• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义

王金芳, 李英杰, 李红阳, 董培培

王金芳, 李英杰, 李红阳, 董培培. 2020: 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 39(1): 51-61.
引用本文: 王金芳, 李英杰, 李红阳, 董培培. 2020: 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 39(1): 51-61.
WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2020: Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia. Geological Bulletin of China, 39(1): 51-61.
Citation: WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2020: Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia. Geological Bulletin of China, 39(1): 51-61.

内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义

基金项目: 

国家自然科学基金项目《内蒙古西乌旗迪彦庙蛇绿岩年代学、地球化学及大地构造意义》 41502211

中国地质调查局项目《内蒙古1:5万沙日勒昭等四幅区域地质矿产调查》 1212011120701

《内蒙古1:5万高力罕牧场三连等四幅区域地质矿产调查》 121011071

河北省教育厅项目《白音布拉格蛇绿岩岩石学和地球化学研究》 ZC20165013

详细信息
    作者简介:

    王金芳(1983-), 女, 硕士, 副教授, 从事岩石学研究工作。E-mail:wjfb1983@163.com

  • 中图分类号: P597+.3;P534.51

Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia

  • 摘要:

    在内蒙古二连-贺根山缝合带新发现西乌旗阿尔塔拉A型花岗岩,岩性为二长花岗岩。锆石LA-ICP-MS U-Pb测年结果显示,该二长花岗岩的侵位年龄为242.9±1.5Ma,形成时代为中三叠世。阿尔塔拉A型花岗岩地球化学特征为高钾钙碱性系列,具有较高的SiO2(75.89%~76.79%)、K2O(4.18%~4.30%)和Na2O+K2O(8.23%~8.57%),贫CaO、MgO、Sr、Ba、Eu、Ti和P,相对富集Ga、Rb和Th。该岩石稀土元素配分曲线为海鸥式,具有显著的负Eu异常(δEu=0.11~0.14)。在地球化学判别图解上,阿尔塔拉A型花岗岩显示A2型后造山花岗岩特征,其形成于后造山伸展环境。结合二连-贺根山缝合带蛇绿岩、岛弧型-后造山型岩浆岩的时空演化关系,古亚洲洋二连-贺根山洋盆可能在二叠纪晚期闭合,并在三叠纪进入后造山伸展构造演化时期。

    Abstract:

    The newly recognized Artala A-type granite occurs along the Erenhot-Hegenshan suture in Xi Ujimqin Banner of Inner Mongolia and is composed of monzogranite.LA-ICP-MS zircon U-Pb dating yielded a weighted average age of 242.9±1.5Ma.The age suggests that the granite was emplaced in the Middle Triassic.The granite belongs to high-K Calc-alkaline series, and is characterized by rich SiO2(75.89%~76.79%) and K2O(4.18%~4.30%), high alkali(Na2O+K2O=8.23%~8.57%), low CaO, MgO, Sr, Ba, Eu, Ti, P, and relatively high Ga, Rb and Th. In addition, it has lower total rare earth element (REE) content with obviously negative Eu anomalies(δEu=0.11~0.14), showing a typical flat gull-wing shaped REE distribution pattern.The Artala monzogranite exhibits the typical geochemical characteristics of A-type granites. According to the chemical subdivision diagrams of the A-type granitoids, the Artala A-type granite belongs to A-type granitoid, which was formed and emplaced in a post-collisional extension setting. Based on the previous studies of the time-space evolution of the ophiolites, arc granitoids, and post-collisional granitoids in the Erenhot-Hegenshan suture, the authors suggest that the Erenhot-Hegenshan oceanic basin of the Paleo-Asian Ocean was probably closed at the end of the Permian and that the Erenhot-Hegenshan suture entered the post-collisional extension tectonic evolution period in Triassic.

  • 西藏神公地区位于冈底斯构造带南部,分布有大量的钙碱性系列火成岩,形成于晚侏罗世—古近纪,其中以林子宗群中酸性火成岩为主体岩系,该套岩系自下而上划分为典中组、年波组、帕那组。以往研究表明[1-3],该套火成岩系的形成与新特提斯洋俯冲闭合及随后的印度-欧亚大陆碰撞事件关系密切,蕴含丰富的陆块碰撞的动力学信息,因此得到广泛的关注。

    近年来,典中组火成岩的喷发时间及形成环境的研究一直是印度-欧亚板块碰撞活动研究的热点。周肃等[4]利用Ar-Ar定年得到林周盆地典中组火成岩的年龄值为64.4~60.5Ma;聂国永等[5]通过堆龙德庆县马区典中组底部底砾岩的研究认为,印度-欧亚大陆的碰撞时限约为65Ma;胡新伟等[6]测得措勤地区典中组火成岩的K-Ar同位素年龄值为63.9Ma,且稀土元素特征表现为轻稀土元素富集,负Eu异常,微量元素Rb、Ba、K、Th、U富集,Ti、P、Sr、Ta亏损,并认为典中组火成岩源于俯冲带幔源基性岩浆与陆壳重熔酸性岩浆的不同比例混合;梁银平等[7]利用U-Pb测年得到朱诺地区典中组上部流纹质凝灰岩的年龄值为64.8±1.6Ma,并指出典中组火成岩具有岛弧火成岩的特点。

    本文在前人研究成果的基础上,对冈底斯构造带神公地区典中组顶底中酸性火成岩进行了锆石U-Pb同位素定年及主量、稀土和微量元素测试,进一步厘定该地区典中组火成岩的形成时限,同时探讨其构造环境意义,为青藏高原的构造演化提供新的依据。

    冈底斯构造带位于青藏高原南部,呈近东西向展布,长约2000km,北以班公湖-怒江结合带为界,南以印度河-雅鲁藏布江缝合带为界,构成南北宽100~300km的带状岩浆岩分布区,指示了裂隙式喷发的特征[8]。研究区位于冈底斯构造带的次一级构造单元隆格尔-工布江达弧背断隆带的神公地区(图 1),区内白垩纪—古近纪中酸性火成岩广泛分布,记录了印度-欧亚板块碰撞过程的岩浆活动信息。晚侏罗世末期,欧亚陆块南缘的特提斯洋开始向北俯冲消减,至晚白垩世,俯冲消减持续进行,海水下降明显,沉积了一套海相-陆相红色砂泥岩,至晚白垩世末期,特提斯洋俯冲消减速度加快,最终形成岛弧背景下的火山喷发活动。

