• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征

刘海永, 曾庆高, 王雨, 毛国正

刘海永, 曾庆高, 王雨, 毛国正. 2020: 西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征. 地质通报, 39(2-3): 164-176. DOI: 10.12097/gbc.dztb-39-2-3-164
引用本文: 刘海永, 曾庆高, 王雨, 毛国正. 2020: 西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征. 地质通报, 39(2-3): 164-176. DOI: 10.12097/gbc.dztb-39-2-3-164
LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. 2020: Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet. Geological Bulletin of China, 39(2-3): 164-176. DOI: 10.12097/gbc.dztb-39-2-3-164
Citation: LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. 2020: Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet. Geological Bulletin of China, 39(2-3): 164-176. DOI: 10.12097/gbc.dztb-39-2-3-164

西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征

基金项目: 

中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》 DD20160026

《西藏区域地质调查片区总结与服务产品开发》 DD20160345

详细信息
    作者简介:

    刘海永(1987-), 男, 硕士, 工程师, 地质工程专业。E-mail:Liuhy_vip@126.com

    通讯作者:

    毛国正(1971-), 男, 高级工程师, 从事青藏高原区域地质调查研究工作。E-mail:372806851@qq.com

  • 中图分类号: P597+.3;P595

Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet

  • 摘要:

    拉果错蛇绿岩是青藏高原中部狮泉河-纳木错-嘉黎缝合带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带代表的洋盆演化及洋盆性质具有重要的约束意义。以拉果错蛇绿岩中的辉长岩、辉绿岩、辉绿玢岩和斜长花岗岩为研究对象,在岩石学、锆石U-Pb年代学和全岩地球化学研究的基础上,探讨了拉果错蛇绿岩的成因和构造背景,以此约束狮泉河-纳木错-嘉黎缝合带的性质。结果显示,斜长花岗岩锆石U-Pb年龄为167.8±1.7 Ma(n=24,MSWD=0.22),表明拉果错蛇绿岩形成于晚侏罗世。地球化学特征显示,拉果错蛇绿岩中辉长岩与辉绿岩端元均兼具岛弧与富集洋中脊玄武岩的地球化学性质,指示其形成于大陆弧后盆地环境。

    Abstract:

    Lhaguo Tso ophiolite is one of the most complete ophiolite combinations in the Shiquanhe-Namco-Lhari suture zone in central Tibetan Plateau, and has great significance for restoring the evolution of ocean.This paper reports petrology, zircon U-Pb chronology and geochemical characteristics of the diabases and plagiogranites to confirm the genesis and tectonic setting of Lhaguo Tso ophiolites.The zircon U-Pb dating of plagiogranite yielded an age of 167.8±1.7 Ma (n=24, MSWD=0.22), which indicates that the Lhaguo Tso ophiolite was formed in Late Jurassic.Geochemically, the gabbros and the diabases are similar to the island arc rocks and E-MORB, suggesting a continental back-arc basin environment setting.

  • 查隆岩体位于西藏昂仁县措迈乡西北部,所处大地构造位置为冈底斯-喜马拉雅造山系(一级)中的拉达克-冈底斯-察隅弧盆系(二级),属中冈底斯北侧的岩浆带。目前普遍认为,冈底斯带中生代花岗岩为新特提斯洋壳向北俯冲和班公-怒江洋向南俯冲共同消减作用的结果[1-3]。另外,前人也对冈底斯中生代岩浆岩的构造性质、构造演化、岩浆活动及成矿作用进行了较多研究。王成善等[4]认为,冈底斯中生代花岗岩是新特提斯洋壳至少2次俯冲消亡和多次俯冲-碰撞的结果;有学者认为,冈底斯带中北部地区的岩浆作用与班公湖-怒江洋壳向南的俯冲作用有关[1-3];也有学者认为,冈底斯带中北部地区的岩浆作用与冈底斯和羌塘地块碰撞后软流圈上涌引起的地壳熔融有关[5]。区域上晚白垩世岩浆大面积出露于南冈底斯带,中冈底斯带一直缺少晚白垩世花岗岩的报道。另外,冈底斯岩浆弧带成矿地质条件优越,孕育了大量的铜、金、银、钼、富铁、铅锌等矿产资源,是青藏高原最重要的成矿区带,但对铁矿的研究明显偏少。在填绘1:5万羊他幅时发现了晚白垩世岩体和查隆磁铁矿点,在对该岩体进行详细野外调查的基础上,结合区域资料,对晚白垩世岩体的岩石成因、地球动力学背景及成矿意义进行探讨,以期对冈底斯带构造岩浆研究提供可靠的基础资料。

    查隆岩体以岩株的形式产出,主要由5个独立的侵入体组成,在研究区呈零星分布,出露面积约9km2(图 1)。在各武勒嘎一带,南部被林子宗群年波组火山岩及第四系不整合覆盖,与围岩接触带岩石有弱的变质变形;在查隆一带侵位于拉嘎组、昂杰组、下拉组,与围岩接触带附近有变质变形、硅化、角岩化现象,岩体接触带附近可见黑云母钾长变粒岩、角岩化粉砂岩、变质含砾细粒岩屑石英砂岩等热接触变质岩。岩体以中酸性岩石为主,岩石类型为黑云花岗闪长岩、花岗闪长岩(图版Ⅰ-ab)。研究区处于冈底斯成矿带中西段,主体位于冈底斯-念青唐古拉中生代、新生代铜钼金铁铬盐类成矿带西段,矿点出露地层为石炭系—二叠系碎屑岩及碳酸盐岩,构造主要表现为断裂、节理,以及与逆断层伴生的牵引褶皱。北西向断裂较常见,为主要的赋矿构造,倾向一般为40°~50°,倾角为55°~ 60°,且多为逆断层。磁铁矿化蚀变带以浸染状的形式赋存于拉嘎组(C2P1l)、昂杰组(P1a)与中细粒黑云母花岗闪长岩岩体的外接触带上。初步圈定磁铁矿体3条,拣块样全铁最高品位68.9%(图版Ⅰ-c)。矿体呈似层状、透镜状产出,围岩硅化、角岩化蚀变较强,且受断层控制明显。矿石矿物主要为磁铁矿,少量赤铁矿、黄铁矿(图版Ⅰ-d)。

    图  1  查隆花岗岩地质简图及大地构造位置(据参考文献修改)
    1—断层;2—同位素采样位置;3—U-Pb年龄值;4—花岗岩体;5—热变质;6—火山岩;7—地层界线;Q—第四系;E3—渐新统;E2—始新统;P2—中二叠统;C-P—石炭系-二叠系;Ⅰ4-2—北喜马拉雅大陆边缘褶冲带北带;Ⅱ1—雅鲁藏布江缝合带;Ⅱ3—拉孜-曲松增生逆推带;Ⅲ1—日喀则弧前盆地;南冈底斯:Ⅲ2—冈底斯下察隅火山岩浆弧;中冈底斯:Ⅲ3—隆格尔-念青唐古拉火山岩浆弧,Ⅲ4—措勤-申扎火山岩浆弧;Ⅲ5—狮泉河蛇绿混杂岩带;北冈底斯:Ⅲ6—班戈-八宿岩浆弧;Ⅳ1—班公-怒江结合带; Ⅳ2—东恰错增生楔逆推带;Ⅴ1—羌南陆块
    Figure  1.  Simplified geological map of the granite in Chalong area and the division of tectonic units in adjacent areas
      图版Ⅰ 
    a.查隆岩体花岗闪长岩;b.闪长岩镜下特征;c.磁铁矿;d.磁铁矿镜下特征。Q—石英;Pl—斜长石;Kfs—钾长石;Mag—磁铁矿;Py—黄铁矿;Hm—赤铁矿
      图版Ⅰ. 

