379 0.0100 0.0202 0.0004 0.0510 0.0041 131.2 8.9 129 2.7 239 185.2 TW4-03-1 6.06 142.05 239.11 0.59 0.1409 0.0049 0.0205 0.0002 0.0505 0.0018 133.8 4.3 130.7 1.6 220.4 49.1 TW4-06 9.23 293.04 347.05 0.84 0.1463 0.0078 0.0208 0.0003 0.0517 0.0028 138.7 6.9 133 1.9 272.3 127.8 TW4-03 16.41 500.73 502.20 1.00 0.1712 0.0069 0.0248 0.0003 0.0503 0.0020 160.4 6.0 157.8 1.8 209.3 88.0 TW4-02-1 6.78 146.85 209.13 0.70 0.1741 0.0050 0.0249 0.0003 0.0520 0.0016 163 4.4 158.3 1.8 283.4 70.4 TW4-08 16.28 791.81 392.01 2.02 0.1765 0.0061 0.0249 0.0003 0.0520 0.0019 165 5.3 158.3 1.9 283.4 83.3 TW4-12 13.66 308.29 437.33 0.70 0.1709 0.0091 0.0250 0.0003 0.0496 0.0026 160.2 7.9 159.4 2.2 172.3 122.2 TW6,花岗斑岩,19个测点年龄加权平均值为125.8±1.0 Ma,MSWD=2.4 TW6-09-1 3.69 90.47 153.58 0.59 0.1526 0.0062 0.0192 0.0003 0.0600 0.0026 144.2 5.4 122.5 1.6 611.1 94.4 TW6-07-1 4.06 137.21 155.14 0.88 0.1484 0.0055 0.0194 0.0003 0.0566 0.0022 140.5 4.9 124 1.6 476 85.2 TW6-08 8.25 234.92 337.24 0.70 0.1462 0.0045 0.0197 0.0002 0.0544 0.0017 138.5 4.0 125.6 1.4 387.1 68.5 TW6-05-1 6.96 174.85 273.19 0.64 0.1441 0.0042 0.0199 0.0002 0.0532 0.0016 136.7 3.8 127 1.4 344.5 100.9 TW6-06-1 11.20 418.86 385.64 1.09 0.1430 0.0038 0.0207 0.0002 0.0508 0.0013 135.7 3.4 131.8 1.4 227.8 65.7 TW6-07 4.00 117.11 162.72 0.72 0.1257 0.0056 0.0191 0.0003 0.0499 0.0026 120.2 5.1 121.7 1.7 190.8 120.4 TW6-08-1 6.87 192.56 277.46 0.69 0.1369 0.0044 0.0194 0.0002 0.0522 0.0018 130.3 3.9 123.6 1.3 294.5 77.8 TW6-01 10.25 394.76 373.87 1.06 0.1280 0.0037 0.0200 0.0002 0.0471 0.0014 122.3 3.3 127.4 1.4 53.8 66.7 TW6-02-1 12.42 403.63 472.63 0.85 0.1341 0.0034 0.0195 0.0002 0.0503 0.0013 127.7 3.1 124.6 1.2 209.3 93.5 TW6-04-1 32.85 1132.26 1223.71 0.93 0.1359 0.0026 0.0198 0.0002 0.0495 0.0008 129.4 2.3 126.6 1.3 172.3 38.9 TW6-03 4.42 133.86 176.60 0.76 0.1373 0.0059 0.0200 0.0003 0.0510 0.0022 130.6 5.3 127.7 2.1 242.7 102.8 TW6-01-1 11.08 474.07 386.39 1.23 0.1294 0.0034 0.0196 0.0002 0.0484 0.0013 123.5 3.1 125 1.3 116.8 67.6 TW6-04 6.76 175.91 279.38 0.63 0.1363 0.0046 0.0200 0.0003 0.0501 0.0017 129.7 4.2 127.8 1.7 211.2 81.5 TW6-06 11.03 296.75 455.48 0.65 0.1363 0.0038 0.0200 0.0002 0.0498 0.0014 129.8 3.4 127.6 1.4 183.4 69.4 TW6-10 5.33 159.45 210.36 0.76 0.1332 0.0054 0.0196 0.0002 0.0499 0.0021 127 4.9 125.2 1.6 190.8 93.5 TW6-03-1 18.44 554.42 693.88 0.80 0.1331 0.0027 0.0197 0.0002 0.0492 0.0010 126.8 2.5 125.8 1.1 166.8 48.1 TW6-10-1 10.45 420.23 382.96 1.10 0.1309 0.0041 0.0195 0.0002 0.0507 0.0020 124.9 3.7 124.5 1.5 233.4 95.4 TW6-02 8.77 253.19 359.05 0.71 0.1334 0.0044 0.0199 0.0002 0.0493 0.0017 127.1 4.0 127.1 1.5 161.2 79.6 TW6-09 16.49 581.43 623.69 0.93 0.1328 0.0030 0.0197 0.0002 0.0492 0.0011 126.6 2.7 125.6 1.3 166.8 53.7 全岩地球化学分析在北京燕都中实测试技术有限公司完成。主量元素使用日本岛津XRF-1800型波长色散X射线荧光光谱仪测定,分析误差优于5%;微量元素使用布鲁克(Bruker)公司生产的aurora M90 ICP-MS电感耦合等离子质谱仪测定,分析误差优于10%。全岩地球化学数据见表 2。
表 2 吉峰地区花岗质岩石全岩地球化学数据Table 2. Whole rock geochemical data of granitic rocks in Jifeng area元素 TW4 TW5 JP6TW06 JP6TW08 TW6 JP11TW02 TW426 TW362 TW3 TW302 TW383 TW082 二长花
岗岩二长花
岗岩二长花
岗岩二长花
岗岩花岗斑岩 花岗斑岩 英安质
凝灰岩流纹岩 流纹岩 流纹岩 流纹岩 粗面岩 SiO2 75.03 73.97 74.36 74.23 66.88 73.49 67.68 74.91 71.90 73.61 71.19 62.67 TiO2 0.20 0.17 0.20 0.20 0.39 0.18 0.77 0.20 0.27 0.25 0.37 0.91 Al2O3 13.56 14.21 13.31 13.44 16.22 14.06 16.66 13.26 14.61 14.64 15.38 16.44 Fe2O3 0.93 1.02 0.92 0.93 1.26 1.21 2.90 1.13 0.80 1.10 1.12 4.17 MgO 0.06 0.04 0.05 0.05 0.10 0.04 0.06 0.08 0.03 0.02 0.05 0.10 MnO 0.24 0.13 0.24 0.24 0.64 0.13 0.85 0.23 0.19 0.07 0.39 1.18 CaO 0.68 0.22 0.82 0.76 1.61 0.39 0.47 0.24 0.53 0.47 1.20 1.84 Na2O 3.12 4.21 3.87 3.92 3.34 4.26 1.76 3.52 5.03 4.81 3.62 3.39 K2O 5.15 4.69 5.11 5.16 6.53 5.60 5.69 4.99 4.78 3.62 4.61 5.07 P2O5 0.03 0.03 0.03 0.04 0.10 0.03 0.20 0.04 0.05 0.04 0.13 0.27 烧失量 0.54 0.91 0.58 0.54 1.44 0.48 2.40 0.94 0.51 1.20 1.37 3.44 FeO 0.44 0.22 0.46 0.45 1.30 0.09 0.31 0.36 1.08 0.07 0.41 0.26 总计 100.03 99.85 100.00 100.00 99.96 99.96 99.79 99.93 99.91 99.90 99.88 99.77 K2O/Na2O 1.65 1.11 1.32 1.32 1.96 1.32 3.23 1.42 0.95 0.75 1.27 1.49 FeO*/MgO 5.25 8.45 5.32 5.28 3.82 8.91 3.44 6.00 9.30 14.92 3.60 3.41 A.R. 3.77 4.22 4.49 4.55 3.48 5.29 2.54 4.42 4.68 3.52 2.97 2.72 A/CNK 1.14 1.15 0.99 1.00 1.05 1.02 1.68 1.14 1.01 1.16 1.17 1.14 A/NK 1.27 1.18 1.12 1.12 1.29 1.08 1.84 1.18 1.09 1.24 1.40 1.49 Q 35.63 31.32 30.49 29.99 18.26 26.50 34.88 34.97 22.79 31.22 30.14 19.36 C 1.70 1.92 0.01 0.11 0.99 0.37 7.43 1.75 0.32 2.09 2.59 2.78 Or 30.61 28.01 30.37 30.69 39.23 33.27 34.54 29.80 28.47 21.65 27.69 31.09 Ab 26.55 36.02 32.93 33.34 28.69 36.20 15.31 30.11 42.88 41.23 31.11 29.78 An 3.20 0.86 3.85 3.55 7.46 1.75 1.06 0.91 2.31 2.06 5.19 7.65 Di(FS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Di(MS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Hy(MS) 0.61 0.34 0.61 0.61 1.61 0.33 2.17 0.58 0.49 0.18 1.00 3.05 Hy(FS) 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.94 0.00 0.00 0.00 Mt 1.04 0.31 1.07 1.04 1.86 0.00 0.00 0.86 1.16 0.00 0.42 0.00 Il 0.38 0.33 0.39 0.38 0.76 0.27 0.82 0.38 0.52 0.20 0.71 0.81 Hm 0.22 0.82 0.19 0.21 0.00 1.22 2.98 0.55 0.00 1.11 0.85 4.33 Ap 0.07 0.08 0.08 0.08 0.24 0.06 0.47 0.10 0.12 0.10 0.30 0.64 DI 92.79 95.35 93.80 94.01 86.18 95.96 84.73 94.87 94.14 94.10 88.94 80.22 Rb 222.17 175.89 189.92 217.42 280.54 189.92 220.61 169.65 201.37 199.29 156.52 266.24 Sr 114.62 143.99 48.72 53.01 160.05 32.93 302.50 162.47 331.65 202.84 250.80 193.82 Ba 374.76 818.52 117.55 127.84 895.44 126.16 555.12 793.80 1004.40 265.32 545.52 959.64 Nb 21.58 12.31 23.03 30.15 24.03 17.32 