    图  1  研究区构造位置地质简图
    Figure  1.  Simplified geological map of the tectonic location of the study area

    典中组中酸性火成岩厚度为635.7~1200m,岩石类型主要包括安山岩、流纹岩、英安岩,以及相应的火山碎屑岩,另少见火山集块岩,与下伏晚白垩世设兴组紫红色泥砂岩之间呈角度不整合接触关系,底部局部可见底砾岩,上部与年波组火山-沉积岩系呈平行不整合接触。

    研究区典中组火成岩出露面积广,主要为一套中酸性火成岩,岩石类型主要有英安岩、安山岩、流纹岩,以及相应的火山碎屑岩。另外,在底部可见基性玄武安山岩。对主要岩石类型简要描述如下。

    英安岩:灰绿色,斑状结构,块状构造,斑晶含量约25%,几乎都由石英组成,偶见斜长石斑晶,基质含量约75%,主要由隐晶长英质成分组成,部分硅化重结晶形成细粒集合体状石英和少量鳞片状绢云母,集合体状石英多呈完全长条状(图 2-ad)。

    图  2  研究区中组主要火成岩类型
    a—灰绿色英安岩;b—浅灰绿色玄武安山岩;c—安山岩,具斑状结构,基质显微嵌晶结构;d—英安岩,具斑状结构,基质显微嵌晶结构。Pl—斜长石;Bt—基性斜长石
    Figure  2.  The main igneous rock types of Dianzhong Formation in the study area

    玄武安山岩:浅灰绿色,斑状、聚斑结构,基质为玻基交织结构,块状构造。主要由斑晶和基质组成。斑晶:斜长石占10%~20%,呈自形板状晶及聚斑产出,轻微碳酸盐化,具环带结构,以中性斜长石为主;基质占70%~80%,由微细晶斜长石和玻璃质、铁质、磁铁矿和少量橄榄石组成,组成玻基交织结构,橄榄石呈半自形粒状细晶产出(图 2-b)。

    安山岩:浅灰色,斑状结构,基质具微晶结构,块状构造。主要由斑晶、基质组成。斑晶:斜长石微晶,占25%~30%,半自形柱状,碎裂纹发育,有隐约的环带构造,偶见角闪石,半自形柱状;基质以斜长石微晶为主,占60%~65%,呈定向-半定向排列,有强绿帘石化、绿泥石化,少见微小的杏仁体,由绿泥石、硅质充填(图 2-c)。

    以神公地区典中组火成岩为研究对象,采集火成岩样品12件。选取顶底的DPM013TW19(英安岩)、DPM013TW25(玄武质安山岩)样品进行LAICP-MS锆石U-Pb同位素测试,测试结果见表 1。同时,对10件样品分别进行主量、微量和稀土元素测试,测试结果见表 2