    查隆岩体的主要岩石类型为中细粒花岗闪长岩、细粒-中粒黑云花岗闪长岩。

    中细粒花岗闪长岩:呈灰白色,中细粒半自形粒状结构,块状构造,主要矿物成分为斜长石(56%~57%)、石英(20%~21%)、钾长石(12%~ 13%)、角闪石(4%~5%)和黑云母(3%~4%)。长石可分为1~1.5mm细粒级和2~2.5mm中粒级,不同颗粒相互紧密嵌接,杂乱分布。斜长石呈半自形粒状,较洁净;石英呈他形填隙粒状,洁净;钾长石呈他形粒状,较混浊,显示条纹结构;角闪石呈半自形粒状,浅绿色;黑云母呈半自形片状,红褐色。

    细粒黑云母花岗闪长岩:呈灰白色,细粒花岗结构,块状构造,主要矿物成分为斜长石(50%)、石英(25%)、钾长石(15%)及绿泥石化黑云母(8%),少量磷灰石,金红石+金属矿物含量为2%;另见副矿物为磷灰石、不透明金属矿物等。长石大部分为板柱状,一般粒径在0.90mm×1.72mm以上,个别可达1.15mm×2.25mm~1.43mm×2.80mm;斜长石泥化和绢云母化明显,较浑浊;钾长石略具泥化现象,个别可见卡氏双晶,为正长石;石英多为不规则粒状,分布于长石粒间,粒径一般小于0.70mm,个别可达1.00mm;黑云母为片状,最大片径0.71mm × 1.00mm,大部分已绿泥石化并有细针状或网状金红石,部分可见铁质析出物;副矿物见磷灰石,多为不规则状,粒径小于0.12mm;金属矿物多为较规则粒状,一般粒径小于0.25mm,部分有白钛矿化特征。

    磁铁矿石特征(图版Ⅰ-c):呈黑色,他形粒状结构,块状构造。主要金属矿物为磁铁矿(90%),另见赤铁矿(3%)和个别黄铁矿。磁铁矿一般粒径小于0.15mm,镶嵌分布,沿边部及解理裂隙可见赤铁矿交代的现象,黄铁矿仅见个别微粒,粒径小于0.005mm。脉石矿物主要为石榴子石(7%),不规则粒状,粒径一般小于0.30mm,个别可达0.63mm,裂隙较发育,部分裂隙中见少量绿泥石及个别石英,充填分布于金属矿物粒间。

    将5件新鲜花岗闪长岩样品无污染碎样至200目后,送至自然资源部西安矿产资源监督检测中心,分析其岩石化学数据。样品加工前先切掉氧化或蚀变膜。岩石化学成分用XRF光谱测定,分析精度一般优于2%。微量元素用XRF玻璃饼熔样,以保证样品中的副矿物全部溶解,然后在ICP-MS上测定,分析精度一般为2%~5%。

    锆石单矿物分离在河北廊坊区域地质调查研究所完成。将约5kg的样品破碎至60~80目,淘洗后获得重砂,再经过磁选,得到纯度较高的试样,在双目显微镜下挑选出晶形和透明度较好的锆石颗粒,制作成环氧树脂样品靶。待环氧树脂充分固化后打磨抛光至锆石颗粒中心暴露,然后拍摄反射光、透射光和阴极发光图像,最后进行LA-ICPMS U-Pb同位素测定。锆石的阴极发光(CL)图像在西北大学大陆动力学国家重点实验室扫描电镜加载阴极发光仪上完成。

    LA-ICP-MS测定在西北大学大陆动力学重点实验室完成,使用的ICP-MS为Agilient公司生产的Agilient7500a。锆石U-Pb定年及微量元素分析在同一个系统内同时完成,分析仪器为配备193nmArF-excimer激光器的Geo-Las200M型激光剥蚀系统和Elan6100DRC型四极杆质谱仪,激光束斑直径为44μm。LA-ICP-MS激光剥蚀采样采用单点剥蚀的方式, 数据分析前用NIST610进行仪器调试, 使之达到最优状态。在测试过程中每测定5个样品点后, 重复测定一次标准锆石91500和一次标准玻璃NIST610进行校正,观察仪器的状态以保证测试的精度。锆石年龄计算采用标准锆石91500为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NISTSRM610为外标,29Si为内标元素进行校正。数据采集处理采用Glitter(Version4.0),并采用Anderson软件[6]对测试数据进行普通铅校正,年龄计算及谐和图绘制采用Isoplot(3.0版)软件[7]完成。因样品年轻,采用206Pb/238U年龄,206Pb/238U年龄加权平均值误差具95%置信度。

    岩石化学分析结果见表 1。SiO2含量为65.32%~69.19%,平均为67.10%,在TAS分类图解上位于花岗闪长岩区(图 2),为中酸性侵入岩类。K2O/Na2O=0.86~2.00,平均为1.31,显示贫钠富钾特征;SiO2-K2O岩石系列判别图解显示为高钾钙碱性系列岩石(图 3-a)。Al2O3含量为13.75% ~ 15.38%,平均为14.63%,A/CNK=0.95~1.12,平均为1.00,均小于1.1,岩石铝饱和指数判别图解显示属于准铝质花岗岩(图 3-b)。里特曼指数σ=0.78~ 2.09,大部分大于1.8;全碱(K2O + Na2O)含量为6.04%~7.49%,平均为6.84%;AR=1.8~2.16,平均为2.05。固结指数(SI)为0.71~1.32,平均为0.94;分异指数(DI)为71.18~73.08,平均为72.18,说明岩浆结晶分异程度较高。