15.15 12.09 17.11 21.52 13.57 18.01 Ta 1.91 1.19 1.82 3.96 1.98 2.01 1.28 1.21 1.81 1.98 1.14 1.36 Zr 170.59 218.33 177.91 194.18 523.10 208.69 369.65 332.98 324.31 254.52 238.68 469.60 Hf 7.36 5.55 6.87 8.10 14.04 6.50 10.74 8.91 9.75 8.90 8.36 11.90 V 31.07 37.25 11.24 12.90 61.54 13.62 37.36 43.76 68.92 35.86 33.59 75.84 Ni 1.54 1.64 0.32 0.27 6.72 1.07 2.55 1.63 2.24 2.01 1.40 4.69 Be 4.09 2.49 4.39 5.37 5.74 3.61 3.12 3.10 3.84 4.49 3.57 3.61 Co 1.41 0.61 1.18 1.21 6.05 0.75 4.54 1.49 4.82 0.83 2.48 8.67 Li 51.06 21.00 12.04 14.04 31.17 6.72 24.73 13.34 47.77 13.58 15.92 21.47 Th 22.53 17.15 16.93 25.21 23.19 13.49 19.86 16.03 20.65 25.28 15.81 18.69 U 3.49 3.15 3.56 5.24 4.44 2.34 4.29 3.43 4.53 4.07 1.53 2.97 Sc 5.76 6.88 2.22 2.68 9.95 1.10 8.57 8.21 9.91 6.53 5.58 11.56 La 31.66 25.16 41.10 41.49 57.81 14.22 46.51 35.07 38.72 55.73 32.57 48.13 Ce 59.19 61.52 77.11 78.63 142.59 37.82 92.58 76.16 81.20 99.77 63.24 109.73 Pr 5.77 5.77 9.02 9.37 15.30 3.38 10.15 8.80 9.16 10.86 6.54 13.70 Nd 17.96 19.75 32.64 33.27 58.30 11.78 36.27 32.78 34.31 37.17 21.77 54.12 Sm 2.43 2.87 5.30 5.64 9.06 2.25 5.33 5.49 5.64 5.38 3.04 8.81 Eu 0.31 0.47 0.34 0.37 1.48 0.25 1.01 0.66 1.02 0.60 0.63 1.66 Gd 2.72 2.96 4.67 4.93 8.07 2.04 5.17 4.99 5.41 5.08 2.97 7.36 Tb 0.39 0.50 0.72 0.79 1.19 0.36 0.79 0.85 0.84 0.75 0.44 1.09 Dy 2.22 2.73 3.91 4.50 6.02 2.28 3.98 4.71 4.77 4.08 2.18 5.58 Ho 0.45 0.56 0.77 0.87 1.13 0.47 0.79 0.95 0.96 0.82 0.43 1.02 Er 1.40 1.64 2.42 2.80 3.03 1.57 2.22 2.66 2.64 2.37 1.20 2.64 Tm 0.29 0.33 0.44 0.50 0.52 0.30 0.42 0.52 0.50 0.43 0.23 0.45 Yb 2.08 2.29 2.98 3.44 3.38 2.12 2.81 3.43 3.35 3.04 1.60 2.90 Lu 0.39 0.53 0.51 0.60 0.73 0.53 0.61 0.66 0.59 0.55 0.32 0.67 Y 14.24 16.32 22.43 25.90 31.22 12.89 22.25 26.59 27.79 23.89 12.43 29.05 Ga 17.84 17.46 18.23 24.54 15.95 20.00 16.06 21.98 Pb 35.94 21.83 20.85 36.70 23.53 24.79 15.20 21.98 TZr/℃ 803 825 792 801 890 807 908 868 845 840 833 885 注:FeO*=0.8998×TFe2O3; A/NK=摩尔Al2O3/(Na2O+K2O); A/CNK=摩尔Al2O3/(CaO+Na2O+K2O); A.R.=wt%(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(Na2O+K2O));DI=Q+Or+Ab+Ne+Lc+Kp; TZr=12900/(2.95+0.85M+ln(49600/Zr), 其中M=摩尔(K+Na+2Ca)/(Si×Al);主量元素含量单位为%, 微量和稀土元素含量单位为10-6 3. 测试结果
3.1 锆石U-Pb年龄
LA-ICP-MS锆石U-Pb同位素定年选取典型花岗岩样品2件(TW4和TW6)、满克头鄂博组流纹岩样品1件(TW3)、玛尼吐组英安质熔结凝灰岩样品1件(TW462)。锆石阴极发光(CL)与测点视年龄图、U-Pb谐和年龄与年龄加权平均值图见图 4。所挑选的锆石颗粒粒径80~130 μm,晶形较好,以长柱状为主,长宽比为1:1~3:1,晶体具有明显的生长环带和韵律结构,Th/U值多大于0.7,具有典型的岩浆成因锆石特征,所测年龄能够代表岩浆的侵位时间[35]。由图 4可知,4个样品的测试结果较理想,大部分测点位于U-Pb谐和线附近,少量测点206Pb/238U年龄偏大,可能为残留锆石,在加权平均计算时予以剔除。其中花岗岩样品TW4的206Pb/238U年龄加权平均值为125.5±1.8 Ma(MSWD=6.7);样品TW6的206Pb/238U年龄加权平均值为125.8±1.0 Ma(MSWD=2.4);满克头鄂博组流纹岩样品TW3的206Pb/238U年龄加权平均值为125.4±0.8 Ma(MSWD=0.36);玛尼吐组凝灰岩样品TW426的206Pb/238U年龄加权平均值为145.2±1.1 Ma(MSWD=1.4)。
3.2 岩石地球化学特征
(1) 主量元素
在使用主量元素地球化学图解前,均去除烧失量,重新换算成100%。在TAS图解上,玛尼吐组凝灰岩(TW426)落入流纹岩与英安岩边界;早白垩世花岗岩和满克头鄂博组火山岩样品点分布于流纹岩与粗面岩区域(图 5-a)。
由表 2可知,早白垩世花岗岩和满克头鄂博组火山岩地球化学特征较一致:①大多数样品SiO2含量(66.88%~75.03%)与分异指数(87.4~97.2)较高(除粗面岩TW082外);②岩石Al2O3含量高(13.26%~16.44%),铝饱和指数(A/CNK)介于0.99~1.17之间,在A/CNK-A/NK图解上大体投影于过铝质岩区域(图 5-b),在CIPW标准矿物中则可见刚玉分子的出现;③全碱含量高,K2O+Na2O值为8.23%~9.87%,K2O/Na2O值多大于1.1,在SiO2-K2O图解上,样品点主要落入橄榄粗玄系列和高钾钙碱性系列(图 5-c),而在A.R.-SiO2图解上,大体落入碱性岩区域(图 5-d);④在Harker图解中,TiO2、Al2O3、TFe2O3、CaO、P2O5含量随SiO2含量增高而降低(图 6)。
而玛尼吐组火山岩样品TW426地球化学特征则稍有不同,具有较低的SiO2含量(67.68%),高的Al2O3含量(16.66%)和铝饱和指数(1.68),在A/CNK-A/NK图解上位于强烈过铝质区域,低全碱含量(7.65%)和Wright碱度率(2.54)及高K2O/Na2O值(3.23)等特征。
(2) 微量元素
由表 2可知,早白垩世花岗岩、满克头鄂博组流纹岩及玛尼吐组凝灰岩微量元素地球化学特征较一致。在球粒陨石标准化稀土元素配分模式图(图 7-a)中,所有样品均表现出右倾的海鸥式配分模式,具有相对富集的LREE、较高的(La/Yb)N值(4.82~14.60)及轻微-中等的负Eu异常。在微量元素原始地幔标准化蛛网图(图 7-b)中,大离子亲石元素(LILE)Rb、U、Th、K及Pb富集,Ba和高场强元素(HSFE)Ti、Nb、Ta、Sr、P等则明显亏损。
图 7 吉峰花岗岩-火山岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[36])Figure 7. Chondrite-normalized REE patterns(a)and primitive-mantle-normalized trace element spidergrams(b)for the Jifeng granites and tuffs4. 讨论
4.1 吉峰地区花岗质岩石成岩时代和成因类型
前文已述,大兴安岭北段吉峰地区秀山花岗岩、旭光花岗岩、满克头鄂博组流纹岩和玛尼吐组凝灰岩的锆石U-Pb年龄分别为125.5±1.8 Ma,125.8±1.0 Ma,125.4±0.78 Ma,145.2±1.1 Ma,指示该区至少经历了约145 Ma和约125 Ma两期岩浆活动。
本文采集的岩石样品的A/CNK=0.99~1.68(平均1.14),CIPW标准矿物计算中出现刚玉分子(0.01%~7.43%),表现出准铝质-过铝质岩石的特征,暗示其与S型花岗岩的亲缘性。但其P2O5含量低(0.03%~0.28%),P2O5与SiO2表现出明显的负相关趋势(图 6),且岩石未见堇青石、石榴子石等矿物,因而基本排除其为S型花岗岩的可能[37-40]。
同时,岩石具有高硅、高铝、高分异指数、轻重稀土元素中等分异、LILE富集、HSFE强烈亏损、部分主量、微量元素与SiO2呈负相关等高分异特征,与I型花岗岩有较好的相似性。Chappell等[41]指出,在高分异的情况下,A型花岗岩原本高的Zr、Nb、Ce、Y含量会明显降低[42],导致其与I型花岗岩之间成因类型判别困难。在花岗岩成因判别图解中,大部分样品具有Ga/Al×10000>2.6、(Zr+Nb+Ce+Y)>350×10-6、Zr>250×10-6等特征,投影于A型花岗岩区域[43](图 8)。加之吉峰地区岩浆岩锆石饱和温度为792~908 ℃,平均841 ℃,高于I型和S型花岗岩形成温度(表 2)。因此,在无较富镁铁质岩石伴生的情况下,笔者倾向于利用Whalen等[43]的指标,将吉峰地区上述2期花岗质岩石归为A型花岗岩。
图 8 吉峰花岗岩成因类型判别图解(底图据参考文献[43])a—K2O-Na2O图解;b—10000Ga/Al-K2O+Na2O图解;c—10000Ga/Al-Nb图解;d—10000Ga/Al-Zr图解;e—(Zr+Nb+Ce+Y)-FeO*/MgO图解;f—(Zr+Nb+Ce+Y)-(K2O+Na2O)图解。FG—分异的长英质花岗岩; OGT—未分异的M、I、S花岗岩Figure 8. Classification diagrams indicating Jifeng granites belonging to A-types granite4.2 构造背景及动力学机制
前文已述,大兴安岭北段吉峰地区2期岩浆岩均为A型花岗岩。通常认为,A型花岗岩形成于较高温度、来源于较浅部的中上地壳(成岩压力较低),与大陆裂谷、大洋热点区、后造山等拉张构造背景息息相关[37, 43-47]。在构造背景判别图上,吉峰地区大部分样品点落入后碰撞区域(图 9),指示大兴安岭北段在晚侏罗世(145.2 Ma)和早白垩世(125.4~125.8 Ma)均处于伸展的大地构造背景。
图 9 吉峰地区花岗质岩石大地构造背景判别图(底图据参考文献[48])Figure 9. Tectonic background discriminant diagram of granitic rocks in Jifeng area为更全面地理解大兴安岭北段吉峰地区晚中生代的构造背景和成岩动力学机制,本文系统分析了大兴安岭及其邻区已发表的170~100 Ma的年龄和地球化学数据。由图 10可知,大兴安岭岩浆活动自170 Ma开始逐渐增强,在约132 Ma达到高峰,之后逐渐减弱,在约120 Ma后岩浆活动近于停歇。但若依据岩石成因类型进行分类统计,可见岩浆活动随时间有规律地进行:①晚侏罗世(170~145 Ma),在大兴安岭全区广泛发育,其中158 Ma和150 Ma存在2个小的活动峰期,岩石介于碱性-亚碱性之间,以钙碱性为主[3, 49-55];②早白垩世早期(145~135 Ma),岩石以高钾钙碱性I型(部分为埃达克质岩)和A型花岗质岩浆岩共同发育为典型特征(图 10)[25, 56-69],相对晚侏罗世,该期岩浆活动进一步活跃,岩石极性显著增大;③早白垩世中期(135~120 Ma),岩浆活动强烈发育,在约132 Ma达到峰值,岩石主要为A型花岗质岩石和后碰撞花岗岩[2, 25, 52, 58, 67, 70-76],岩石极性进一步增大;④早白垩世晚期(120~100 Ma),大兴安岭地区岩浆活动迅速减弱,而松辽盆地开始发育大量A型花岗岩和双峰式火山岩(图 10)[77-85];吉黑东部则以钙碱性组合为主兼有碱性岩特征,并具有自陆缘向陆内极性成分增加的趋势[3]。