    表  1  典中组火成岩LA-ICP-MS锆石U-Th-Pb测试分析结果
    Table  1.  LA-ICP-MS zircon U-Th-Pb data of Dianzhong Formation igneous rocks
    测点号 Pb Th U Th/U 同位素比值 锆石年龄/Ma
    含量/10-6 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    DMP013TW25玄武安山岩
    1 2.44 186 183 1.01 0.0726 0.0064 0.0101 0.0002 71.2 6.1 64.7 1.4
    2 3.15 252 252 1.00 0.0693 0.0033 0.0097 0.0001 68.0 3.1 62.2 0.9
    3 2.01 166 161 1.03 0.0687 0.0035 0.0098 0.0001 67.5 3.3 62.9 0.8
    4 2.75 240 201 1.20 0.0687 0.0042 0.0101 0.0002 67.4 4.0 64.8 1.1
    5 2.59 245 195 1.26 0.0667 0.0036 0.0100 0.0001 65.5 3.4 64.3 0.8
    6 3.61 327 265 1.23 0.0698 0.0038 0.0104 0.0001 68.5 3.6 66.7 0.9
    7 2.60 223 192 1.16 0.0677 0.0035 0.0106 0.0001 66.5 3.4 67.7 0.9
    8 2.35 216 171 1.26 0.0703 0.0043 0.0105 0.0002 69.0 4.1 67.3 1.0
    9 2.37 229 178 1.29 0.0639 0.0029 0.0100 0.0001 62.9 2.7 64.2 0.7
    10 2.44 208 185 1.12 0.0679 0.0030 0.0102 0.0001 66.7 2.9 65.6 0.7
    11 4.89 326 395 0.83 0.0666 0.0019 0.0102 0.0001 65.5 1.8 65.5 0.5
    12 2.60 213 198 1.08 0.0656 0.0026 0.0103 0.0001 64.5 2.5 66.2 0.7
    13 2.21 177 169 1.05 0.0697 0.0032 0.0104 0.0001 68.4 3.1 66.4 0.8
    14 2.55 205 199 1.03 0.0673 0.0029 0.0102 0.0001 66.1 2.8 65.7 0.7
    15 1.82 140 143 0.98 0.0671 0.0034 0.0102 0.0001 66.0 3.2 65.6 0.8
    DMP013TW19英安岩
    1 11.63 856 1074 0.80 0.0591 0.0015 0.0092 0.0001 58.3 1.5 59.0 0.5
    2 18.64 1742 1726 1.01 0.0591 0.0012 0.0088 0.0001 58.3 1.2 56.3 0.4
    3 15.45 1287 1420 0.91 0.0605 0.0013 0.0088 0.0001 59.6 1.3 56.2 0.4
    4 19.06 2034 1686 1.21 0.0586 0.0012 0.0089 0.0001 57.9 1.2 57.2 0.4
    5 19.15 1776 1739 1.02 0.0596 0.0012 0.0089 0.0001 58.7 1.1 57.4 0.4
    6 13.55 1345 1203 1.12 0.0609 0.0015 0.0092 0.0001 60.1 1.5 58.9 0.5
    7 17.80 1486 1674 0.89 0.0576 0.0011 0.0089 0.0001 56.9 1.1 56.9 0.4
    10 20.10 1553 1863 0.83 0.0623 0.0012 0.0090 0.0001 61.4 1.2 57.9 0.4
    11 29.39 3774 2441 1.55 0.0594 0.0010 0.0088 0.0001 58.6 1.0 56.7 0.4
    12 19.98 1744 1832 0.95 0.0600 0.0012 0.0089 0.0001 59.1 1.1 57.2 0.4
    13 20.97 2026 1922 1.05 0.0574 0.0011 0.0088 0.0001 56.6 1.1 56.4 0.4
    14 13.62 975 1251 0.78 0.0614 0.0015 0.0092 0.0001 60.5 1.4 59.0 0.5
    16 18.79 1730 1679 1.03 0.0609 0.0013 0.0090 0.0001 60.0 1.2 57.6 0.4
    18 14.83 830 1419 0.59 0.0604 0.0014 0.0092 0.0001 59.5 1.3 59.2 0.5
    19 21.17 2025 1863 1.09 0.0572 0.0012 0.0091 0.0001 56.5 1.1 58.2 0.4
    20 23.78 1976 2136 0.93 0.0597 0.0011 0.0090 0.0001 58.9 1.0 57.6 0.4
    下载: 导出CSV 
    | 显示表格
    表  2  典中组火成岩主量、微量、稀土元素测试分析结果
    Table  2.  Analytical results of major elements, trace elements and REE in Dianzhong Formation igneous rocks
    样品号 XT-01 XT-02 XT-03 XT-04 XT-05 XT-06 XT-07 XT-08 XT-09 XT-10
    岩性 安山岩 流纹岩 安山岩 安山岩 安山岩 英安岩 英安岩 流纹岩 流纹岩 粗面岩
    SiO2 60.58 73.97 59.57 60.72 61.36 69.08 68.45 74.13 70.28 66.57
    TiO2 0.65 0.12 0.99 0.85 0.92 0.63 0.53 0.27 0.27 0.31
    Al2O3 15.12 13.88 16.34 16.00 15.49 15.02 14.42 13.17 14.73 15.79
    CaO 4.52 0.42 3.71 4.29 4.38 0.77 2.17 0.32 1.56 1.90
    Fe2O3 2.16 0.22 5.03 3.54 3.94 2.59 0.80 1.69 1.28 1.34
    FeO 3.14 1.39 2.04 2.64 2.48 1.20 3.88 0.85 1.10 2.54
    Na2O 3.03 2.53 4.12 3.41 3.32 2.83 3.11 2.60 3.67 3.30
    K2O 2.30 5.43 2.12 3.15 2.21 4.89 4.18 5.67 5.77 5.56
    P2O5 0.43 0.20 0.25 0.25 0.25 0.19 0.14 0.11 0.08 0.11
    H2O+ 1.95 1.09 0.01 1.79 0.01 2.22 1.34 0.78 0.59 0.98
    CO2 0.26 0.13 0.21 0.62 0.10 0.18 0.04 0.09 0.26 0.13
    总量 94.16 99.37 94.39 97.25 94.47 99.59 99.06 99.68 99.58 98.52
    Na2O+K2O 5.34 7.95 6.23 6.56 5.53 7.73 7.29 8.26 9.44 8.87
    K2O/Na2O 0.76 2.15 0.51 0.92 0.67 1.73 1.34 2.18 1.57 1.68
    La 89.63 19.36 37.91 49.87 35.13 88.71 94.02 120.23 81.92 107.53
    Ce 122.40 33.55 75.87 80.52 67.37 130.86 132.86 152.44 101.00 141.84
    Pr 16.70 4.28 8.22 10.77 7.83 13.60 17.14 17.58 12.75 18.05
    Nd 61.67 15.06 30.74 40.02 32.18 43.93 61.43 53.50 42.44 62.21
    Sm 10.60 3.13 6.06 6.85 5.86 6.52 10.30 7.83 6.63 9.83
    Eu 2.11 0.63 1.54 1.56 1.46 1.31 2.10 0.94 1.10 1.73
    Gd 7.87 2.78 5.76 6.17 4.95 5.79 8.95 6.68 4.97 7.23
    Tb 1.19 0.55 0.92 1.06 0.86 0.95 1.55 1.12 0.76 1.06
    Dy 5.30 2.45 5.22 5.22 4.97 4.50 7.72 5.57 3.41 4.62
    Ho 0.96 0.45 0.98 1.06 0.99 0.86 1.49 1.11 0.65 0.85
    Er 2.62 1.10 3.06 2.91 2.94 2.52 4.21 3.19 1.86 2.47
    Tm 0.42 0.21 0.49 0.49 0.46 0.42 0.69 0.54 0.31 0.41
    Yb 2.56 1.08 3.33 3.13 3.07 2.61 4.12 3.41 1.94 2.74
    Lu 0.38 0.16 0.48 0.43 0.44 0.37 0.56 0.48 0.27 0.38
    ƩREE 324.44 84.78 180.57 210.07 168.52 302.95 347.13 374.62 260.01 360.97
    LREE/HREE 14.23 8.67 7.92 9.26 8.02 15.81 10.86 15.95 17.35 17.25
    δEu 0.74 0.70 0.86 0.79 0.89 0.70 0.72 0.42 0.61 0.65
    (La/Yb)N 20.75 10.64 6.77 9.46 6.80 20.21 13.56 20.96 25.13 23.30
    (La/Sm)N 5.28 3.87 3.91 4.55 3.75 8.50 5.70 9.60 7.72 6.84
    (Gd/Yb)N 1.88 1.58 1.06 1.21 0.99 1.36 1.33 1.20 1.58 1.62
    Rb 258.23 347.34 87.21 129.19 53.23 284.46 166.71 381.11 389.52 340.45
    Th 40.58 17.22 14.53 14.82 12.60 45.05 23.16 79.09 65.02 55.65
    U 9.01 5.68 3.61 2.73 3.52 4.77 2.58 2.81 14.78 13.62
    Hf 7.10 2.83 5.02 5.78 5.60 7.89 12.66 6.89 6.73 8.37
    Zr 179.44 61.98 153.13 210.97 126.79 266.02 484.43 188.95 202.28 186.32
    Sr 1091.50 54.44 356.04 397.59 441.04 220.30 203.97 87.84 422.45 723.20
    V 106.22 8.84 113.52 89.26 124.10 51.02 28.05 18.57 25.30 52.23
    Pb 35.38 76.15 25.29 32.58 20.35 64.26 44.50 51.07 60.49 51.39
    Co 19.04 0.85 15.13 8.92 17.64 6.61 4.47 2.77 2.43 4.36
    Y 30.87 12.32 28.41 29.67 28.76 24.52 49.16 33.31 20.14 28.22
    Nb 13.95 12.95 11.03 10.38 11.25 8.14 13.81 17.79 7.26 24.65
    Tb 0.49 0.55 1.13 1.06 0.93 0.95 1.55 1.12 0.76 0.73
    Zn 58.63 24.50 96.54 82.98 60.73 73.77 95.64 30.56 45.30 71.43
    Sb 0.84 1.36 0.53 0.47 0.64 1.15 0.32 0.50 0.75 1.35
    Ta 0.92 0.67 0.76 0.73 0.71 0.65 1.01 1.24 0.58 1.43
    Rb/Sr 0.24 6.38 0.24 0.32 0.12 1.29 0.82 4.34 0.92 0.47
    Nb/Ta 15.16 19.33 14.51 14.21 15.84 12.52 13.67 14.35 12.51 17.23
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    在中国地质大学地质过程与矿产资源国家重点实验室使用激光剥蚀等离子体质谱仪分析完成锆石U-Pb同位素测试,激光束直径32μm,以氦为载气,以标准锆石91500为外标进行同位素分馏校正,数据采用ICPMSDataCal10.2软件处理,详细的实验操作见Liu等[9]。主量、微量、稀土元素均在西南冶金地质测试中心完成,其中主量元素采用XRF法测定,微量、稀土元素采用ICP-MS法测定。