    表  1  查隆花岗岩主量、微量和稀土元素分析结果
    Table  1.  Major, trace and rare earth element compositions of granite in Chalong area
    样品号 D1641-1 D1658-1 D1660-1 D1573-1 D1574-2
    岩石名称 中细粒花岗闪长岩 细粒黑云母花岗闪长岩 中粒黑云花岗闪长岩
    SiO2 66.5 69.19 67.74 65.32 66.74
    Al2O3 14.3 14.34 13.75 15.37 15.38
    MgO 2.05 1.41 1.89 1.97 1.65
    CaO 2.68 2.13 2.55 3.93 3.1
    Na2O 3.21 2.36 3.05 3.25 3.23
    K2O 4.13 4.71 4.44 2.79 3.01
    P2O5 0.2 0.14 0.19 0.18 0.15
    MnO 0.14 0.06 0.07 0.11 0.1
    TiO2 0.66 0.54 0.61 0.59 0.51
    TFe2O3 4.86 3.86 4.47 5.11 4.48
    烧失量 2.18 1.7 1.83 0.62 0.97
    总计 100.91 100.44 100.59 99.24 99.32
    A/NK 1.47 1.6 1.4 1.84 1.79
    A/CNK 0.98 1.12 0.95 0.99 1.08
    R1 2220 2598 2299 2443 2518
    R2 680 588 646 834 729
    Y 21.3 21.8 19.7 19.4 16
    La 64.2 38.8 60.1 43.7 30
    Ce 134 79 122 80 58.2
    Pr 13.6 8.54 12.7 8.14 5.96
    Nd 47.3 30.1 44.9 29.8 22.3
    Sm 6.96 5.67 7.19 5.1 4.06
    Eu 1.33 0.99 1.22 1.22 1.1
    Gd 6.99 5.64 6.51 4.88 3.71
    Tb 0.74 0.66 0.6 0.52 0.46
    Dy 3.79 3.96 3.57 3.37 2.75
    Ho 0.63 0.65 0.6 0.54 0.47
    Er 1.93 2.05 1.89 1.83 1.58
    Tm 0.24 0.27 0.28 0.22 0.21
    Yb 1.75 2.08 1.77 1.82 1.47
    Lu 0.22 0.29 0.24 0.25 0.2
    ΣREE 283.38 178.7 263.47 181.39 132.47
    LREE 267.09 163.1 248.01 167.96 121.62
    HREE 16.29 15.6 15.46 13.43 10.85
    LREE/ 16.4 10.46 16.04 12.51 11.21
    HREE 26.31 13.38 24.36 17.22 14.64
    (La/Yb)N 2.03 4.1 1.72 3.07 4.17
    (La/Sm)N 3.82 1.82 1.62 1.61 1.91
    (Gd/Lu)N 0.58 0.53 0.53 0.74 0.85
    δEu 34287.26 39102.42 36860.88 23162.58 24989.02
    K 3956.7 3237.3 3656.95 3537.05 3057.45
    Ti 981.9 600.2 662.9 828 626
    P 707.9 607.8 506.8 506 517
    Ba 33.4 24.7 43 26.8 22.7
    Th 3.17 2.26 6.24 2.38 1.64
    U 1.06 1.28 3.61 2.39 1.78
    Ta 7.41 15.8 25.1 13.7 14.2
    Nb 173 200 190.8 115 127
    Rb 225.4 211.5 210.1 163 126
    注:元素分析由自然资源部西安矿产资源监督检测中心完成;主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV 
    | 显示表格
    图  2  查隆花岗岩SiO2-(Na2O +K2O)图解(底图据参考文献[8])
    Figure  2.  SiO2-(Na2O +K2O)diagram of granite in Chalong area
    图  3  查隆花岗岩SiO2-K2O图解(a, 底图据参考文献[9])和A/CNK-A/NK图解(b, 底图据参考文献[10])
    Figure  3.  SiO2 versus K2O diagram (a) and A/CNK versus A/NK diagram (b) of granite in Chalong area

    稀土元素分析结果见表 1。稀土元素总量(ΣREE)变化较大,ΣREE为132×10-6~283×10-6,LREE/HREE值为10.46~16.40,平均为12.98,(La/Yb)N值为13.38~26.31,平均为18.39,表明轻稀土元素较富集且分馏程度较高。稀土元素球粒陨石标准化配分曲线呈右倾特征,轻稀土元素富集,重稀土元素亏损,表明该岩浆经过一定程度的分异(图 4-a)。δEu值为0.53~0.85,显示中等的负Eu异常,配分曲线在Eu处的沟谷不明显,反映该岩体虽有微弱的亏损,但分异程度不明显。

    图  4  查隆花岗岩稀土元素球粒陨石标准化配分型式图(a)和微量元素原始地幔标准化蛛网图(b)(底图据参考文献[11])
    Figure  4.  Chondrite-normalized REE patterns (a) and trace element spider diagrams (b) for granite in Chalong area

    微量元素分析结果见表 1。原始地幔标准化微量元素蛛网图(图 4-b)显示,Th、Rb、K元素含量偏高,显示正异常;Ba、Nb、P、Ti元素显示负异常;比值蛛网图呈“W”型,大离子亲石元素Rb、K相对富集,Ba、Sr相对亏损;高场强元素Th、La、Nd相对富集,Ti、Nb、P相对亏损,P和Ti亏损一般与俯冲有关,这种特点与火山弧环境的花岗岩类似。

    测年样品均采于查隆岩体中部。其中, 样品RZ1641-1为中细粒花岗闪长岩,锆石晶形较完好,多呈长柱状,长宽比为2~3,发育明显的振荡环带,为典型的岩浆成因锆石。测得24粒锆石24个数据的206Pb/238U年龄介于88.5~91.3Ma之间(表 2图 5),其年龄加权平均值为89.88±0.55Ma(95%置信度),MSWD=0.43(图 5)。