基于前文大兴安岭及其邻区岩浆岩年龄框架,笔者认为,大兴安岭及其邻区构造演化可能并非受单一构造体系域的控制。
(1) 中晚侏罗世(170~145 Ma)
大兴安岭、东蒙古和外贝加尔地区在该期岩浆活动强烈[7, 26, 52-53, 89, 163-164],而松辽盆地及其东部地区岩浆作用却十分少见。古太平洋板块很难俯冲如此远的距离(大于2000 km)触发大兴安岭以西地区大规模岩浆活动,而对松辽盆地及其东部地区无显著影响。因而大兴安岭地区中晚侏罗世钙碱性岩石组合可能更多地受蒙古-鄂霍茨克洋闭合制约[3]。但同时需明白,古太平洋板块西向俯冲及南部特提斯洋向北俯冲的远程效应,驱动华北北缘增生带向北与西伯利亚板块俯冲碰撞,并导致大兴安岭岩石圈挤压和增厚[165]。
(2) 早白垩世早期(145~135 Ma)
高Sr、低Y的埃达克质岩石的发育,指示大兴安岭地区在该期仍以蒙古-鄂霍茨克构造体系域为主,发生了加厚地壳的部分熔融,而A型花岗岩则可能为加厚条件下岩浆底侵下地壳部分熔融的产物,也表明该时期大兴安岭地区即将发生由挤压加厚向伸展的转换。
(3) 早白垩世中期(135~120 Ma)
尽管该期仍可见埃达克质岩的发育,但A型花岗质火山-侵入岩和后碰撞花岗岩比例逐渐增大,岩石极性亦逐步增大,指示大兴安岭地区处于强烈的拉张环境,可能为蒙古-鄂霍茨克后造山阶段或拆沉阶段。但值得注意的是,该时期黑龙江、饶河等地可见构造核杂岩[2],指示中国东北地区伸展作用的广泛分布。因此,也不能排除古太平洋板块后撤导致的加厚地壳拆沉的可能。
(4) 早白垩世晚期(120~100 Ma)
本阶段大兴安岭地区岩浆活动迅速减弱,指示蒙古-鄂霍茨克构造体系域控制作用的结束。而松辽盆地大规模的A型花岗岩和双峰式火山岩,指示东北地区拉伸作用的快速东移;吉黑东部岩浆岩呈现出由东向西极性增大的趋势[3],则可能受东部俯冲板片的局部挤压的控制。这表明东北地区在该期主要受古太平洋构造体系域的控制。
5. 结论
(1) 大兴安岭北段吉峰地区发育约145.2 Ma和约125.4 Ma两期岩浆活动,2期岩浆岩均具有A型花岗岩的地球化学特征。其中第一期A型花岗岩可能为以挤压加厚为主、向伸展转换的构造背景下地壳部分熔融的产物;而第二期A型花岗岩可能为强烈拉伸环境下大兴安岭加厚地壳大规模拆沉的产物。
(2) 大兴安岭晚中生代大规模岩浆活动受蒙古-鄂霍茨克和古太平洋构造体系域的共同控制,其中早白垩世中期以前主要受蒙古-鄂霍茨克构造体系域控制,早白垩世晚期则以古太平洋构造体系域为主。
致谢: 审稿专家提出宝贵修改意见,云南大学朱江博士后在成文过程中提供建设性意见,在此一并表示衷心感谢。 -
图 7 吉峰花岗岩-火山岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[36])
Figure 7. Chondrite-normalized REE patterns(a)and primitive-mantle-normalized trace element spidergrams(b)for the Jifeng granites and tuffs
图 8 吉峰花岗岩成因类型判别图解(底图据参考文献[43])
a—K2O-Na2O图解;b—10000Ga/Al-K2O+Na2O图解;c—10000Ga/Al-Nb图解;d—10000Ga/Al-Zr图解;e—(Zr+Nb+Ce+Y)-FeO*/MgO图解;f—(Zr+Nb+Ce+Y)-(K2O+Na2O)图解。FG—分异的长英质花岗岩; OGT—未分异的M、I、S花岗岩
Figure 8. Classification diagrams indicating Jifeng granites belonging to A-types granite
图 9 吉峰地区花岗质岩石大地构造背景判别图(底图据参考文献[48])
Figure 9. Tectonic background discriminant diagram of granitic rocks in Jifeng area
表 1 吉峰花岗质岩石LA-ICP-MS锆石U-Th-Pb定年数据
Table 1 LA-ICP-MS zircon U-Th-Pb age data of granitic rocks in Jifeng area
分析点 Pb/10-6 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ TW426,英安质熔结凝灰岩,18个测点年龄加权平均值为145.2±1.1 Ma,MSWD=1.4 TW426-04 2.33 57.47 66.86 0.86 0.4450 0.0291 0.0243 0.0005 0.1284 0.0072 373.8 20.5 155 3.3 2076.8 98.2 TW426-02 1.29 34.32 41.16 0.83 0.3123 0.0141 0.0243 0.0006 0.1052 0.0058 275.9 10.9 154.7 3.5 1718.2 101.7 TW426-07 2.21 67.12 69.67 0.96 0.2290 0.0100 0.0230 0.0004 0.0773 0.0040 209.3 8.3 146.8 2.7 1127.8 103.2 TW426-01 1.95 53.86 63.03 0.85 0.2309 0.0102 0.0234 0.0004 0.0767 0.0038 210.9 8.5 148.9 2.7 1114.5 98.2 TW426-09 3.61 142.07 101.32 1.40 0.2284 0.0104 0.0231 0.0004 0.0801 0.0049 208.9 8.6 147.2 2.4 1199.1 120.4 TW426-05 2.86 106.61 82.76 1.29 0.2282 0.0107 0.0233 0.0004 0.0765 0.0039 208.7 8.8 148.4 2.6 1109.3 99.1 TW426-08 1.89 59.69 63.84 0.94 0.2246 0.0108 0.0229 0.0005 0.0759 0.0040 205.7 9.0 146.3 2.9 1094.4 106.0 TW426-06 3.22 113.47 90.03 1.26 0.2266 0.0095 0.0235 0.0004 0.0746 0.0037 207.4 7.8 149.9 2.2 1057.4 93.5 TW426-10 3.04 96.73 97.66 0.99 0.2084 0.0100 0.0230 0.0003 0.0690 0.0035 192.2 8.4 146.6 2.2 901.9 110.2 TW426-03 2.84 94.94 86.75 1.09 0.2045 0.0096 0.0231 0.0004 0.0675 0.0032 189 8.1 147.4 2.3 853.7 97.4 TW426-01-1 2.95 120.08 92.55 1.30 0.1641 0.0057 0.0222 0.0003 0.0550 0.0020 154.3 5.0 141.3 1.7 413 84.3 TW426-03-1 3.34 113.37 105.89 1.07 0.1665 0.0051 0.0230 0.0002 0.0532 0.0017 156.4 4.5 146.5 1.5 338.9 72.2 TW426-07-1 3.15 122.81 98.27 1.25 0.1649 0.0055 0.0227 0.0002 0.0534 0.0018 155 4.8 144.8 1.5 346.4 43.5 TW426-05-1 2.22 75.78 75.25 1.01 0.1606 0.0061 0.0226 0.0003 0.0528 0.0022 151.2 5.4 144 1.7 320.4 88.0 TW426-04-1 2.66 106.78 84.30 1.27 0.1593 0.0057 0.0227 0.0003 0.0517 0.0018 150.1 5.0 144.9 1.7 272.3 83.3 TW426-10-1 3.07 115.43 99.19 1.16 0.1560 0.0056 0.0226 0.0002 0.0505 0.0018 147.2 4.9 144.3 1.5 220.4 49.1 TW426-02-1 2.85 101.91 94.98 1.07 0.1496 0.0053 0.0226 0.0003 0.0491 0.0018 141.6 4.7 143.9 1.6 150.1 85.2 TW426-06-1 3.21 128.53 104.89 1.23 0.1532 0.0049 0.0223 0.0002 0.0505 0.0017 144.8 4.3 142.1 1.5 216.7 80.5 TW426-08-1 2.83 91.89 95.32 0.96 0.1560 0.0052 0.0229 0.0002 0.0508 0.0018 147.2 4.6 145.7 1.4 231.6 81.5 TW426-09-1 2.61 104.57 81.18 1.29 0.1556 0.0057 0.0230 0.0003 0.0503 0.0019 146.8 5.0 146.4 1.7 205.6 91.7 TW3,流纹岩,16个测点年龄加权平均值为125.4±0.8 Ma,MSWD=0.36 TW3-06-1 2.73 46.94 115.34 0.41 0.1582 0.0066 0.0199 0.0003 0.0607 0.0027 149.2 5.8 127 1.8 627.8 96.3 TW3-09 3.05 76.01 125.66 0.60 0.1563 0.0076 0.0197 0.0003 0.0593 0.0030 147.4 6.7 125.9 2.0 588.9 109.2 TW3-03-1 3.40 95.66 137.31 0.70 0.1526 0.0058 0.0195 0.0003 0.0581 0.0022 144.2 5.1 124.5 1.6 600 83.3 TW3-09-1 3.82 92.93 152.11 0.61 0.1509 0.0056 0.0197 0.0002 0.0572 0.0023 142.7 5.0 126 1.5 498.2 87.0 TW3-02-1 2.92 74.51 113.79 0.65 0.1551 0.0057 0.0205 0.0003 0.0562 0.0021 146.4 5.0 130.9 1.9 457.5 83.3 TW3-06 4.70 143.10 183.69 0.78 0.1465 0.0053 0.0197 0.0003 0.0547 0.0020 138.8 4.7 125.6 1.6 398.2 78.7 TW3-04-1 3.14 67.78 128.15 0.53 0.1450 0.0059 0.0197 0.0002 0.0546 0.0023 137.5 5.2 126 1.6 398.2 92.6 TW3-07-1 4.94 159.41 186.53 0.85 0.1404 0.0048 0.0195 0.0002 0.0531 0.0019 133.4 4.3 124.3 1.4 344.5 79.6 TW3-02 4.38 114.83 176.93 0.65 0.1430 0.0057 0.0197 0.0003 0.0541 0.0022 135.8 5.1 125.7 1.7 372.3 92.6 TW3-10-1 4.57 97.84 187.07 0.52 0.1419 0.0052 0.0198 0.0002 0.0533 0.0021 134.7 4.7 126.5 1.6 342.7 88.9 TW3-01 3.71 100.82 152.50 0.66 0.1396 0.0069 0.0196 0.0003 0.0542 0.0028 132.7 6.1 124.8 1.8 388.9 118.5 TW3-07 6.47 225.87 254.28 0.89 0.1352 0.0046 0.0193 0.0002 0.0514 0.0018 