    典中组底部和顶部玄武安山岩样品DPM013TW25和英安岩样品DPM013TW19的锆石特征相似,均呈无色透明、长柱状或短柱状,且自形程度较高,在CL图像上可见明显岩浆成因特征的振荡生长环带(图 3)。另外,底部样品DPM013TW25锆石的Th/U值为0.83~1.29,平均值为1.04;顶部样品DPM013TW19锆石的Th/U值为0.59~1.55,平均值为0.79(表 1),也反映了岩浆成因特征[10]

    图  3  典中组火成岩锆石阴极发光图像
    Figure  3.  Cathodoluminescence images of zircons from Dianzhong Formation igneous rocks

    测试结果表明,底部样品(DPM013TW25)15个测点的206Pb/238U年龄值分布于62.2~67.7Ma之间,在U-Pb谐和图(图 4-a)上,这些测点均落于谐和线上或其附近,给出的206Pb/238U年龄加权平均值为65.37±0.58Ma(2σ;MSWD=1.7),指示了典中组底部火成岩的形成时代,代表了典中组岩浆活动的起始时间,同时,也代表了林子宗火成岩最初的形成年龄。顶部样品(DPM013TW19)16个测点的206Pb/238U年龄值分布于56.2~59.2Ma之间,在UPb谐和图(图 4-b)上,这些测点均落于谐和线上或附近,给出的206Pb/238U年龄加权平均值为57.42±0.20Ma(2σ;MSWD=4.9),指示了典中组顶部火成岩的形成时代,同时也代表了典中组岩浆活动的终止时间。

    图  4  典中组火成岩锆石U-Pb谐和图
    a—典中组底部玄武安山岩样品DPM013TW25;b—典中组顶部英安岩样品DPM013TW19
    Figure  4.  Zircon U-Pb concordia diagrams of Dianzhong Formation igneous rocks

    本次研究选取研究区典中组10件火成岩样品分别进行主量、微量和稀土元素分析,测试结果见表 2

    主量元素测试结果表明,典中组火成岩样品的SiO2含量为60.58%~74.13%,平均值为66.47%,Al2O3含量为13.17% ~15.79%,平均值为14.99%,全碱(Na2O+K2O)含量为5.35%~9.44%,平均值为7.32%,里特曼组合指数为1.63~3.34,平均值为2.33,属钙碱性系列岩石。在TAS图解(图 5-a)中,典中组火成岩样品点落入中酸性火成岩区域,位于亚碱性岩石范围;在Na2O-K2O图解(图 5-b)中,除2个样品外,其余样品点均落在钾玄岩范围。K2O/Na2O值介于0.51~2.18之间,平均值为1.35,而钾玄岩的出现被认为是大洋岩石圈俯冲结束,陆内汇聚开始的重要标志[7, 13]。总体看,研究区典中组火成岩样品与杨辉等[14]报道的西藏马乡地区和胡新伟等[6]报道的西藏措勤地区典中组火成岩类似,以钙碱性系列岩石为主,显示富碱、富硅的特征。

    图  5  典中组火成岩TAS图解(a)及K2O-Na2O图解(b)
    (a底图据参考文献[11], b底图据参考文献[12])
    Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;R—流纹岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;F—副长石岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;Ir—碱性(上方)和亚碱性(下方)分界线
    Figure  5.  TAS (a) and K2O-Na2O (b) diagrams of Dianzhong Formation igneous rocks

    稀土元素因地球化学性质相似,在地质作用过程中往往表现为相似的地球化学行为,具有良好的成岩指示信息,而广泛应用于成岩流体性质及成岩环境分析的研究中[15]。研究区典中组10个火成岩样品的稀土元素分析结果如表 2所示。稀土元素总量(∑REE)普遍偏高,除1个样品较低(84.78×10-6)外,其余样品的∑REE值多为168.52×10-6~374.62×10-6,平均值为281.03×10-6;轻、重稀土元素比值偏大,在7.92~17.35之间,平均值为12.53,(La/Yb)N值分布在6.77~25.13之间,平均值为15.76,反映轻重稀土元素经历了较强的分馏作用,呈现轻稀土元素富集、重稀土元素相对亏损的特征。另外,(La/Sm)N值在3.75~9.60之间,(Gd/Yb)N值在0.99~1.88之间,反映LREE(轻稀土元素)相对HREE(重稀土元素)经历了更高程度的分馏作用。