    表  2  查隆岩体花岗闪长岩(RZ1641-1)和黑云花岗闪长岩(RZ1573-1)LA-ICP-MS锆石U-Th-Pb同位素数据
    Table  2.  LA-ICP-MS zircon U-Th-Pb data of granodiorite (RZ1641-1) and biotite granodiorite(RZ1573-1)in Chalong area
    测点号 同位素比值 年龄/Ma
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th
    花岗闪长岩
    1 0.0479 0.0034 0.0936 0.0063 0.0142 0.0002 0.0043 0.0001 95 160 91 6 91 2 87 2
    2 0.0475 0.0022 0.0921 0.0039 0.0141 0.0002 0.0045 0.0001 73 108 90 4 90 1 91 1
    3 0.0477 0.0024 0.093 0.0043 0.0141 0.0002 0.0044 0.0001 83 116 90 4 91 1 89 2
    4 0.0473 0.0061 0.0925 0.0116 0.0142 0.0004 0.0047 0.0002 65 283 90 11 91 3 94 4
    5 0.0484 0.0026 0.0923 0.0045 0.0138 0.0002 0.0042 0.0001 119 120 90 4 89 1 84 2
    6 0.0476 0.0021 0.0931 0.0037 0.0142 0.0002 0.0045 0.0001 76 103 90 3 91 1 91 1
    7 0.0473 0.0042 0.0926 0.0079 0.0142 0.0003 0.0045 0.0001 63 199 90 7 91 2 92 3
    8 0.0482 0.0071 0.0922 0.0132 0.0139 0.0004 0.0048 0.0002 107 315 90 12 89 3 97 4
    9 0.0476 0.0024 0.093 0.0043 0.0142 0.0002 0.0044 0.0001 78 117 90 4 91 1 88 2
    10 0.0471 0.0025 0.0927 0.0045 0.0143 0.0002 0.0047 0.0001 55 120 90 4 91 1 94 2
    11 0.0481 0.0064 0.0929 0.0121 0.014 0.0004 0.0049 0.0002 106 289 90 11 90 2 98 4
    12 0.0478 0.0027 0.0911 0.0047 0.0138 0.0002 0.0047 0.0001 89 128 89 4 89 1 96 2
    13 0.047 0.0051 0.0916 0.0097 0.0141 0.0003 0.0048 0.0002 50 242 89 9 91 2 97 4
    14 0.0479 0.004 0.0923 0.0073 0.014 0.0003 0.0045 0.0001 95 185 90 7 90 2 90 2
    15 0.047 0.0023 0.0917 0.0041 0.0142 0.0002 0.0043 0.0001 49 112 89 4 91 1 86 2
    16 0.0469 0.0025 0.0906 0.0045 0.014 0.0002 0.0043 0.0001 45 125 88 4 90 1 87 1
    17 0.0483 0.0034 0.0933 0.0063 0.014 0.0002 0.0046 0.0001 112 160 91 6 90 1 92 2
    18 0.0481 0.0029 0.0922 0.0051 0.0139 0.0002 0.0046 0.0001 102 134 90 5 89 1 92 2
    19 0.0482 0.0026 0.0924 0.0046 0.0139 0.0002 0.0043 0.0001 109 122 90 4 89 1 87 2
    20 0.0477 0.0036 0.0909 0.0065 0.0138 0.0002 0.0041 0.0001 85 171 88 6 89 2 83 2
    21 0.0481 0.0031 0.0925 0.0056 0.014 0.0002 0.0045 0.0001 103 144 90 5 89 1 90 2
    22 0.0482 0.0065 0.0936 0.0123 0.0141 0.0004 0.0046 0.0002 107 292 91 11 90 2 93 4
    23 0.048 0.0065 0.0916 0.0122 0.0138 0.0004 0.0048 0.0002 97 295 89 11 89 2 97 4
    24 0.0489 0.0039 0.0942 0.0071 0.014 0.0002 0.0043 0.0001 145 176 91 7 89 2 87 2
    黑云花岗闪长岩
    1 0.0469 0.0065 0.0885 0.0117 0.0137 0.0004 0.004 0.0003 41 301 86 11 88 3 82 6
    2 0.0482 0.0052 0.0895 0.0091 0.0135 0.0004 0.0039 0.0002 111 235 87 8 86 2 78 4
    3 0.0481 0.0025 0.0904 0.0039 0.0136 0.0002 0.0042 0.0001 104 117 88 4 87 1 85 2
    4 0.0478 0.0029 0.0921 0.0049 0.014 0.0002 0.0045 0.0001 86 137 90 5 90 2 90 3
    5 0.0477 0.0061 0.0917 0.0112 0.014 0.0004 0.0047 0.0003 82 279 89 10 89 3 95 6
    6 0.048 0.0026 0.0848 0.004 0.0128 0.0002 0.0039 0.0001 97 125 83 4 82 1 79 2
    7 0.0481 0.0032 0.0904 0.0053 0.0136 0.0002 0.0042 0.0001 105 148 88 5 87 2 85 2
    8 0.0473 0.008 0.0853 0.014 0.0131 0.0005 0.0043 0.0004 65 360 83 13 84 3 87 7
    9 0.0477 0.004 0.0901 0.0071 0.0137 0.0003 0.0041 0.0002 81 190 88 7 88 2 82 3
    10 0.0477 0.0039 0.0862 0.0066 0.0131 0.0003 0.004 0.0002 85 185 84 6 84 2 80 3
    11 0.0478 0.0027 0.087 0.0042 0.0132 0.0002 0.0038 0.0001 86 127 85 4 85 1 77 2
    12 0.0473 0.0043 0.0863 0.0073 0.0132 0.0003 0.004 0.0002 63 202 84 7 85 2 81 3
    13 0.0475 0.0028 0.0908 0.0047 0.0139 0.0002 0.004 0.0001 76 135 88 4 89 1 81 2
    14 0.0478 0.004 0.0885 0.007 0.0134 0.0003 0.0041 0.0002 86 190 86 7 86 2 82 3
    15 0.049 0.0166 0.0913 0.0303 0.0135 0.0009 0.0043 0.0004 146 646 89 28 87 6 86 8
    16 0.0479 0.0036 0.0922 0.0064 0.014 0.0003 0.0043 0.0001 93 171 90 6 89 2 88 3
    17 0.0477 0.0038 0.0924 0.0069 0.014 0.0003 0.0044 0.0002 84 181 90 6 90 2 88 3
    18 0.0477 0.0028 0.0892 0.0047 0.0136 0.0002 0.0042 0.0001 81 136 87 4 87 1 84 2
    19 0.0477 0.003 0.0877 0.0049 0.0133 0.0002 0.004 0.0001 85 142 85 5 85 2 81 2
    20 0.0485 0.0031 0.0912 0.0053 0.0137 0.0002 0.0041 0.0001 121 146 89 5 87 2 83 2
    21 0.0477 0.0028 0.0869 0.0044 0.0132 0.0002 0.0042 0.0001 81 133 85 4 85 1 85 3
    22 0.0483 0.0028 0.0904 0.0045 0.0136 0.0002 0.0041 0.0001 115 129 88 4 87 1 82 3
    23 0.0477 0.0032 0.0933 0.0057 0.0142 0.0003 0.0042 0.0001 85 155 91 5 91 2 85 3
    24 0.0479 0.0028 0.0933 0.0047 0.0141 0.0002 0.0045 0.0001 91 132 91 4 91 2 90 2
    25 0.0473 0.0029 0.0855 0.0047 0.0131 0.0002 0.004 0.0001 62 142 83 4 84 1 81 2
    26 0.0482 0.0086 0.0846 0.0146 0.0127 0.0005 0.0042 0.0003 109 372 83 14 82 3 84 7
    27 0.0468 0.0027 0.0877 0.0043 0.0136 0.0002 0.0041 0.0001 41 130 85 4 87 1 82 2
    28 0.0482 0.0031 0.0921 0.0053 0.0139 0.0003 0.0042 0.0001 109 144 89 5 89 2 85 3
    29 0.0473 0.0053 0.0865 0.0092 0.0133 0.0004 0.0043 0.0002 63 247 84 9 85 2 86 4
    30 0.0478 0.0032 0.0889 0.0053 0.0135 0.0003 0.004 0.0001 89 151 87 5 86 2 81 2
    下载: 导出CSV 
    | 显示表格
    图  5  查隆花岗岩(RZ1641-1)锆石阴极发光(CL)图像(a)和U-Pb年龄谐和图(b、c)
    Figure  5.  CL images (a) and U-Pb concordia diagrams (b, c) of zircon from granite (sample RZ1641-1) in Chalong area

    样品RZ1573-1为黑云花岗闪长岩,锆石晶形较完好,多呈长柱状,长宽比为2~4,发育明显的振荡环带,为典型的岩浆成因锆石。测得29粒锆石的30个数据的206Pb/238U年龄介于82.1~90.8Ma之间,其年龄加权平均值为86.6±1.0Ma(95%置信度),MSWD=0.43(表 3;图 6)。