128.8 4.1 123.5 1.4 257.5 84.3 TW3-05-1 6.51 234.01 239.65 0.98 0.1370 0.0043 0.0197 0.0002 0.0514 0.0017 130.4 3.9 125.5 1.5 257.5 77.8 TW3-05 3.69 95.75 147.27 0.65 0.1385 0.0065 0.0199 0.0003 0.0524 0.0026 131.7 5.8 126.9 1.9 301.9 111.1 TW3-01-1 4.75 112.59 194.06 0.58 0.1314 0.0047 0.0196 0.0002 0.0492 0.0018 125.3 4.3 125.3 1.4 166.8 82.4 TW3-04 5.03 154.98 194.50 0.80 0.1325 0.0052 0.0197 0.0003 0.0491 0.0019 126.3 4.6 125.6 1.6 153.8 90.7 TW3-08 4.18 116.38 168.97 0.69 0.1313 0.0055 0.0196 0.0003 0.0494 0.0021 125.3 4.9 125 1.6 168.6 100.0 TW3-08-1 7.44 249.24 250.01 1.00 0.1462 0.0047 0.0219 0.0003 0.0489 0.0016 138.5 4.2 139.5 1.6 142.7 74.1 TW4,二长花岗岩,19个测点年龄加权平均值为125.5±1.8 Ma,MSWD=6.7 TW4-06-1 2.25 53.73 91.69 0.59 0.1659 0.0072 0.0196 0.0003 0.0665 0.0034 155.8 6.3 125.3 2.0 821.9 100.9 TW4-10-1 3.55 87.37 140.58 0.62 0.1569 0.0068 0.0201 0.0003 0.0577 0.0026 148 5.9 128.1 1.8 520.4 96.3 TW4-05-1 2.47 55.07 99.00 0.56 0.1583 0.0070 0.0203 0.0003 0.0593 0.0027 149.2 6.2 129.8 2.0 576 98.1 TW4-09-1 4.74 112.86 179.78 0.63 0.1594 0.0055 0.0207 0.0003 0.0569 0.0020 150.1 4.8 132.1 1.8 487.1 79.6 TW4-07-1 8.18 199.41 316.38 0.63 0.1509 0.0046 0.0208 0.0002 0.0528 0.0015 142.7 4.0 133 1.4 320.4 66.7 TW4-05 3.54 110.76 145.87 0.76 0.1411 0.0044 0.0198 0.0002 0.0524 0.0016 134 3.9 126.2 1.4 305.6 70.4 TW4-02 3.82 125.50 158.37 0.79 0.1301 0.0037 0.0190 0.0002 0.0507 0.0015 124.2 3.3 121.5 1.4 233.4 73.1 TW4-08 4.24 136.70 179.38 0.76 0.1262 0.0038 0.0191 0.0002 0.0483 0.0014 120.7 3.4 122.1 1.3 122.3 73.1 TW4-06 3.73 116.73 156.96 0.74 0.1286 0.0037 0.0192 0.0002 0.0497 0.0015 122.8 3.4 122.4 1.3 189 70.4 TW4-03 10.78 457.45 413.13 1.11 0.1281 0.0025 0.0192 0.0001 0.0487 0.0010 122.4 2.3 122.4 0.9 131.6 46.3 TW4-08-1 8.35 211.54 348.21 0.61 0.1318 0.0041 0.0192 0.0002 0.0499 0.0015 125.7 3.7 122.4 1.3 187.1 70.4 TW4-14 7.42 304.99 297.87 1.02 0.1349 0.0062 0.0192 0.0003 0.0512 0.0023 128.5 5.6 122.5 2.0 250.1 101.8 TW4-04-1 15.37 476.94 598.79 0.80 0.1273 0.0030 0.0194 0.0002 0.0478 0.0011 121.6 2.7 123.9 1.1 100.1 57.4 TW4-02 9.67 487.47 333.54 1.46 0.1290 0.0057 0.0197 0.0002 0.0478 0.0021 123.2 5.1 125.7 1.5 87.1 103.7 TW4-07 3.29 98.98 136.25 0.73 0.1346 0.0044 0.0198 0.0002 0.0507 0.0018 128.2 4.0 126.5 1.5 233.4 81.5 TW4-01-1 3.44 71.52 137.85 0.52 0.1400 0.0051 0.0198 0.0003 0.0536 0.0021 133 4.5 126.6 1.7 366.7 88.9 TW4-04 4.41 110.45 184.67 0.60 0.1379 0.0100 0.0202 0.0004 0.0510 0.0041 131.2 8.9 129 2.7 239 185.2 TW4-03-1 6.06 142.05 239.11 0.59 0.1409 0.0049 0.0205 0.0002 0.0505 0.0018 133.8 4.3 130.7 1.6 220.4 49.1 TW4-06 9.23 293.04 347.05 0.84 0.1463 0.0078 0.0208 0.0003 0.0517 0.0028 138.7 6.9 133 1.9 272.3 127.8 TW4-03 16.41 500.73 502.20 1.00 0.1712 0.0069 0.0248 0.0003 0.0503 0.0020 160.4 6.0 157.8 1.8 209.3 88.0 TW4-02-1 6.78 146.85 209.13 0.70 0.1741 0.0050 0.0249 0.0003 0.0520 0.0016 163 4.4 158.3 1.8 283.4 70.4 TW4-08 16.28 791.81 392.01 2.02 0.1765 0.0061 0.0249 0.0003 0.0520 0.0019 165 5.3 158.3 1.9 283.4 83.3 TW4-12 13.66 308.29 437.33 0.70 0.1709 0.0091 0.0250 0.0003 0.0496 0.0026 160.2 7.9 159.4 2.2 172.3 122.2 TW6,花岗斑岩,19个测点年龄加权平均值为125.8±1.0 Ma,MSWD=2.4 TW6-09-1 3.69 90.47 153.58 0.59 0.1526 0.0062 0.0192 0.0003 0.0600 0.0026 144.2 5.4 122.5 1.6 611.1 94.4 TW6-07-1 4.06 137.21 155.14 0.88 0.1484 0.0055 0.0194 0.0003 0.0566 0.0022 140.5 4.9 124 1.6 476 85.2 TW6-08 8.25 234.92 337.24 0.70 0.1462 0.0045 0.0197 0.0002 0.0544 0.0017 138.5 4.0 125.6 1.4 387.1 68.5 TW6-05-1 6.96 174.85 273.19 0.64 0.1441 0.0042 0.0199 0.0002 0.0532 0.0016 136.7 3.8 127 1.4 344.5 100.9 TW6-06-1 11.20 418.86 385.64 1.09 0.1430 0.0038 0.0207 0.0002 0.0508 0.0013 135.7 3.4 131.8 1.4 227.8 65.7 TW6-07 4.00 117.11 162.72 0.72 0.1257 0.0056 0.0191 0.0003 0.0499 0.0026 120.2 5.1 121.7 1.7 190.8 120.4 TW6-08-1 6.87 192.56 277.46 0.69 0.1369 0.0044 0.0194 0.0002 0.0522 0.0018 130.3 3.9 123.6 1.3 294.5 77.8 TW6-01 10.25 394.76 373.87 1.06 0.1280 0.0037 0.0200 0.0002 0.0471 0.0014 122.3 3.3 127.4 1.4 53.8 66.7 TW6-02-1 12.42 403.63 472.63 0.85 0.1341 0.0034 0.0195 0.0002 0.0503 0.0013 127.7 3.1 124.6 1.2 209.3 93.5 TW6-04-1 32.85 1132.26 1223.71 0.93 0.1359 0.0026 0.0198 0.0002 0.0495 0.0008 129.4 2.3 126.6 1.3 172.3 38.9 TW6-03 4.42 133.86 176.60 0.76 0.1373 0.0059 0.0200 0.0003 0.0510 0.0022 130.6 5.3 127.7 2.1 242.7 102.8 TW6-01-1 11.08 474.07 386.39 1.23 0.1294 0.0034 0.0196 0.0002 0.0484 0.0013 123.5 3.1 125 1.3 116.8 67.6 TW6-04 6.76 175.91 279.38 0.63 0.1363 0.0046 0.0200 0.0003 0.0501 0.0017 129.7 4.2 127.8 1.7 211.2 81.5 TW6-06 11.03 296.75 455.48 0.65 0.1363 0.0038 0.0200 0.0002 0.0498 0.0014 129.8 3.4 127.6 1.4 183.4 69.4 TW6-10 5.33 159.45 210.36 0.76 0.1332 0.0054 0.0196 0.0002 0.0499 0.0021 127 4.9 125.2 1.6 190.8 93.5 TW6-03-1 18.44 554.42 693.88 0.80 0.1331 0.0027 0.0197 0.0002 0.0492 0.0010 126.8 2.5 125.8 1.1 166.8 48.1 TW6-10-1 10.45 420.23 382.96 1.10 0.1309 0.0041 0.0195 0.0002 0.0507 0.0020 124.9 3.7 124.5 1.5 233.4 95.4 TW6-02 8.77 253.19 359.05 0.71 0.1334 0.0044 0.0199 0.0002 0.0493 0.0017 127.1 4.0 127.1 1.5 161.2 79.6 TW6-09 16.49 581.43 623.69 0.93 0.1328 0.0030 0.0197 0.0002 0.0492 0.0011 126.6 2.7 125.6 1.3 166.8 53.7 表 2 吉峰地区花岗质岩石全岩地球化学数据
Table 2 Whole rock geochemical data of granitic rocks in Jifeng area
元素 TW4 TW5 JP6TW06 JP6TW08 TW6 JP11TW02 TW426 TW362 TW3 TW302 TW383 TW082 二长花
岗岩二长花
岗岩二长花
岗岩二长花
岗岩花岗斑岩 花岗斑岩 英安质