    从稀土元素球粒陨石标准化配分图解(图 6-a)可以看出,研究区典中组火成岩稀土元素配分曲线表现为轻稀土元素富集、重稀土元素相对亏损的右倾形态。另外,Eu具明显的负异常,δEu值分布在0.42~0.89之间,平均值为0.71,可能与岩浆结晶分异造成的斜长石析出有关[17]。典中组火成岩样品的稀土元素组成特征与区内同时期的钙碱性中酸性火成岩类似。

    图  6  典中组火成岩稀土元素配分模式(a)和微量元素蛛网图(b)(原始地幔数据据参考文献[16])
    Figure  6.  REE patterns (a) and primitive mantle-normalized trace element patterns (b) of Dianzhong Formation igneous rocks

    研究区典中组10组火成岩微量元素测试结果见表 2,Sr、Zr、Hf、Ce等元素含量普遍偏高,且接近于贾建称等[18]测定的林子宗群火成岩微量元素值。Rb/Sr值在0.12~6.38之间,平均值为1.52,高于陆壳均质0.24[8],另外,Nb/Ta值在12.51~19.33之间,平均值为14.94,介于地幔标志值17.5[16]和地壳标志值11~12[19]之间,说明典中组火成岩的岩浆来源和地幔、地壳有关,可能为二者以不同比例混合的产物。典中组火成岩的微量元素原始地幔标准化蛛网图(图 6-b)与前人的研究结果相似[6, 14],表现为明显的“峰谷”特征,即Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti亏损,并呈“槽谷”形态。Nb、Ta、Ti的槽谷形态可能与俯冲碰撞环境有关[8, 20],且明显的Ti谷也说明有陆壳物质的混入。因此认为,典中组火成岩是在俯冲碰撞背景下,幔源和壳源岩浆以不同比例混合形成的。

    通过对典中组顶底岩浆锆石U-Pb同位素定年可知,典中组岩浆活动发生在65.37±0.58~57.42± 0.20Ma之间,与冈底斯构造带其他地区典中组火成岩测得的年龄值基本一致,表明典中组岩浆活动开始于晚白垩世,结束于古新世末,同时进一步确认林子宗群火成岩的形成时期为晚白垩世,与印度-欧亚板块开始发生碰撞的时间65/70Ma基本吻合[8]。主量元素分析表明,研究区典中组火成岩样品的里特曼组合指数平均值为2.33,属钙碱性系列岩石,TAS图解中,典中组火成岩样品基本分布在中酸性火成岩区域,位于亚碱性岩石范围,稀土元素组成特征也说明研究区典中组火成岩属钙碱性中酸性火成岩范畴,同时,K2O/Na2O值较高,平均值为1.35;在Na2O-K2O图解中,典中组火成岩样品基本落在钾玄岩范围,指示了俯冲造山的构造背景。结合前人的锶、氧同位素研究结果[6],典中组火成岩为壳源岩浆和幔源岩浆以不同比例混合的产物。大离子亲石元素Rb、Th、U、Pb的富集,Nb、Ta、Ti等元素的亏损进一步说明俯冲背景下岩浆中陆壳物质的混入。前人[6, 17]对冈底斯地区典中组火成岩形成的构造环境分析结果表明,典中组火成岩在相关图解中落入火山弧区域,指示其形成于俯冲造山的构造环境,且与古新世喜马拉雅特提斯洋壳向北大规模俯冲产生的远程效应有关。结合区域地质背景,认为典中组火成岩形成于印度-欧亚板块碰撞期间的白垩纪末—古近纪初,为俯冲构造背景下的造山带环境中幔源和壳源岩浆以不同比例混合的产物。

    (1)冈底斯构造带神公地区典中组底部火成岩样品DPM013TW25锆石U- Pb年龄为65.37 ± 0.58Ma,顶部火成岩样品DPM013TW19锆石U-Pb年龄为57.42±0.20Ma,指示典中组火成岩形成的年龄时限为65.37~57.42Ma,限定典中组火山活动发生在白垩纪末—古近纪初,也指示了林子宗群火成岩最开始形成的时期,同时也限定了林子宗群火成岩与下伏地层之间不整合接触面的形成时间。

    (2)典中组火成岩主要为一套钙碱性系列中酸性火成岩,与区内同时期火成岩类似,Rb、Th、U、Pb等大离子亲石元素富集,Nb、Ta、Ti等因亏损呈现“槽谷”形态,Rb/Sr值在0.12~6.38之间,Nb/Ta值在12.51~19.33之间,表明典中组火成岩中含有大量陆壳成分,为俯冲碰撞背景下的岛弧环境中幔源岩浆和壳源岩浆混合的产物,可能与新特提斯洋关闭引起的洋壳俯冲作用有关。

    致谢: 审稿专家提出了宝贵的修改意见,对本文的改进和提高起了重要作用,在此表示衷心感谢。
  • 图  1   内蒙古西乌旗阿尔塔拉A型花岗岩区域构造(a, 据参考文献[7]修改)和地质简图(b)

    Figure  1.   Sketch tectonic(a)and geological(b)maps of the Artala A-type granite in Xi Ujimqin Banner, Inner Mongolia

    图  2   阿尔塔拉A型花岗岩野外(a)和显微照片(b)

    a—二长花岗岩;b—条纹结构。Or—正长石;Pth—条纹长石;Pl—斜长石;Q—石英

    Figure  2.   Representative field photo(a)and photomicrograph(b)of the Artala A-type granite

    图  3   阿尔塔拉A型花岗岩(AP07)锆石阴极发光图像及其206Pb/238U年龄

    Figure  3.   Cathodoluminescence images and 206Pb/238U ages of zircons from the Artala A-type granite

    图  4   阿尔塔拉A型花岗岩(AP07)锆石LA-ICP-MS U-Pb年龄谐和图(a)和206Pb/238U年龄直方图(b)

    Figure  4.   U-Pb concordia diagram of zircons from the Artala A-type granite

    图  5   阿尔塔拉A型花岗岩铝饱和指数(A/NK-A/CNK)图解[36]

    IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;POG—后造山花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩类;OP—大洋斜长花岗岩类

    Figure  5.   Shand's index of the Artala A-type granite

    图  6   阿尔塔拉A型花岗岩SiO2-K2O分类图解[37]