    图  6  查隆黑云花岗闪长岩(RZ1573-1)锆石阴极发光(CL)图像(a)和U-Pb年龄谐和图(b、c)
    Figure  6.  CL images (a) and U-Pb concordia diagrams (b, c) of zircon from biotite granodiorite (sample RZ1573-1) in Chalong area

    晚白垩世花岗岩多分布于南冈底斯中东段,中冈底斯和北冈底斯零星出露。其中南冈底斯带门巴地区金达北部的花岗闪长岩年龄为68.8± 1.6Ma(U-Pb年龄)[12],朗县—米林地区的花岗岩年龄介于84~78Ma之间(U-Pb年龄)[13],雪拉岩体的花岗闪长岩年龄为70.4±2.2Ma(U-Pb年龄)[14],谢通门地区的花岗岩年龄介于110~90Ma之间(U-Pb年龄)[15];而冈底斯带西北缘的扎隆琼娃石英二长岩年龄为85.6±0.48Ma(U-Pb年龄)[16],中冈底斯带岩体的花岗闪长岩年龄为74.8±1.6Ma(U-Pb年龄)[17],扎布耶茶卡的第二期闪长岩年龄为100.2±0.75Ma[18]。可见区域上既有晚白垩世早期的岩体也有晚白垩世末期的岩体,岩性以花岗闪长岩为主,多为俯冲型的Ⅰ型花岗岩。本文中2个年龄样品采自中冈底斯,年龄介于89.88~ 86.6Ma之间,岩性、地球化学特征及构造环境与区域上高度一致。结合目前冈底斯带晚白垩世岩体的特点,纵向上具有从北向南年龄变老的趋势,反映从俯冲到碰撞造山岩浆活动的中心总体从南向北发生迁移的过程。

    岩相学上没有发现堇青石、石榴子石、白云母等传统意义上S型花岗岩判别标志的富铝矿物。岩石CIPW标准矿物计算显示,刚玉分子3个样品均小于1%,Na2O含量多接近或大于3.2%,反映Ⅰ型花岗岩的特点。综上所述,查隆岩体应为高钾钙碱性的准铝质Ⅰ型花岗岩。

    研究表明,微量元素是岩浆混合作用和成岩过程的最好记录,壳、幔两类岩浆混合及成岩过程中,有显著的元素迁移和成分交换,并形成独特的扩散作用[19]。根据微量元素地球化学性质,Rb为强不相容元素,Ti为高场强元素,来自不同岩浆房成岩后,Rb/Ti值变化较大[20]。查隆岩体的Rb/Ti值为0.03~0.06,说明幔源基性岩浆和壳源酸性岩浆已经发生混合岩浆作用。Nb、Ta为强不相容元素,在侵蚀和变质作用过程中较稳定, Nb/Ta值可以示踪原始岩浆源区的特征[21-22]。查隆花岗闪长岩的Nb/ Ta值为5.73~12.34,其特征介于原始地幔(17.39)[23]和大陆地壳(Nb/Ta=11~12)[24]之间,暗示岩浆源区可能由地幔熔体和地壳熔体的混合形成。另外,熔融实验研究表明,陆壳熔融通常富钠,不能形成具高钾钙碱性特征的花岗质岩浆[25-27]。Panino等[27]根据陆壳岩石熔融结果,提出高钾钙碱性花岗岩通常是壳幔混合的结果。综上所述,查隆岩体岩浆来源显示了壳幔岩浆混合起源的特征。

    研究认为,新特提斯洋大致在晚三叠世或更早的时间打开,同时形成班公湖-怒江洋(北支)及雅鲁藏布洋(南支)[28]。大致于中侏罗世扩张到最大规模,然后开始消减缩小。北支班公湖-怒江洋大致在早白垩世末(100Ma左右)完全闭合,完成了拉萨地块与羌塘地块的碰撞拼合,南支雅鲁藏布洋闭合较晚。在古近纪印度大陆开始与拉萨地块碰撞[29]。而弧背断隆带和中冈底斯的形成时代分别为105~ 135Ma和95~145Ma,说明至少在早侏罗世,冈底斯带还受到班公湖怒江洋向南、雅鲁藏布江洋向北的双向俯冲作用影响,直到晚白垩世竟柱山组(位于岩体西北部)在93.9~100.5Ma沉积时,冈底斯中北部的俯冲作用才基本停止[30]。雅鲁藏布洋板块自中侏罗世开始向北俯冲于拉萨地块之下,65~70Ma前,雅鲁藏布洋开始闭合,印度-亚洲大陆开始碰撞[3]

    本次获得的年龄无疑属于新特提斯洋板块俯冲阶段,是俯冲成因的花岗闪长岩,表明在冈底斯带中部晚白垩世早期(约90Ma)至少存在一期由俯冲作用诱导的岩浆混合作用。到晚白垩世时,班公-怒江洋盆已经闭合,雅鲁藏布江洋盆向北单向强烈俯冲,由于洋壳俯冲速度不断加快,沿俯冲带产生的摩擦力持续增强,重熔速度加快,使地壳深部物质熔融。岩体的岩浆源区来自于上地幔和下地壳物质不断熔融,由于幔源岩浆在上侵过程中与下地壳物质发生不同程度的混溶作用,形成晚白垩世花岗闪长岩及同时期的磁铁矿。双向剪刀式俯冲作用只能解释早侏罗世―早白垩世的花岗岩特点,到晚白垩世已经变成单向俯冲,区域上晚白垩世岩体集中发育在南冈底斯带,该岩体的发现及认识对研究中冈底斯带晚白垩世岩浆作用的深部动力学过程具有重要意义。

    查隆地区的磁铁矿与燕山末期的中酸性岩浆侵入活动有关,岩浆演化晚期分离出成矿热液,沿层间裂隙、构造破碎带等部位与围岩发生接触交代反应,形成磁铁矿体。区内石炭系―二叠系沉积地层,燕山末期的侵入岩及近北西向大断裂控制的次级断裂和褶皱的发育构成了最有利的成矿岩性组合及控矿条件。中酸性花岗闪长岩直接侵入到有较强变形的石炭系―二叠系沉积地层,矿区构造复杂,具备良好的围岩条件,发现的磁铁矿石品位较富,说明该区是寻找与接触交代作用有关的富铁矿产地的有利区域,有望在区内找到中等以上规模的富磁铁矿产地。

    磁铁矿石普遍石榴子石化、少量绿泥石化,矿点的东侧及南侧均有中二叠统下拉组灰岩发育,具有矽卡岩型磁铁矿特征;脉状和浸染状磁铁矿的出现,表明矿床后期具有热液叠加特征。综上所述,该矿床早期为矽卡岩型成矿,后期叠加热液改造,其中矽卡岩期是磁铁矿形成的主要阶段,矿床成因类型应为矽卡岩-热液叠加改造型磁铁矿床。

    冈底斯带中北部晚白垩世可能发生过金属成矿大爆发,目前在冈底斯中北部已发现日阿铜矿床、尕尔穷铜矿床、拔拉扎铜钼矿床等,这些矿床的成矿环境、成矿条件、控矿构造、岩体地球化学特征等都具有相似性,可能属于同一成矿系统。该磁铁矿点的发现对开展西藏冈底斯中北部地区中生代矽卡岩型铁铜矿典型矿床的成矿作用、找矿方向具有重要意义。