凝灰岩流纹岩 流纹岩 流纹岩 流纹岩 粗面岩 SiO2 75.03 73.97 74.36 74.23 66.88 73.49 67.68 74.91 71.90 73.61 71.19 62.67 TiO2 0.20 0.17 0.20 0.20 0.39 0.18 0.77 0.20 0.27 0.25 0.37 0.91 Al2O3 13.56 14.21 13.31 13.44 16.22 14.06 16.66 13.26 14.61 14.64 15.38 16.44 Fe2O3 0.93 1.02 0.92 0.93 1.26 1.21 2.90 1.13 0.80 1.10 1.12 4.17 MgO 0.06 0.04 0.05 0.05 0.10 0.04 0.06 0.08 0.03 0.02 0.05 0.10 MnO 0.24 0.13 0.24 0.24 0.64 0.13 0.85 0.23 0.19 0.07 0.39 1.18 CaO 0.68 0.22 0.82 0.76 1.61 0.39 0.47 0.24 0.53 0.47 1.20 1.84 Na2O 3.12 4.21 3.87 3.92 3.34 4.26 1.76 3.52 5.03 4.81 3.62 3.39 K2O 5.15 4.69 5.11 5.16 6.53 5.60 5.69 4.99 4.78 3.62 4.61 5.07 P2O5 0.03 0.03 0.03 0.04 0.10 0.03 0.20 0.04 0.05 0.04 0.13 0.27 烧失量 0.54 0.91 0.58 0.54 1.44 0.48 2.40 0.94 0.51 1.20 1.37 3.44 FeO 0.44 0.22 0.46 0.45 1.30 0.09 0.31 0.36 1.08 0.07 0.41 0.26 总计 100.03 99.85 100.00 100.00 99.96 99.96 99.79 99.93 99.91 99.90 99.88 99.77 K2O/Na2O 1.65 1.11 1.32 1.32 1.96 1.32 3.23 1.42 0.95 0.75 1.27 1.49 FeO*/MgO 5.25 8.45 5.32 5.28 3.82 8.91 3.44 6.00 9.30 14.92 3.60 3.41 A.R. 3.77 4.22 4.49 4.55 3.48 5.29 2.54 4.42 4.68 3.52 2.97 2.72 A/CNK 1.14 1.15 0.99 1.00 1.05 1.02 1.68 1.14 1.01 1.16 1.17 1.14 A/NK 1.27 1.18 1.12 1.12 1.29 1.08 1.84 1.18 1.09 1.24 1.40 1.49 Q 35.63 31.32 30.49 29.99 18.26 26.50 34.88 34.97 22.79 31.22 30.14 19.36 C 1.70 1.92 0.01 0.11 0.99 0.37 7.43 1.75 0.32 2.09 2.59 2.78 Or 30.61 28.01 30.37 30.69 39.23 33.27 34.54 29.80 28.47 21.65 27.69 31.09 Ab 26.55 36.02 32.93 33.34 28.69 36.20 15.31 30.11 42.88 41.23 31.11 29.78 An 3.20 0.86 3.85 3.55 7.46 1.75 1.06 0.91 2.31 2.06 5.19 7.65 Di(FS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Di(MS) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Hy(MS) 0.61 0.34 0.61 0.61 1.61 0.33 2.17 0.58 0.49 0.18 1.00 3.05 Hy(FS) 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.94 0.00 0.00 0.00 Mt 1.04 0.31 1.07 1.04 1.86 0.00 0.00 0.86 1.16 0.00 0.42 0.00 Il 0.38 0.33 0.39 0.38 0.76 0.27 0.82 0.38 0.52 0.20 0.71 0.81 Hm 0.22 0.82 0.19 0.21 0.00 1.22 2.98 0.55 0.00 1.11 0.85 4.33 Ap 0.07 0.08 0.08 0.08 0.24 0.06 0.47 0.10 0.12 0.10 0.30 0.64 DI 92.79 95.35 93.80 94.01 86.18 95.96 84.73 94.87 94.14 94.10 88.94 80.22 Rb 222.17 175.89 189.92 217.42 280.54 189.92 220.61 169.65 201.37 199.29 156.52 266.24 Sr 114.62 143.99 48.72 53.01 160.05 32.93 302.50 162.47 331.65 202.84 250.80 193.82 Ba 374.76 818.52 117.55 127.84 895.44 126.16 555.12 793.80 1004.40 265.32 545.52 959.64 Nb 21.58 12.31 23.03 30.15 24.03 17.32 15.15 12.09 17.11 21.52 13.57 18.01 Ta 1.91 1.19 1.82 3.96 1.98 2.01 1.28 1.21 1.81 1.98 1.14 1.36 Zr 170.59 218.33 177.91 194.18 523.10 208.69 369.65 332.98 324.31 254.52 238.68 469.60 Hf 7.36 5.55 6.87 8.10 14.04 6.50 10.74 8.91 9.75 8.90 8.36 11.90 V 31.07 37.25 11.24 12.90 61.54 13.62 37.36 43.76 68.92 35.86 33.59 75.84 Ni 1.54 1.64 0.32 0.27 6.72 1.07 2.55 1.63 2.24 2.01 1.40 4.69 Be 4.09 2.49 4.39 5.37 5.74 3.61 3.12 3.10 3.84 4.49 3.57 3.61 Co 1.41 0.61 1.18 1.21 6.05 0.75 4.54 1.49 4.82 0.83 2.48 8.67 Li 51.06 21.00 12.04 14.04 31.17 6.72 24.73 13.34 47.77 13.58 15.92 21.47 Th 22.53 17.15 16.93 25.21 23.19 13.49 19.86 16.03 20.65 25.28 15.81 18.69 U 3.49 3.15 3.56 5.24 4.44 2.34 4.29 3.43 4.53 4.07 1.53 2.97 Sc 5.76 6.88 2.22 2.68 9.95 1.10 8.57 8.21 9.91 6.53 5.58 11.56 La 31.66 25.16 41.10 41.49 57.81 14.22 46.51 35.07 38.72 55.73 32.57 48.13 Ce 59.19 61.52 77.11 78.63 142.59 37.82 92.58 76.16 81.20 99.77 63.24 109.73 Pr 5.77 5.77 9.02 9.37 15.30 3.38 10.15 8.80 9.16 10.86 6.54 13.70 Nd 17.96 19.75 32.64 33.27 58.30 11.78 36.27 32.78 34.31 37.17 21.77 54.12 Sm 2.43 2.87 5.30 5.64 9.06 2.25 5.33 5.49 5.64 5.38 3.04 8.81 Eu 0.31 0.47 0.34 0.37 1.48 0.25 1.01 0.66 1.02 0.60 0.63 1.66 Gd 2.72 2.96 4.67 4.93 8.07 2.04 5.17 4.99 5.41 5.08 2.97 7.36 Tb 0.39 0.50 0.72 0.79 1.19 0.36 0.79 0.85 0.84 0.75 0.44 1.09 Dy 2.22 2.73 3.91 4.50 6.02 2.28 3.98 4.71 4.77 4.08 2.18 5.58 Ho 0.45 0.56 0.77 0.87 1.13 0.47 0.79 0.95 0.96 0.82 0.43 1.02 Er 1.40 1.64 2.42 2.80 3.03 1.57 2.22 2.66 2.64 2.37 1.20 2.64 Tm 0.29 0.33 0.44 0.50 0.52 0.30 0.42 0.52 0.50 0.43 0.23 0.45 Yb 2.08 2.29 2.98 3.44 3.38 2.12 2.81 3.43 3.35 3.04 1.60 2.90 Lu 0.39 0.53 0.51 0.60 0.73 0.53 0.61 0.66 0.59 0.55 0.32 0.67 Y 14.24 16.32 22.43 25.90 31.22 12.89 22.25 26.59 27.79 23.89 12.43 29.05 Ga 17.84 17.46 18.23 24.54 15.95 20.00 16.06 21.98 Pb 35.94 21.83 20.85 36.70 23.53 24.79 15.20 21.98 TZr/℃ 803 825 792 801 890 807 908 868 845 840 833 885 注:FeO*=0.8998×TFe2O3; A/NK=摩尔Al2O3/(Na2O+K2O); A/CNK=摩尔Al2O3/(CaO+Na2O+K2O); A.R.=wt%(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(Na2O+K2O));DI=Q+Or+Ab+Ne+Lc+Kp; TZr=12900/(2.95+0.85M+ln(49600/Zr), 其中M=摩尔(K+Na+2Ca)/(Si×Al);主量元素含量单位为%, 微量和稀土元素含量单位为10-6 -
孟凡超, 刘嘉麒, 崔岩, 等.中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J].岩石学报, 2014, 30(12):3569-3586. Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016-j.jseaes.2010.11.014/
许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):217-240. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018 张兴洲, 马玉霞, 迟效国, 等.东北及内蒙古东部地区显生宙构造演化的有关问题[J].吉林大学学报(地球科学版), 2012, 42(5):1269-1285. http://www.cqvip.com/QK/91256B/201205/43710832.html Wu F Y, Sun D Y, Li H, et al.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J].Chemical Geology, 2002, 187(1):143-173. http://www.sciencedirect.com/science/article/pii/S0009254102000189
Yang W B, Niu H C, Cheng L R, et al.Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing'an Mountains, NE China[J].Journal of Asian Earth Sciences, 2015, 113:454-470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=afabfec1e107683052fb334085c9854b
Zhang L C, Zhou X H, Ying J F, et al.Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China:implications for their origin and mantle source characteristics[J].Chemical Geology, 2008, 256(1):12-23.