    Figure  6.   SiO2-K2O classification diagrams of the Artala A-type granite

    图  7   阿尔塔拉A型花岗岩稀土元素球粒陨石标准化配分模式[39]

    Figure  7.   Chondrite-normalized REE patterns of the Artala A-type granite

    图  8   阿尔塔拉A型花岗岩微量元素原始地幔标准化蛛网图[40]

    Figure  8.   Primitive mantle-normalized trace element spider diagram of the Artala A-type granite

    图  9   阿尔塔拉A型花岗岩10000×Ga/Al对(K2O+Na2O)/CaO(a)、TFeO/MgO(b)、K2O/MgO(c)和Nb(d)判别图解[42]

    Figure  9.   (K2O+Na2O)/CaO(a), TFeO/MgO(b), K2O/MgO(c)and Nb (d) versus 10000×Ga/Al discrimination diagrams of the Artala A-type granite

    图  10   阿尔塔拉A型花岗岩A1和A2型花岗岩类Y-Nb-3Ga(a)和Y-Nb-Ce(b)三角形判别图解[38]

    A1—非造山花岗岩;A2—造山后花岗岩

    Figure  10.   Y-Nb-3Ga(a)and Y-Nb-Ce(b)triangular plots for distinguishing between A1 and A2 granitoids from the Artala A-type granite

    图  11   阿尔塔拉A型花岗岩R1-R2构造环境判别图解

    Figure  11.   R1-R2 tectonic discriminant diagram of the Artala A-type granite

    图  12   阿尔塔拉A型花岗岩SiO2-TFeO/(TFeO+MgO)(a)和SiO2-Al2O3(b)构造环境判别图解

    IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;POG—后造山花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩类

    Figure  12.   SiO2-TFeO/(TFeO+MgO)(a)and SiO2-Al2O3 (b)tectonic discriminant diagrams of the Artala A-type granite

    表  1   阿尔塔拉A型花岗岩(AP07)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table  1   LA-ICP-MS U-Th-Pb dating of zircons from the Artala A-type granite

    点号 元素/10-6 Th/U 同位素原子比率 表面年龄/Ma
    Pb U 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U
    1.1 18 444 0.49 0.0518 1.8 0.281 1.8 0.0393 1.3 248 ±3
    2.1 14 369 0.25 0.0521 1.3 0.279 1.4 0.0388 0.97 246 ±2
    3.1 28 704 0.37 0.0513 0.79 0.277 0.90 0.0391 0.87 247 ±2
    4.1 29 700 0.61 0.0511 0.67 0.273 0.72 0.0387 1.1 245 ±3
    5.1 18 417 0.59 0.0527 1.6 0.279 1.8 0.0383 1.1 242 ±3
    6.1 35 831 0.37 0.0535 2.5 0.277 2.4 0.0375 1.2 237 ±3
    7.1 25 643 0.23 0.0516 1.5 0.273 1.3 0.0384 1.4 243 ±3
    8.1 37 739 0.67 0.0578 9.8 0.301 5.8 0.0378 1.2 239 ±3
    9.1 17 354 0.57 0.0574 4.3 0.302 5.2 0.0382 1.4 241 ±3
    10.1 67 1598 0.38 0.0524 2.3 0.279 1.8 0.0386 1.0 244 ±2
    11.1 74 1562 0.72 0.0519 2.8 0.273 3.2 0.0381 1.1 241 ±3
    12.1 57 1451 0.48 0.0535 1.4 0.277 1.3 0.0376 1.3 238 ±3
    13.1 35 803 0.45 0.0531 7.2 0.281 6.6 0.0384 1.0 243 ±2
    14.1 13 339 0.40 0.0534 1.7 0.276 1.7 0.0374 1.0 237 ±2
    15.1 22 547 0.36 0.0517 1.5 0.279 1.6 0.0391 1.2 247 ±3
    16.1 39 1010 0.26 0.0518 1.2 0.278 1.5 0.0389 0.99 246 ±2
    17.1 26 647 0.53 0.0527 1.6 0.277 1.7 0.0381 1.1 241 ±3
    18.1 18 489 0.27 0.0527 1.1 0.276 1.1 0.0381 1.3 241 ±3
    19.1 15 396 0.43 0.0532 1.6 0.278 1.7 0.0379 1.3 240 ±3
    20.1 24 546 0.60 0.0537 2.7 0.286 2.4 0.0387 1.1 245 ±3
    21.1 17 459 0.25 0.0550 1.0 0.292 1.2 0.0385 1.0 243 ±3
    22.1 15 340 0.49 0.0559 8.6 0.298 8.4 0.0387 1.1 245 ±3
    注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质调查中心完成
    下载: 导出CSV

    表  2   阿尔塔拉A型花岗岩的主量、微量和稀土元素分析结果

    Table  2   Major elements, trace elements and REE analyses of the Artala A-type granite