    (1)查隆花岗闪长岩和黑云花岗闪长岩锆石U-Pb年龄分别为86.6±1.0Ma和89.88±0.55Ma,为雅江洋壳向北俯冲作用延续到晚白垩世的年代学证据,该岩体的发现为中冈底斯带存在晚白垩世岩浆活动提供了证据。

    (2)岩石学、岩石地球化学特征显示,查隆岩体为高钾钙碱性Ⅰ型花岗岩,为壳幔混合的产物。

    (3)查隆磁铁矿的成因类型为矽卡岩型-热液叠加改造型,对研究西藏冈底斯中北部地区中生代矽卡岩型铁铜矿典型矿床的成矿作用和找矿方向具有重要意义。

    致谢: 感谢中国地质大学(武汉)地质过程与矿产资源国家重点实验室和西南冶金地质测试中心的老师在样品分析测试过程中提供大量帮助,感谢吉林大学范建军老师和河海大学吴浩博士在论文成文过程中给予的帮助,感谢审稿专家对本文提出了建设性的修改意见和建议。
  • 图  1   西藏中部拉果错地区地质简图

    Figure  1.   Simplified geological map of Lhaguo Tso area, central Tibet

    图版Ⅰ  

    a.斜长花岗岩侵入超基性岩;b.斜长花岗岩侵入辉绿岩;c.堆晶辉长岩;d.枕状玄武岩;e.蛇纹石化橄榄岩;f.辉绿岩;g.辉绿玢岩;h.斜长花岗岩。Px—辉石; Pl—斜长石; Chl—绿泥石; Am—角闪石; Ab—钠长石; Ep—绿帘石; Srp—蛇纹石; Q—石英

    图版Ⅰ.  

    图  2   Nb/Y-Zr/TiO2*0.0001岩石分类图解[14](a)和(b)SiO2-TFeO/MgO图解[15]

    Figure  2.   Nb/Yb-Zr/TiO2*0.0001 diagram(a)and SiO2-TFeO/MgO diagram(b)

    图  3   稀土元素配分模式(a、c)[16]和微量元素蛛网图(b、d)[17]

    OIB—洋岛玄武岩;E-MORB—富集洋中脊玄武岩;N-MORB—正常洋中脊玄武岩

    Figure  3.   Chondrite-normalized REE patterns(a, c)and primitive mantle-normalized trace element diagrams(b, d)

    图  4   Or-Ab-An图解(a)和SiO2-K2O图解(b)

    Figure  4.   Or-Ab-An diagram(a)and SiO2-K2O diagram(b)

    图  5   锆石阴极发光(CL)图像、锆石U-Pb谐和图(a)和年龄分布图(b)

    Figure  5.   CL images, U-Pb concordia plots(a)and age distribution for zircons(b)

    图  6   Zr-Nb[26]图解(a)和Dy/Yb-La/Yb[27]图解(b)

    Figure  6.   Zr-Nb diagram(a)and Dy/Yb-La/Yb diagram(b)

    图  7   Cr-Ni图解[35]

    Figure  7.   Cr-Ni diagram

    图  8   Ti/1000-V图解(a)和Y/15-La/10-Nb/8三角图解(b)[36]

    1A—钙碱性玄武岩;1B—钙碱性玄武岩和岛弧拉斑玄武岩;1C—火山弧拉斑玄武岩;2A—大陆玄武岩;2B—弧后盆地玄武岩;3A—碱性玄武岩;3B、C—E-MORB;3D—N-MORB;岛弧玄武岩和洋中脊玄武岩的Ti/V值据Shervais[37],弧后盆地玄武岩区域据Metzger等[38]

    Figure  8.   Ti/1000-V diagram(a)and triangular Y/15-La/10-Nb/8 diagram(b)

    表  1   拉果错蛇绿岩的全岩主量、微量和稀土元素分析结果

    Table  1   Major, trace and rare earth elements data for the Lhaguo Tso ophiolite