Liu J, Mao J, Wu G, et al.Zircon U-Pb and molybdenite Re-Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing'an Range, China and its geological significance[J].Journal of Asian Earth Sciences, 2014, 79:696-709. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28cc555cf23448864104635dbb027465
Jahn B M.Massive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92. http://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic._Episodes
Jahn B M.The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J].Geological Society London Special Publications, 2004, 226(1):73-100. http://www.researchgate.net/publication/249551250_The_Central_Asian_Orogenic_Belt_and_growth_of_the_continental_crust_in_the_Phanerozoic
Wu F Y, Jahn B M, Wilde S, et al.Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J].Tectonophysics, 2000, 328(1):89-113. doi: 10.1016-S0040-1951(00)00179-7/
Wu F Y, Jahn B M, Wilde S A, et al.Highly fractionated I-type granites in NE China (Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos, 2003, 67(3):191-204.
范蔚茗, 郭锋, 高晓峰, 等.东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义[J].地球化学, 2008, 37(4):361-372. http://d.old.wanfangdata.com.cn/Periodical/dqhx200804010 Bai L A, Sun J G, Gu A L, et al.A review of the genesis, geochronology, and geological significance of hydrothermal copper and associated metals deposits in the Great Xing'an Range, NE China[J].Ore Geology Reviews, 2014, 61:192-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=393d53e8ae014fd1b3015d34955d037d
林强, 葛文春, 孙德有, 等.中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, (2):129-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069875 葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, (3):396-406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903008 邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, (1):56-63. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200101006 Kravchinsky V A, Cogne J P, Harbert W P, et al.Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J].Geophysical Journal International, 2002, 148(1):34-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38e2d599e855fba02c3c811e5d659538
Fan W M, Guo F, Wang Y J, et al.Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 2003, 121(1):115-135. doi: 10.1016-S0377-0273(02)00415-8/
Tomurtogoo O, Windley B F, Kroner A, et al.Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J].Journal of the Geological Society, 2005, 162(1):125-134. http://d.wanfangdata.com.cn/Periodical_NSTL_QKJJ028907429.aspx
Meng Q R.What drove late Mesozoic extension of the northern China-Mongolia tract?[J].Tectonophysics, 2003, 369(3):155-174. doi: 10.1016-S0040-1951(03)00195-1/
Ying J F, Zhou X H, Zhang L C, et al.Geochronological and geochemical investigation of the late Mesozoic volcanic rocks from the Northern Great Xing'an Range and their tectonic implications[J].International Journal of Earth Sciences, 2010, 99(2):357-378.
Huang J L, Zhao D P.High-resolution mantle tomography of China and surrounding regions[J].Journal of Geophysical Research Solid Earth, 2006, 111, B09305, doi: 10.1029/2005JB004066.
Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J].Earth & Planetary Science Letters, 2006, 251(1):179-198. http://adsabs.harvard.edu/abs/2006E%26PSL.251..179W
隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, (2):461-480. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702023 Wu F Y, Yang J H, Lo C H, et al.The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J].Island Arc, 2010, 16(1):156-172. https://core.ac.uk/display/52375592
Zhou J B, Wilde S A, Zhang X Z, et al.The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt[J].Tectonophysics, 2009, 478(3):230-246. http://www.sciencedirect.com/science/article/pii/S0040195109004260
Zhang J H, Gao S, Ge W C, et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J].Chemical Geology, 2010, 276(3):144-165. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201101001107.htm
Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications[J].Lithos, 2014, 205:168-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e60f13bbc248303233ab4186a7d6a13d
Shi L, Zheng C, Yao W, et al.Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing'an Range, China[J].Journal of Asian Earth Sciences, 2015, 113:443-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=409ed428808657266750a6c3ed56d09a
Ying J F, Zhou X H, Zhang L C, et al.Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J].Journal of Asian Earth Sciences, 2010, 39(6):786-793. doi: 10.1016-j.jseaes.2010.04.035/
袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. http://d.old.wanfangdata.com.cn/Periodical/kxtb200314008 Ludwig K R.User's Manual for Isoplot 3.00:a geochronological toolkit for microsoft Excel[M].Berkeley Geochronlogical Center, 2003.
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002 Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144-GSL.SP.1989.042.01.19/
吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706001 Chappell B W.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46(3):535-551. https://www.sciencedirect.com/science/article/pii/S0024493798000863
Li X H, Li Z X, Li W X, et al.U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:a major igneous event in response to foundering of a subducted flat-slab?[J].Lithos, 2007, 96(1):186-204. https://www.sciencedirect.com/science/article/pii/S002449370600291X
朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学, 地球化学和Sr-Nd-Hf同位素约束[J].中国科学:D辑, 2009, 39(7):833-848. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907001.htm Chappell B W, White A J R.I-and S-type granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83:1-26.
King P L, Chappell B W, Allen C M, et al.Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J].Journal of the Geological Society of Australia, 2001, 48(4):501-514. doi: 10.1046/j.1440-0952.2001.00881.x
Whalen J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimination and petrogenesis[J].Contributions to mineralogy and petrology, 1987, 95(4):407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007
王德滋, 赵广涛, 邱检生.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报, 1995, 1(2):13-21. http://www.cnki.com.cn/Article/CJFDTotal-GXDX502.001.htm 洪大卫, 王式洸, 韩宝福, 等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学:B辑, 1995, 25(4):418-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500247293 吴锁平, 王梅英, 戚开静.A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 26(1):57-66. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz200701009 贾小辉, 王强, 唐功建.A型花岗岩的研究进展及意义[J].大地构造与成矿学, 2009, 33(3):465-480. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200903017 Pearce J A, Harris N B W, Tindle A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Jour.Petrol., 1984, 25(4):956-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005685327