    元素 AP05
    二长花岗岩
    AP06
    二长花岗岩
    AP07
    二长花岗岩
    AP08
    二长花岗岩
    AP09
    二长花岗岩
    SiO2 76.43 75.89 76.76 76.79 76.51
    TiO2 0.021 0.040 0.040 0.039 0.030
    Al2O3 13.34 13.82 13.19 13.17 13.29
    Fe2O3 0.41 0.24 0.37 0.36 0.37
    FeO 0.14 0.10 0.15 0.18 0.16
    MnO 0.040 0.033 0.024 0.035 0.041
    MgO 0.041 0.081 0.020 0.020 0.05
    CaO 0.57 0.56 0.60 0.59 0.53
    Na2O 4.32 4.23 4.05 4.03 4.21
    K2O 4.25 4.30 4.18 4.21 4.24
    P2O5 0.010 0.011 0.011 0.010 0.011
    烧失量 0.43 0.67 0.60 0.55 0.51
    总计 100 99.97 99.98 99.98 99.95
    Ba 24.7 66.1 59.6 67.3 44.57
    Rb 221.0 211.4 214.0 207.0 214.5
    Sr 11.97 20.60 18.40 19.10 17.27
    Zr 53.60 58.50 58.00 57.40 59.24
    Pb 35.42 27.00 32.00 31.40 31.70
    Zn 22.77 16.80 16.40 16.80 18.61
    Cu 9.56 6.39 2.41 3.53 6.32
    Ni 2.84 7.89 1.19 1.77 4.52
    V 5.03 10.20 26.71 20.30 16.35
    Hf 2.66 3.68 3.08 3.01 3.19
    Sc 3.12 3.18 4.41 3.99 3.71
    Ta 2.26 3.60 2.64 2.59 3.23
    Nb 10.51 15.30 10.20 10.10 11.57
    U 5.02 1.94 2.93 2.76 3.46
    Th 10.43 14.21 16.00 14.50 10.38
    Ga 20.67 20.01 19.20 19.70 24.98
    Cs 4.29 4.51 5.52 5.53 6.43
    Y 33.87 27.41 22.20 21.70 49.85
    La 5.56 6.37 4.46 4.62 5.29
    Ce 12.89 14.57 10.10 10.90 12.97
    Pr 1.85 2.07 1.36 1.34 1.69
    Nd 7.70 9.04 5.99 5.75 7.45
    Sm 2.84 3.27 2.12 2.14 3.14
    Eu 0.10 0.13 0.10 0.10 0.12
    Gd 2.86 3.46 2.35 2.15 3.47
    Tb 0.73 0.86 0.60 0.59 0.83
    Dy 5.05 5.39 3.78 3.93 6.07
    Ho 1.08 1.09 0.73 0.72 1.12
    Er 3.05 3.47 2.14 2.07 3.21
    Tm 0.56 0.62 0.39 0.41 0.65
    Yb 3.33 4.32 2.59 2.85 4.27
    Lu 0.54 0.81 0.37 0.41 0.69
    ΣREE 48.14 55.47 37.09 38.03 47.83
    δEu 0.11 0.12 0.14 0.14 0.11
    (La/Yb)N 1.13 0.99 1.16 1.09 0.84
    注:主量元素含量单位为%,稀土、微量元素含量单位为10-6
    下载: 导出CSV
  • Sengor A M C, Natalin B A, Burtman U A.Evolution of the Altaid tectonic college and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    梁日暄.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质, 1994, (1):37-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629562
    陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    Xiao W J, Windley B F, Hao J.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069-1089.

    Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022

    石玉若, 刘敦一, 张旗, 等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报, 2007, 26(2):183-189. doi: 10.3969/j.issn.1671-2552.2007.02.009

    Miao L C, Fan W M, Liu D Y, et al.Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(4):404-415.

    Xiao W J, Windley B F, Huang B C.End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids, implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int.J.Earth Sci., 2009, 98:1189-1217. doi: 10.1007/s00531-008-0407-z

    Jian P, Liu D Y, Kroner A, et al.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118:169-190. doi: 10.1016/j.lithos.2010.04.014

    Chen B, Jahn B M, Tian W.Evolution of the Solonker suture zone constraints from U-Pb ages, Hf isotopic ratios and zircon whol-rock Nd, Sr isotope compositions of subduction-and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34:245-257. doi: 10.1016/j.jseaes.2008.05.007

    Liu J F, Li J Y, Chi X G, et al.A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia:Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 2013, 177(2):285-296.

    邵济安, 田伟, 唐克东, 等.内蒙古晚石炭世高镁玄武岩的成因和构造背景[J].地学前缘, 2015, 22(5):171-181. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014

    Zhang Z C, Li K, Li JF, et al.Geochronology and geochemistry of the eastern Erenhot ophiolitic complex:Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 97(Part B):279-293.

    田树刚, 李子舜, 张永生, 等.内蒙东部及邻区晚石炭世—二叠纪构造古地理环境及演变[J].地质学报, 2016, 90(4):688-707. doi: 10.3969/j.issn.0001-5717.2016.04.007
    李钢柱, 王玉净, 李成元.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J].科学通报, 2017, 62(5):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007
    张晓晖, 张宏福, 汤艳杰, 等.内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2769-2780. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611015
    刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 83(3):365-376. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200903006
    刘建峰, 李锦轶, 迟效国, 等.内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J].地质学报, 2014, 88(9):1677-1690. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201409005
    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗迪彦庙蛇绿岩的识别[J].岩石学报, 2012, 28(4):1282-1290.
    李英杰, 王金芳, 李红阳, 等.内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J].岩石学报, 2013, 29(8):2719-2730. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308009
    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 2015, 31(5):1461-1470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505020
    李英杰, 王金芳, 王根厚, 等.内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J].岩石学报, 2018, 34(2):469-482. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019
    康健丽, 肖志斌, 王惠初.内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据[J].地质学报, 2016, 90(2):383-397. doi: 10.3969/j.issn.0001-5717.2016.02.014
    张树栋, 龙舟, 张明洋, 等.中蒙边境额仁淖尔地区包饶勒敖包石英闪长岩锆石U-Pb年龄及构造意义[J].地质科技情报, 2017, 36(3):92-102. doi: 10.3969/j.issn.1009-6248.2017.03.011
    王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J].地质学报, 2017, 91(8):1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009

    Wang J F, Li Y J, Li H Y.Zircon LA-ICP-MS U-Pb Age and Island-Arc Origin of the Bayanhua Gabbro in the Hegenshan Suture Zone, Inner Mongolia[J]. Acta Geologica Sinica, 2017, 91(6):2316-2317. doi: 10.1111/1755-6724.13470

    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(8):1343-1358. doi: 10.3969/j.issn.1671-2552.2017.08.005
    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗石匠山晚侏罗世—早白垩世A型花岗岩锆石U-Pb年龄及构造环境[J].地质通报, 2018, 37(2/3):382-396. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020317&flag=1
    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代:锆石U-Pb定年证据[J].中国地质, 2018, 45(1):197-198. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201801018
    张维, 简平, 刘敦一, 等.内蒙古中部达茂旗地区三叠纪花岗岩和钾玄岩的地球化学、年代学和Hf同位素特征[J].地质通报, 2010, 29(7):821-832. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201006004
    程天赦, 杨文静, 王登红.内蒙古西乌旗阿鲁包格山A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义[J].大地构造与成矿学, 2014, 38(3):718-728. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201403024
    吴荣泽, 张树栋, 来林.内蒙古乌兰五台地区三叠纪铝质A型花岗岩年代学及地球化学特征[J].地球科学与环境学报, 2015, 37(6):47-58. doi: 10.3969/j.issn.1672-6561.2015.06.005
    李红英, 周志广, 张达, 等.内蒙古西乌旗格尔楚鲁晚三叠世流纹岩年代学、地球化学特征及其地质意义[J].矿物岩石地球化学通报, 2015, 34(3):546-555. doi: 10.3969/j.issn.1007-2802.2015.03.011

    Anderson T.Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    Corfu F, Hanchar J M, Hoskin P W O.Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1):469-500. doi: 10.2113-0530469/

    Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J]. Bulletin of the Geological Society of America, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Peccerillo A, Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745

    Boynton W V.Geochemistry of the rare earth elements: meteorite studies/Henderson P.Rare earth element geochemistry[M]. Elsevier, 1984: 63-114.

    Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Sun S S, McDonough W F.Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Whalen J B, Currie K, Chappel B W.A-type granite:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80:189-200. doi: 10.1007/BF00374895

    Eby G N.The A-type granitoids:a review of their occurrence and chemical characteristics and speculation on their petrogenesis[J]. Lithos, 1990, 26:115-134. doi: 10.1016/0024-4937(90)90043-Z

    Bonin B.A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97:1-29.

    张旗, 冉皞, 李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    King P L, White A J R, Chappell B W, et al.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. J.Petrol., 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    邱检生, 王德滋, 蟹泽聪史, 等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学, 2000, 29(4):313-321. http://d.old.wanfangdata.com.cn/Periodical/dqhx200004001

    Hergt J, Woodhead J, Schofield A.A-type magmatism in the Western Lachlan Fold Belt?A study of granites and rhyolites from the Grampians region, Western Victoria[J]. Lithos, 2007, 97(1/2):122-139.

    吴锁平, 吴才来, 陈其龙.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J].地质通报, 2007, 26(10):1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016
    黎敦朋, 赵越, 胡健民, 等.青藏高原西北缘中新世晚期A型花岗岩的特征及意义[J].地质通报, 2007, 26(12):1671-1677. doi: 10.3969/j.issn.1671-2552.2007.12.021
    杨钢, 肖龙, 高睿, 等.内蒙古阿尔山地区中生代A型花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J].地质通报, 2014, 33(5):649-660. doi: 10.3969/j.issn.1671-2552.2014.05.006
    武昱东, 王宗起, 罗金海, 等.滇东北东川下田坝A型花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J].地质通报, 2014, 33(6):860-873. doi: 10.3969/j.issn.1671-2552.2014.06.009

    De La Roche H, Leteeeier J, Grande Claude P, et al.A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-Its relationships and current nomemclature[J]. Chem.Geol., 1980, 29:183-210. doi: 10.1016/0009-2541(80)90020-0

    Hong D W, Wang S G, Han B F et al.Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Seienees, 1996, 13(l):13-27.

    王惠, 王玉净, 陈志勇, 等.内蒙古巴彦敖包二叠纪放射虫化石的发现[J].地层学杂志, 2005, 29(4):368-372. doi: 10.3969/j.issn.0253-4959.2005.04.009

    Shang Q H.The discovery and significance of Permian radiolarians Northern Orogenic belt in the northern and middle lnner Mongolia[J]. Chinese Science Bulletin, 2004, 49:2574-2579. doi: 10.1360/csb2004-49-24-2574

    公繁浩, 黄欣, 郑月娟, 等.内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J].地质与资源, 2013, 22(6):478-483. doi: 10.3969/j.issn.1671-1947.2013.06.007
    李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004
    李锦轶, 刘建峰, 曲军峰, 等.中国东北地区主要地质特征和地壳构造格架[J].岩石学报, 2019, 35(10):2989-3016. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201910005
    王金芳, 李英杰, 李红阳, 等.内蒙古乌兰沟埃达克岩锆石U-Pb年龄及构造环境[J].地质通报, 2018, 37(10):1933-1943. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181017&flag=1
    王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用[J].中国地质, 2018, 45(4):706-719. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804006
    王金芳, 李英杰, 李红阳, 等.贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J].地质论评, 2019, 65(4):857-872. http://d.old.wanfangdata.com.cn/Periodical/dzlp201904007
    王金芳, 李英杰, 李红阳, 等.内蒙古贺根山缝合带后造山作用——满克头鄂博组火山岩锆石U-Pb年龄和地球化学制约[J].地质通报, 2019, 38(9):1443-1454. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190904&flag=1
    李锦轶, 刘建峰, 曲军峰, 等.中国东北地区古生代构造单元:地块还是造山带?[J].地球科学, 2019, 44(10):3157-3177. http://d.old.wanfangdata.com.cn/Periodical/dqkx201910001
    辽宁省第二区域地质测量队.L-50-35(白塔子庙幅)1: 200000地质图说明书.1972.
  • 期刊类型引用(5)

    1. 黄永高,韩飞,康志强,冯佐海,李应栩,李光明. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学. 2024(03): 822-836 . 百度学术
    2. 吴浩,徐祖阳,严维兵,郝宇杰,刘海永. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征:对新特提斯洋板片断离的指示. 中国地质. 2023(06): 1804-1816 . 百度学术
    3. 曾成,闫茂强,沈志远,高强,魏俊浩,毛国正,邓永明. 西藏谢通门县切琼地区典中组流纹岩锆石U-Pb年龄、Hf同位素及地球化学特征. 大地构造与成矿学. 2022(01): 154-174 . 百度学术
    4. 周鹏,荣峰,周连河,刘恭喜,范源,万忠焱,尼玛洛卓. 冈底斯中段格达地区典中组火山岩锆石 U-Pb年龄和地球化学特征. 中国地质调查. 2022(03): 76-86 . 百度学术
    5. 王元青,李茜,白滨,张兆群,徐冉成,王晓阳,张欣玥. 中国古近纪岩石地层划分和对比. 地层学杂志. 2021(03): 402-425 . 百度学术

    其他类型引用(1)

图(12)  /  表(2)
计量
  • 文章访问数:  2710
  • HTML全文浏览量:  323
  • PDF下载量:  2046
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-07-26
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-01-14

目录

/

返回文章
返回