    岩性
    样号
    斜长花岗岩辉长岩辉绿岩辉绿(玢)岩
    PD003Gs14PD003Gs182145Gs1447Gs1754Gs11758Gs11777GsPM003Gs36PM003Gs381195Gs11908Gs41910Gs1194Gs1908Gs11910Gs51438Gs51442Gs3
    SiO271.9072.6573.1847.8949.6149.7953.1948.0052.3453.1752.0749.6452.6247.0450.8049.5650.59
    Al2O313.9113.2513.0116.9214.7417.3813.2315.7014.0216.0816.9316.9016.0816.5919.5015.3516.60
    Fe2O31.030.912.892.252.032.143.102.312.271.252.921.660.970.981.543.202.28
    FeO1.651.090.535.037.928.1110.087.156.608.167.087.949.306.785.667.185.02
    TFe2O32.862.123.477.8410.8311.1514.3010.259.6010.3210.7910.4811.308.517.8311.187.86
    CaO2.012.473.6811.897.679.095.3010.669.193.037.157.287.6410.197.759.984.95
    MgO1.131.150.258.218.426.304.727.746.706.814.655.614.469.723.845.308.18
    K2O0.090.040.060.600.390.600.120.500.470.221.581.050.921.380.550.752.10
    Na2O6.446.344.892.293.662.484.592.934.075.612.484.374.231.594.993.943.90
    TiO20.400.400.180.540.970.631.550.790.890.690.810.600.690.730.491.390.72
    P2O50.060.060.040.040.060.030.130.050.060.030.060.030.030.100.040.140.07
    MnO0.050.030.070.160.160.210.180.170.160.190.190.150.180.190.130.170.13
    烧失量1.151.401.073.744.082.983.703.512.914.443.854.502.614.474.462.454.93
    总计99.8299.7999.8499.5699.7299.7499.8899.5099.6799.6899.7799.7399.7299.7599.7599.4199.47
    K2O+Na2O6.536.384.952.894.053.084.713.434.545.834.065.425.152.975.544.696.00
    K2O/Na2O0.010.010.010.260.110.240.030.170.110.040.640.240.220.870.110.190.54
    Mg#4856147164574364626150564873535271
    La5.566.4411.603.043.543.824.643.133.083.923.003.153.009.444.704.904.88
    Ce19.0021.9024.205.696.998.4212.806.407.556.466.134.706.2015.809.5010.509.94
    Pr2.682.713.890.811.141.031.951.091.190.930.940.690.832.201.291.911.43
    Nd12.5011.8017.203.775.554.739.736.656.124.304.823.464.329.625.599.546.55
    Sm3.853.094.801.131.791.543.371.922.141.491.591.261.622.641.673.352.05
    Eu1.050.941.240.440.660.581.100.740.790.520.760.670.580.800.631.631.01
    Gd3.182.575.461.031.471.302.721.571.711.301.401.101.392.261.472.831.71
    Tb1.050.781.200.310.490.420.980.560.600.450.460.390.480.670.440.920.52
    Dy6.724.998.931.953.142.796.303.653.812.963.152.543.254.382.886.043.38
    Ho1.591.201.720.450.740.691.480.870.940.700.740.640.791.060.711.430.80
    Er4.453.494.581.242.111.944.152.502.621.962.091.852.262.892.063.972.24
    Tm0.760.630.780.200.350.320.690.420.450.330.350.320.410.480.340.650.38
    Yb4.664.134.801.282.232.124.372.732.852.152.312.222.672.982.384.382.58
    Lu0.710.730.750.210.360.360.670.450.460.370.400.380.460.450.410.650.44
    Y38.2030.1052.0010.1017.2015.2033.0020.2021.4015.6016.6015.2018.4024.8017.0033.2018.70
    ∑REE67.7665.4091.1521.5530.5630.0654.9532.6834.3127.8428.1423.3728.2655.6734.0752.7037.91
    LREE44.6446.8862.9314.8819.6720.1233.5919.9320.8717.6217.2413.9316.5540.5023.3831.8325.86
    HREE23.1218.5228.226.6710.899.9421.3612.7513.4410.2210.909.4411.7115.1710.6920.8712.05
    LREE/HREE1.932.532.232.231.812.021.571.561.551.721.581.481.412.672.191.532.15
    Cu2.56511.0011.7080.2068.2047.0042.30112.0073.80174.0010.3016.1029.002.6162.5037.7042.60
    Cr21.0039.807.14462.00182.00164.0067.00114.00152.0051.9044.3042.2062.6035.4053.80312.00230.00
    Ni17.1025.802.3180.8059.1052.8022.8066.5053.1018.2010.1012.5022.2016.6022.3090.0096.20
    Co13.9019.802.3030.9034.2038.7041.5041.0035.2033.4029.2030.2035.5019.2023.0050.1030.80
    Rb3.242.582.5110.004.3312.804.324.496.379.3545.0024.6021.2020.904.9118.4034.60
    W0.631.050.310.570.520.740.540.530.540.710.551.440.640.660.650.630.55
    Sr120.0048.60112.00336.00103.00200.0098.30936.0085.60194.00293.00272.00172.00234.00114.00768.00384.00
    Ba32.0025.1012.2099.6073.60110.0038.60226.00112.00172.00420.00296.00134.00107.0096.60476.001930.00
    V55.8065.4023.40258.00266.00294.00410.00302.00249.00290.00336.00282.00306.00262.00210.00284.00212.00
    Sc11.4011.9013.4049.8032.0039.5031.3037.4031.3040.3038.8039.0040.1028.2031.2045.8029.80
    Nb5.355.064.242.554.313.236.312.823.762.883.042.802.814.102.944.343.18
    Ta1.000.960.340.680.910.761.140.720.820.720.720.700.710.890.780.880.76
    Zr105.00107.00185.0020.5044.2028.9083.6027.5055.1026.9025.5022.2032.1067.3033.0084.2048.00
    Hf2.503.605.580.690.650.490.511.800.790.350.360.380.201.100.452.402.00
    Sn2.452.861.361.561.671.751.791.541.541.321.881.571.621.761.901.951.68
    Ag0.030.080.030.040.040.030.040.050.040.120.020.020.030.020.030.030.04
    Au0.520.610.590.880.501.430.520.520.370.530.470.550.700.460.310.410.96
    U0.681.180.470.660.660.741.120.341.120.380.970.720.941.070.510.780.42
    Th2.102.753.641.861.001.940.850.742.140.721.300.771.322.921.451.201.50
    Eu*0.921.020.741.251.241.251.111.301.261.141.561.741.181.001.231.621.65
    (La/Yb)N0.801.051.631.601.071.210.720.770.731.230.880.960.762.141.330.751.28
    (La/Sm)N0.911.311.521.691.241.560.871.030.911.651.191.571.162.251.770.921.50
    (Gd/Yb)N0.550.500.920.650.530.490.500.460.480.490.490.400.420.610.500.520.53
    (Sm/Nd)N0.950.810.860.920.991.001.070.891.081.071.021.121.150.840.921.080.96
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  2   斜长花岗岩(2145TW)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table  2   LA-ICP-MS zircon U-Th-Pb data for plagiogranite(2145TW)

    样品编号含量/10-6Th/U同位素比值(±1σ)年龄/Ma(±1σ)
    ThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    2145TW-011321590.830.05440.00450.19520.01530.02610.0006387189181131664
    2145TW-022232011.110.06100.00560.21190.01700.02610.0006639200195141664
    2145TW-031551431.080.05670.00580.20950.02070.02660.0008480234193171695
    2145TW-046073991.520.04160.00310.15660.01130.02660.0005148101693
    2145TW-054423111.420.03970.00310.14830.01100.02600.0006140101663
    2145TW-061271261.000.07260.00660.27780.02450.02600.00081003192249191665
    2145TW-071361530.890.06180.00560.22670.01750.02650.0008733194207151695
    2145TW-081331291.030.07040.00750.25220.02300.02700.0008939219228191725
    2145TW-091141280.890.05400.00480.19780.01550.02660.0008372197183131695
    2145TW-1098.01200.820.05140.00440.18540.01470.02630.0007261194173131675
    2145TW-113202511.280.04240.00370.15200.01190.02580.0007144101644
    2145TW-1260.697.40.620.07710.00930.26670.02530.02630.00091124241240201676
    2145TW-134603111.480.03870.00280.14360.01020.02610.000613691663
    2145TW-141271390.910.05770.00540.21240.01880.02690.0007517206196161715
    2145TW-154753171.500.04330.00330.16240.01200.02650.0006153101694
    2145TW-161211360.890.07060.00530.25940.01750.02670.0007946158234141704
    2145TW-172952321.270.05140.00400.17860.01160.02680.0007261178167101704
    2145TW-181531531.000.06640.00560.23920.01900.02660.0007820176218161695
    2145TW-1994.11200.780.07650.00780.26340.02510.02640.00081109201237201685
    2145TW-2092.21180.780.08560.00770.29440.02650.02620.00071329174262211674
    2145TW-211211310.920.08050.00630.29660.02480.02650.00071209156264191694
    2145TW-221401580.890.06690.00590.24320.01980.02660.0007835183221161694
    2145TW-231191460.820.05960.00620.20710.01730.02670.0008591429191151705
    2145TW-242061901.090.05330.00410.18670.01440.02590.0006343169174121654
    下载: 导出CSV
  • Dewey J F, Bird J M.Origin and Emplacement of the Ophiolite Suite:Appalachian Ophiolites in Newfoundland[J].Journal of Geophysical Research, 1971, 76:3179-3206. doi: 10.1029-JB076i014p03179/

    Nicolas A.Structures of Ophiolites and Dynamics of Oceanic Lithosphere[M].Kluwer Academic Publishers, 1989.