张吉衡.大兴安岭中生代火山岩年代学及地球化学研究[D].中国地质大学博士学位论文, 2009. http://d.wanfangdata.com.cn/Thesis/Y1661487 陈良.大兴安岭阿尔山地区中生代岩浆演化与斑岩钼矿成矿作用[D].中国地质大学(北京)博士学位论文, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085692.htm 戴慧敏, 杨忠芳, 马振东, 等.大兴安岭查巴奇地区中生代侵入岩岩石地球化学特征及构造背景[J].中国地质, 2013, 40(1):232-247. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201301016 施璐.大兴安岭中部柴河-蘑菇气地区晚中生代岩浆作用及其构造背景[D].吉林大学博士学位论文, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016009467.htm 员庥宇.大兴安岭中段塔尔气地区中侏罗世花岗岩岩石成因及构造背景[D].吉林大学硕士学位论文, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015594765.htm 张璟, 邵军, 周永恒, 等.大兴安岭根河地区铅锌银矿床岩石地球化学特征及LA-ICP-MS U-Pb年龄[J].地质学报, 2016, 90(10):2759-2774. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201610015 齐忠友, 王升鹏, 杨倩倩, 等.大兴安岭滨南钼矿床赋矿岩体岩石地球化学研究[J].矿物岩石, 2017, (4):27-37. http://d.old.wanfangdata.com.cn/Periodical/kwys201704004 李永飞, 郜晓勇, 卞雄飞, 等.大兴安岭北段龙江盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质通报, 2013, 32(8):1195-1211. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20130806&flag=1 李永飞, 孙守亮, 郜晓勇.大兴安岭中段突泉盆地高Mg#火山岩激光全熔40Ar/39Ar测年与地球化学特征[J].地质与资源, 2013, 22(4):264-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201304002 施璐, 郑常青, 姚文贵, 等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201309006 黄凡, 王登红, 王平安, 等.大兴安岭北段宜里钼矿岩石成因及成岩成矿年代学[J].地质学报, 2014, 88(3):361-379. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201403006 乔牡冬, 孙桐, 马跃, 等.大兴安岭碧州地区早白垩世埃达克岩地球化学特征及岩石成因[J].华夏地理, 2014, (8):47-49. http://d.old.wanfangdata.com.cn/Periodical/hxrwdl201408026 孙如江, 孙德有, 苟军, 等.大兴安岭北部新林石英二长岩-花岗岩的地球化学特征及其成因[J].世界地质, 2016, 35(2):309-323. http://d.old.wanfangdata.com.cn/Periodical/sjdz201602003 杨奇荻, 郭磊, 王涛, 等.大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J].岩石学报, 2014, 30(7):1961-1981. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407011 古阿雷, 孙景贵, 白令安, 等.大兴安岭中东部闹牛山浅成热液脉型铜矿床成岩成矿机理研究:来自地球化学及年代学制约[J].吉林大学学报(地球科学版), 2015, (s1):1548. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506003071.htm 司秋亮, 崔天日, 唐振, 等.大兴安岭中段柴河地区玛尼吐组火山岩年代学、地球化学及岩石成因[J].吉林大学学报(地球科学版), 2015, 45(2):389-403. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201502006 贺海根.大兴安岭中段闹牛山铜金矿床成矿特征与矿床成因[D].中国地质大学(北京)硕士学位论文, 2016. 纪政, 葛文春, 杨浩, 等.大兴安岭中段塔尔气地区早白垩世花岗岩成因及形成构造环境[J].世界地质, 2016, 35(2):283-296. http://d.old.wanfangdata.com.cn/Periodical/sjdz201602001 谢健.大兴安岭中段五岔沟地区早白垩世花岗质岩石的地球化学特征及其成因[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017156285.htm 徐立明.大兴安岭北段塔河南部早白垩世侵入岩年代学和地球化学[D].中国地质大学(北京)硕士学位论文, 2017. http://www.cqvip.com/QK/96868X/201806/7001003797.html 姚磊, 吕志成, 叶天竺, 等.大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义[J].岩石学报, 2017, 33(10):3183-3199. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710014 Kong Y, Ma R, He Z H, et al.Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhongqi area, Inner Mongolia[J].Global Geology, 2014, 17(2):78-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbydxyj-e201402002
吴庆.内蒙古科右中旗地区花岗斑岩岩石成因及构造背景[D].吉林大学硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014297497.htm 张超, 杨伟红, 和钟铧, 等.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究[J].世界地质, 2014, 33(2):255-265. http://d.old.wanfangdata.com.cn/Periodical/sjdz201402002 古阿雷.大兴安岭中东部浅成热液-斑岩铜多金属成矿系统成矿地质过程与成矿模式[D].吉林大学博士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089750.htm 郭晓宇.黑龙江大兴安岭战备村、二中队幅侵入岩岩石地球化学及成矿预测[D].中国地质大学(北京)硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136451.htm 李林川.内蒙古扎兰屯西部早白垩世侵入岩年代学、岩石地球化学及构造背景[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1018005528.htm 毛安琦.大兴安岭西北部上护林盆地早白垩世火山岩: 地球化学特征与岩石成因[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017152104.htm 刘玮.松辽盆地长岭断陷营城组酸性火山岩的时代、地球化学特征及岩石成因[D].吉林大学硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014271265.htm 金鑫.松辽盆地北部火山岩的锆石U-Pb年龄及Hf同位素组成[D].吉林大学硕士学位论文, 2012. 黄清华, 吴怀春, 万晓樵, 等.松辽盆地白垩系综合年代地层学研究新进展[J].地层学杂志, 2011, 35(3):250-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201103002 章凤奇, 庞彦明, 杨树锋, 等.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义[J].地质学报, 2007, (9):1248-1258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200709010 章凤奇, 程晓敢, 陈汉林, 等.松辽盆地东南缘晚中生代火山事件的锆石年代学与地球化学制约[J].岩石学报, 2009, 25(1):39-54. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901004 裴福萍, 许文良, 杨德彬, 等.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约[J].地球科学(中国地质大学学报), 2008, (5):603-617. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb2008z1051 高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征[D].吉林大学硕士学位论文, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10183-2008061652.htm 陈崇阳.松辽盆地断陷期火山地层序列与构造-火山-盆地充填演化[D].吉林大学博士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089738.htm 李瑞磊, 朱建峰, 刘玮, 等.松辽盆地长岭断陷火山岩锆石U-Pb测年及其地质意义[J].石油与天然气地质, 2015, 36(5):736-744. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201505004 葛文春, 吴福元, 周长勇, 等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 2005, 21(3):749-762. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503015 张玉涛, 张连昌, 英基丰, 等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2733-2742. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611011 刘伟, 潘小菲, 谢烈文, 等.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式[J].岩石学报, 2007, 23(2):441-460. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702022 张彦龙, 葛文春, 柳小明, 等.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报(地球科学版), 2008, 38(2):177-186. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200802001 王圣文, 王建国, 张达, 等.大兴安岭太平沟钼矿床成矿年代学研究[J].岩石学报, 2009, 25(11):2913-2923. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911020 武广, 陈衍景, 赵振华, 等.大兴安岭北端洛古河东花岗岩的地球化学、SHRIMP锆石U-Pb年龄和岩石成因[J].岩石学报, 2009, 25(2):233-247. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200902001 方红薇.大兴安岭中段五岔沟一带中生代白音高老组火山岩特征及其构造背景[D].中国地质大学(北京)硕士学位论文, 2010. 王宏博, 刘桂香, 邢彩霞.黑龙江漠河县洛古河含钼花岗岩体锆石U-Pb年龄及地质意义[J].地质与资源, 2010, 19(2):186-190. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201002021 王彦斌, 韩娟, 李建波, 等.内蒙赤峰楼子店拆离断层带下盘变形花岗质岩石的时代、成因及其地质意义——锆石U-Pb年龄和Hf同位素证据[J].岩石矿物学杂志, 2010, 29(6):763-778. doi: 10.1021-nn901226h/ 唐臣, 杨帆, 孙景贵, 等.大兴安岭旁开门金银矿床赋矿围岩的锆石U-Pb年龄及其地质意义[J].世界地质, 2011, 30(4):532-537. http://d.old.wanfangdata.com.cn/Periodical/sjdz201104004 闫聪, 孙艺, 赖勇, 等.内蒙古半拉山钼矿LA-ICP-MS锆石U-Pb与辉钼矿Re-Os年龄及其成矿动力学背景[J].矿床地质, 2011, 30(4):616-634. http://d.old.wanfangdata.com.cn/Periodical/kcdz201104003 李欢.大兴安岭北段大索尔珠沟地区侏罗纪岩浆演化及找矿潜力评价[D].中国地质大学(武汉)硕士学位论文, 2012. http://d.wanfangdata.com.cn/Thesis_Y2188824.aspx 李可, 张志诚, 李建锋, 等.内蒙古西乌珠穆沁旗地区中生代中酸性火山岩SHRIMP锆石U-Pb年龄和地球化学特征[J].地质通报, 2012, 31(5):671-685. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120504&flag=1 王伟, 许文良, 王枫, 等.满洲里-额尔古纳地区中生代花岗岩的锆石U-Pb年代学与岩石组合:对区域构造演化的制约[J].高校地质学报, 2012, 18(1):88-105. http://www.cqvip.com/QK/90539X/201201/41327539.html 江思宏, 梁清玲, 刘翼飞, 等.内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J].岩石学报, 2012, 28(2):495-513. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202012 潘明.内蒙古巴林右旗古力古台中生代岩浆作用及区域构造演化[D].石家庄经济学院硕士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10077-1014016153.htm 孙成杰.内蒙古巴林右旗查干沐沦花岗岩锆石U-Pb年龄及其地质意义[D].石家庄经济学院硕士学位论文, 2012. http://d.wanfangdata.com.cn/Thesis/D367164 程银行, 刘永顺, 滕学建, 等.内蒙古莫合尔图中——晚侏罗世火山岩年代学、地球化学研究及其意义[J].地质学报, 2013, 87(7):943-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201307004 高源, 郑常青, 姚文贵, 等.大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J].地质学报, 2013, 87(9):1293-1310. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201309008 李世超, 徐仲元, 刘正宏, 等.大兴安岭中段玛尼吐组火山岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报, 2013, 32(2/3):399-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201302018 刘军, 毛景文, 武广, 等.大兴安岭北部岔路口斑岩钼矿床岩浆岩锆石U-Pb年龄及其地质意义[J].地质学报, 2013, 87(2):208-226. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201302006 聂凤军, 孙振江, 刘翼飞, 等.大兴安岭岔路口矿区中生代多期岩浆活动与钼成矿作用[J].中国地质, 2013, 40(1):273-286. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201301018 王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303009 阮班晓, 吕新彪, 刘申态, 等.内蒙古边家大院铅锌银矿床成因——来自锆石U-Pb年龄和多元同位素的制约[J].矿床地质, 2013, 32(3):501-514. http://d.old.wanfangdata.com.cn/Conference/7895170 田德欣, 王清海, 葛文春, 等.内蒙古阿尔山绿水碱长花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J].世界地质, 2013, 32(4):681-693. http://d.old.wanfangdata.com.cn/Periodical/sjdz201304005 武珺.大兴安岭南端红山子盆地碱性流纹岩地质时代与地球化学特征[D].东华理工大学硕士学位论文, 2013. 张成, 李诺, 陈衍景, 等.内蒙古兴阿钼铜矿区侵入岩锆石U-Pb年龄及Hf同位素组成[J].岩石学报, 2013, 29(1):217-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201301017 赵磊, 高福红, 张彦龙, 等.