    Dilek Y, Flower M F J.Arc-trench rollback and forearc accretion:2.A model template for ophiolites in Albania, Cyprus, and Oman[J].Geological Society London Special Publications, 2003, 218:43-68. doi: 10.1144-GSL.SP.2003.218.01.04/

    Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, 123:387-411. doi: 10.1130-B30446.1/

    Lister G, Forster M.Tectonic mode switches and the nature of orogenesis[J].Lithos, 2009, 113:274-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ea28191422540e15264e5e76285344d

    Xu M, Li C, Zhang X, et al.Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J].International Geology Review, 2014, 56(9):1072-1096. http://www.researchgate.net/publication/271665766_Nature_and_evolution_of_the_Neo-Tethys_in_central_Tibet_synthesis_of_ophiolitic_petrology_geochemistry_and_geochronology

    Zhu D C, Zhao Z D, Niu Y, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 2013, 23:1429-1454. http://www.sciencedirect.com/science/article/pii/S1342937X1200041X

    西藏自治区地质调查院.1/25万改则县幅区域地质调查报告[M].北京:地质出版社, 2012.
    张玉修, 张开均, 黎兵, 等.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报, 2007, 52(1):100-106. http://d.old.wanfangdata.com.cn/Periodical/kxtb200701017
    樊帅权, 史仁灯, 丁林, 等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].岩石矿物学杂志, 2010, 29(5):467-478. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201005002
    西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.
    王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706026

    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. doi: 10.1016-0009-2541(77)90057-2/

    Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355. doi: 10.2475/ajs.274.4.321

    Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Elements Geochemistry, Elsevier, Amsterdam, 1984: 63-114.

    Sun W D, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144-GSL.SP.1989.042.01.19/

    Yuan Y J, Yin Z X, Liu W L, et al.Tectonic Evolution of the Meso·Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J].Acta Geologica Sinica(English Edition), 2015, 89(2):369-388. http://d.old.wanfangdata.com.cn/Periodical_dzxb-e201502006.aspx

    Pearce J A, Stern R J.Origin of back-arc basin magmas:Trace element and isotope perspectives, Back-arc spreading systems:Geological, Biological, Chemical, and Physical Interactions[M].Washington, DC, AGU, 2006:63-86.

    Fretzdorff S, Livermore R A, Devey C W, et al.Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean[J].Journal of Petrology, 2002, 43:1435-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48edcd46fea9cc5fecf67d73a05492fb

    Hawkins J W.Geology of supra-subduction zones: Implications for the origin of ophiolites[C]//Dilek Y, Newcomb S.Ophiolite concept and the evolution of geological thought, 2003.

    Sinton J M, Ford L L, Chappell B, et al.Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea[J].Journal of Petrology, 2003, 44:159-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c17c5fefa4b1e9747ba85529f09d0078

    Pearce J A, Cann J R.Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyse[J].Earth & Planetary Science Letters, 1973, 19(2):290-300. http://www.sciencedirect.com/science/article/pii/0012821X73901295

    Stolper E, Newman S.The role of water in the petrogenesis of Mariana trough magmas[J].Earth & Planetary Science Letters, 1994, 121:293-325. doi: 10.1016-0012-821X(94)90074-4/

    Pearce J A, Peate D W.Tectonic Implications of the Composition of Volcanic ARC Magmas[J].Annual Review of Earth & Planetary Sciences, 1995, 23:251-285. http://www.researchgate.net/publication/234148960_Tectonic_Implications_of_the_Composition_of_Volcanic_ARC_Magmas

    Geng H, Sun M, Yuan C, et al.Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences, 2011, 42:854-866. http://www.sciencedirect.com/science/article/pii/S1367912011000356

    Jung C, Jung S, Hoffer E, et al.Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany[J].Journal of Petrology, 2006, 47:1637-1671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3c2e6d948819a20f8f3dd0dcb0ad766

    Zhao J H, Zhou M F.Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J].Precambrian Research, 2007, 152:27-47. doi: 10.1016-j.precamres.2006.09.002/

    Aldanmaz E, Pearce J A, Thirlwall M F, et al.Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J].Journal of Volcanology & Geothermal Research, 2000, 102:67-95. http://www.sciencedirect.com/science/article/pii/S0377027300001827

    Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:implications for the origin of oceanic plagiogranite[J].Contrib. Mineral. Petrol., 2009, 158:99-111. doi: 10.1007/s00410-008-0372-3

    Frey F A, Green D H, Roy S D.Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J].Journal of Petrology, 1978, 19:463-513. http://www.researchgate.net/publication/279240326_Integrated_Models_of_Basalt_Petrogenesis_A_Study_of_Quartz_Tholeiites_to_Olivine_Melilitites_from_South_Eastern_Australia_Utilizing_Geochemical_and_Experimental_Petrological_Data

    Hess P C.Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M.Mantle Flow and Melt Generation at Mid-Ocean Ridges.Geophysical Monograph 71, American Geophysical Union.1992: 67-102.

    Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.

    Jung S, Mesberg P.Major and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg(central Germany)Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J].Journal of Volcanology and Geothermal Research, 1998, 86:151-177.

    徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学博士学位论文, 2015.

    Cabanis B, Lecolle M.Le diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus de l'Academie des Sciences Series Ⅱ, 1989, 309:2023-2029.

    Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth & Planetary Science Letters, 1982, 59(1)101-118. http://www.sciencedirect.com/science/article/pii/0012821X82901200

    Metzger E P, Miller R B, Harper G D.Geochemistry and Tectonic Setting of the Ophiolitic Ingalls Complex, North Cascades, Washington:Implications for Correlations of Jurassic Cordilleran Ophiolites[J].The Journal of Geology, 2002, 110(5):543-560. http://www.researchgate.net/publication/241401173_Geochemistry_and_Tectonic_Setting_of_the_Ophiolitic_Ingalls_Complex_North_Cascades_Washington_Implications_for_Correlations_of_Jurassic_Cordilleran_Ophiolites

    Gribble R F, Stern R J, Bloomer S H, et al.MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J].Geochimica Et Cosmochimica Acta, 1996, 60(12):2153-2166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a575d4eee53915fdba788b686694fefa

    Shinjo R, Chung S L, Kato Y, et al.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young, intracontinental back arc basin[J].Journal of Geophysical Research Solid Earth, 1999, 104(B5):10591-10608. http://www.researchgate.net/publication/248799449_Geochemical_and_Sr-Nd_isotopic_characteristics_of_volcanic_rocks_from_the_Okinawa_Trough_and_Ryukyu_Arc_Implications_for_the_evolution_of_a_young_intracontinental_back_arc_basin?ev=auth_pub

    Xu J F, Castillo P R, Chen F R, et al.Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution[J].Chemical Geology, 2003, 193:137-154. doi: 10.1016-S0009-2541(02)00265-6/

    Ghazi J M, Moazzen M, Rahgoshay M, et al.Geochemical characteristics of basaltic rocks from the Nain ophiolite(Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model[J].Tectonophysics, 2012, 574/575:92-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5becdc05dcddc403fcd6b5fd1b2299a8

图(9)  /  表(2)
计量
  • 文章访问数:  3411
  • HTML全文浏览量:  498
  • PDF下载量:  1737
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-02
  • 修回日期:  2019-05-27
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-03-14

目录

/

返回文章
返回