海拉尔盆地中生代火山岩锆石U-Pb年代学及其地质意义[J].岩石学报, 2013, 29(3):864-874. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303010 李铁刚, 武广, 刘军, 等.大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J].岩石学报, 2014, 30(1):257-270. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201401019 孔元明.内蒙古科右中旗地区早白垩世白音高老组酸性火山岩特征及形成的构造背景[D].吉林大学硕士学位论文, 2014. http://cdmd.cnki.com.cn/article/cdmd-10183-1014281768.htm 于文佳.大兴安岭浩饶山地区晚侏罗世玛尼吐组堆积序列与构造属性探讨[D].中国地质大学(北京)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238656.htm 孙如江, 孙德有, 苟军, 等.大兴安岭北部新林石英二长岩-花岗岩的地球化学特征及其成因[J].世界地质, 2016, 35(2):309-323. http://d.old.wanfangdata.com.cn/Periodical/sjdz201602003 王天豪, 张书义, 孙德有, 等.满洲里南部中生代花岗岩的锆石U-Pb年龄及Hf同位素特征[J].世界地质, 2014, 33(1):26-38. http://d.old.wanfangdata.com.cn/Periodical/sjdz201401003 杨奇荻.大兴安岭及其邻区花岗岩Nd同位素时空演变及地壳深部组成结构和生长意义[D].中国地质科学院博士学位论文, 2014. 陈会军, 张彦龙, 王清海, 等.大兴安岭中段早白垩世花岗质岩石锆石U-Pb年龄及地球化学特征[J].地质与资源, 2015, 24(5):433-443. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201505008 陈丽丽, 程志国.内蒙古兴安盟杜尔基地区花岗岩岩石学及锆石U-Pb年龄[J].中国地质, 2015, 42(4):891-908. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201504008 冯罡, 万乐, 刘正宏, 等.内蒙古巴林右旗晚侏罗世巴彦琥硕花岗岩地球化学特征、锆石U-Pb年龄及Hf同位素组成[J].地球科学与环境学报, 2015, 37(6):33-46. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201506004 李旭, 孙德有, 苟军, 等.拉布达林盆地南部中生代粗面岩和流纹岩的地球化学特征及其成因[J].吉林大学学报(地球科学版), 2015, 45(s1):241. http://d.old.wanfangdata.com.cn/Conference/9244933 聂立军, 贾海明, 王聪, 等.大兴安岭中段白音高老组流纹岩年代学、地球化学及其地质意义[J].世界地质, 2015, 34(2):296-304. http://d.old.wanfangdata.com.cn/Periodical/sjdz201502004 司秋亮, 崔天日, 王恩德, 等.大兴安岭柴河白音高老组流纹岩锆石U-Pb定年及成因探讨[J].东北大学学报(自然科学版), 2016, 37(3):412-415. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201603023 解开瑞, 巫建华, 李长华, 等.满洲里达石莫盆地流纹岩、花岗斑岩SHRIMP锆石U-Pb年龄及其地质意义[J].铀矿地质, 2015, (6):569-577. http://d.old.wanfangdata.com.cn/Periodical/ykdz201506004 解开瑞, 巫建华, 祝洪涛, 等.大兴安岭南端芝瑞盆地流纹岩年代学、地球化学及岩石成因[J].地球化学, 2016, 45(3):249-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201603003 张乐彤, 李世超, 赵庆英, 等.大兴安岭中段白音高老组火山岩的形成时代及地球化学特征[J].世界地质, 2015, 34(1):44-54. http://d.old.wanfangdata.com.cn/Periodical/sjdz201501007 赵辉, 李舢, 王涛, 等.大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义[J].地质通报, 2015, 34(12):2203-2218. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151207&flag=1 程银行, 李影, 刘永顺, 等.松辽盆地西缘早白垩世伸展事件:流纹岩锆石U-Pb年龄、地球化学研究[J].地质学报, 2016, 90(12):3492-3507. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201612016 丁辉, 巫建华, 祝洪涛, 等.大兴安岭南部红山子盆地花岗斑岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义[J].东华理工大学学报(自然科学版), 2016, 39(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb201601001 纪政.大兴安岭中段五岔沟地区满克头鄂博组火山岩的成因及其构造意义[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017147975.htm 李剑锋, 王可勇, 权鸿雁, 等.大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨[J].岩石学报, 2016, 32(5):1529-1542. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605018 李鹏川, 刘正宏, 李世超, 等.内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf同位素特征及构造背景[J].地球科学-中国地质大学学报, 2016, 41(12):1995-2007. http://d.old.wanfangdata.com.cn/Periodical/dqkx201612002 刘艳君.大兴安岭北段卧都河地区中生代花岗岩地球化学特征及其构造意义[D].吉林大学硕士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089624.htm 刘永江, 刘宾强, 冯志强, 等.大兴安岭中北段老道口闪长岩锆石U-Pb年龄、地球化学特征及构造意义[J].吉林大学学报(地球科学版), 2016, 46(2):482-498. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201602015 牛延宏, 刘渊, 周志广, 等.大兴安岭东北部塔河地区早白垩世高Sr低Yb型侵入岩的年代学、地球化学特征及地质意义[J].沉积与特提斯地质, 2016, 36(4):95-105. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201604014 欧阳荷根, 李睿华, 周振华.内蒙古双尖子山银多金属矿床侏罗纪成矿的年代学证据及其找矿意义[J].地质学报, 2016, 90(8):1835-1845. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201608013 司秋亮, 崔天日, 王恩德, 等.大兴安岭柴河白音高老组流纹岩锆石U-Pb定年及成因探讨[J].东北大学学报(自然科学版), 2016, 37(3):412-415. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201603023 万乐.内蒙古五十家子地区中生代花岗岩地质特征及形成构造背景[D].吉林大学硕士学位论文, 2016. 巫建华, 解开瑞, 祝洪涛, 等.大兴安岭南端红山子盆地流纹岩的成因:元素和Sr-Nd-Pb同位素制约[J].吉林大学学报(地球科学版), 2016, 46(6):1724-1739. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201606010 吴涛涛, 陈聪, 刘凯, 等.大兴安岭北部伊图里河地区二长花岗岩的成因及构造背景[J].地质学报, 2016, 90(10):2637-2647. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201610007 杨爱雪, 孙德有, 苟军, 等.大兴安岭北部上护林盆地恩和大岭火山机构特征与时代[J].世界地质, 2016, 35(3):687-696. http://d.old.wanfangdata.com.cn/Periodical/sjdz201603009 杨发亭.大兴安岭中段二道河银多金属矿床地质特征及找矿预测[D].中国地质大学(北京)硕士学位论文, 2016. 张璟, 邵军, 周永恒, 等.大兴安岭根河地区铅锌银矿床岩石地球化学特征及LA-ICP-MS U-Pb年龄[J].地质学报, 2016, 90(10):2759-2774. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201610015 杜洋, 刘正宏, 崔维龙, 等.大兴安岭克一河地区满克头鄂博组火山岩形成时代、地球化学特征及地质意义[J].世界地质, 2017, 36(1):54-65. http://d.old.wanfangdata.com.cn/Periodical/sjdz201701005 杜岳丹, 和钟铧, 隋振民, 等.大兴安岭中段索伦地区玛尼吐组火山岩年代学、地球化学及其构造背景[J].世界地质, 2017, 36(2):346-360. http://d.old.wanfangdata.com.cn/Periodical/sjdz201702003 和越, 董玉, 和钟铧, 等.大兴安岭中北段早白垩世爱林源花岗岩的成因:锆石U-Pb年代学、地球化学及Hf同位素制约[J].世界地质, 2017, 36(3):701-713. http://d.old.wanfangdata.com.cn/Periodical/sjdz201703006 李子昊.内蒙古车家营子地区晚侏罗-早白垩世侵入岩地球化学特征及地质意义[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017156330.htm 刘大中.大兴安岭中北段古中公路钼矿床形成时代与矿床成因[D].吉林大学硕士学位论文, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017147962.htm 刘世伟, 孙国胜, 王清海, 等.大兴安岭北部斯木科地区晚侏罗世斑状正长花岗岩年代学、地球化学特征及其成因[J].世界地质, 2017, 36(2):402-412. http://d.old.wanfangdata.com.cn/Periodical/sjdz201702008 彭青松, 张志强, 祝新友, 等.大兴安岭中南段桦杆子沟岩体锆石U-Pb年龄及其地质意义[J].矿产勘查, 2017, 8(6):927-936. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201706003 裴圣良, 黄明达, 张恒利, 等.海拉尔盆地中生代火山岩的锆石U-Pb定年及其地质意义[J].矿物岩石, 2017, 37(3):31-37. http://d.old.wanfangdata.com.cn/Periodical/kwys201703005 尚毅广, 孙丰月, 姜和芳, 等.大兴安岭北段霍洛台铜铅锌矿区花岗闪长岩的岩石成因:地球化学和锆石U-Pb年代学制约[J].世界地质, 2017, 36(2):474-485. http://d.old.wanfangdata.com.cn/Periodical/sjdz201702014 谭皓元, 和钟铧, 陈飞, 等.大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义[J].地质通报, 2017, 36(5):893-908. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170521&flag=1 魏巍, 陈建平, 黄行凯, 等.大兴安岭中南段哈力黑坝岩体岩浆混合作用:暗色包体岩相学、年代学和锆石Hf同位素启示[J].矿产勘查, 2017, 8(6):948-956. http://d.old.wanfangdata.com.cn/Periodical/ytgcj201706005 杨梅, 孙景贵, 王忠禹, 等.大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J].吉林大学学报(地球科学版), 2017, 47(2):477-496. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201702013 杨乃峰, 杨李汀.大兴安岭北段呼中西部塔木兰沟组火山岩年代学、岩石地球化学特征及其构造意义[J].世界地质, 2017, 36(2):361-370. http://d.old.wanfangdata.com.cn/Periodical/sjdz201702004 张超, 吴新伟, 张渝金, 等.大兴安岭北段龙江盆地光华组碱流岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(9):1531-1541. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170905&flag=1 张兴洲, 刘洋, 曾振, 等.大兴安岭北部±130Ma火山岩的地质意义[J].吉林大学学报(地球科学版), 2017, 47(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201701001 宗文明, 张海华, 孙雷, 等.大兴安岭北部拉布达林盆地中生代烃源岩的时代归属[J].地质与资源, 2017, 26(3):275-280. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201703010 刘晨, 孙景贵, 邱殿明, 等.大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J].吉林大学学报(地球科学版), 2017, 47(4):1138-1158. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704015.htm Yarmolyuk V V, Kovalenko V I.Late Riphean breakup between Siberia and Laurentia:Evidence from intraplate magmatism[J].Doklady Earth Sciences, 2001, 379(5):525-528. http://www.researchgate.net/publication/289757005_Late_Riphean_breakup_between_Siberia_and_Laurentia_Evidence_from_intraplate_magmatism
Jahn B M, Litvinovsky B A, Zanvilevich A N, et al.Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution, petrogenesis and tectonic significance[J].Lithos, 2009, 113(3/4):521-539. http://www.sciencedirect.com/science/article/pii/S0024493709002643
李三忠, 索艳慧, 李玺瑶, 等.西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J].科学通报, 2018, 63(16):1550-1593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201816006 牛延宏, 李振德, 刘旭光, 等.阿龙山镇幅M51C001002 1/25万区域地质调查报告.2003.