• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

华北板块北缘勃隆克A型花岗岩锆石U-Pb定年及其地质意义

李春麟, 王宗秀, 陶涛

李春麟, 王宗秀, 陶涛. 2020: 华北板块北缘勃隆克A型花岗岩锆石U-Pb定年及其地质意义. 地质通报, 39(1): 40-50.
引用本文: 李春麟, 王宗秀, 陶涛. 2020: 华北板块北缘勃隆克A型花岗岩锆石U-Pb定年及其地质意义. 地质通报, 39(1): 40-50.
LI Chunlin, WANG Zongxiu, TAO Tao. 2020: Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance. Geological Bulletin of China, 39(1): 40-50.
Citation: LI Chunlin, WANG Zongxiu, TAO Tao. 2020: Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance. Geological Bulletin of China, 39(1): 40-50.

华北板块北缘勃隆克A型花岗岩锆石U-Pb定年及其地质意义

基金项目: 

中国地质调查局项目《中国中东部地区构造体系控油作用》 1212011120965

详细信息
    作者简介:

    李春麟(1983-), 男, 博士, 助理研究员, 从事构造地质学研究。E-mail:geolcl@163.com

    通讯作者:

    王宗秀(1959-), 男, 研究员, 从事构造地质学研究。E-mail:wangzongxiu@sohu.com

  • 中图分类号: P597+.3;P534.53

Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance

  • 摘要:

    内蒙古翁牛特旗勃隆克岩体位于华北板块北缘,侵位于上侏罗系火山岩地层中。详细的岩相学研究显示,勃隆克花岗岩具有粒状结构、蠕虫结构和文像结构,块状构造,部分斜长石已绢云母化、泥化。对勃隆克花岗岩进行了LA-ICP-MS锆石U-Pb定年,获得134.0±1.8Ma和134.9±4.1Ma的侵位年龄,表明其形成于早白垩世。地球化学特征显示,花岗岩属于高钾钙碱性系列,有较高的SO2(74.1%~75.6%)、Na2O+K2O(8.98%~9.2%)、Rb(210×10-6~225×10-6)含量和10000×Ga/Al(2.69~2.80)、Rb/Sr(5.8~18.9)值,具有较低的CaO、MgO、Ba和Sr含量。铝饱和指数A/CNK=0.99~1.03,属于偏铝质或过铝质A型花岗岩。稀土元素球粒陨石标准化图解显示,轻稀土元素相对富集,负Eu异常明显;在原始地幔标准化图解上,Ba、Sr、Nb、Ta、P、T强烈亏损,富集Rb、Th、K、Hf等元素,与华北板块北缘早白垩世A型花岗岩类似。结合区域构造演化,认为勃隆克花岗岩形成于伸展构造背景。晚中生代,华北板块北缘构造体制经历了重大的转变,地壳从挤压体制转为岩石圈减薄和地壳伸展体制,软流圈物质上涌导致上覆地壳长英质物质的部分熔融形成勃隆克A型花岗岩。

    Abstract:

    Bolongke granite, emplaced in the Upper Jurassic volcanic strata, is located on the north margin of the North China Craton (NCC).Detailed petrographical observation reveals that the granite occurs in the forms of euhedral and subeuhedral crystals and exhibits mymekitic and pegmatitic texture and massive structure.Sencitization and argillation exist in part of plagioclases caused by weathering. The LA-ICP-MS analysis of zircons yielded empkcement ages of 134.0±1.8Ma(MSWD=1.8) and 134.9±4.1Ma(MSWD=2.0), indicating that the Bolongke granite was fomied in the Early Cretaceous.A geochemical study of the intrusion suggests that it belongs to high-K calc-alkaline series and is characterized by depletion of Ba, Sr and enrichment of such elements as Rb, Th, Pb and Hf, with obviously negative Eu anomalies. To sum up, the intrusion shows the charactejstics of A-type granite. Tectonic discrimination diagrams indicate that Bolongke granite was fomed in an anorogenic extension environment. Combined with the achievements obtained by previous researchers, the authors tentatively hold that the emplacement of Bolongke granite belonged to the Mesozoic magmatic events in the North China Craton and was produced by lithospheric thinning.

  • 蛇绿岩是一种可与现代大洋岩石圈对比的镁铁-超镁铁质岩石组合,在古洋消减、大陆造山带形成过程中,以构造侵位的方式产在造山带中,作为重大地质界线和板块缝合边界受到地学界的广泛关注[1],可以为古板块构造格局恢复、造山带演化、变形作用过程重建、深源成矿作用等研究提供重要信息,被广泛应用于全球板块构造系统研究,是目前人类探测地球深部物质组成的最好窗口[2-6]

    北疆地区东准噶尔造山带位于阿尔泰造山带和天山造山带之间,其古生代以来的大地构造演化是显生宙亚洲大陆增长和古亚洲洋演化的重要阶段,同时也涉及当今有关大陆造山带模型等重要理论问题[7-14]。然而东准噶尔构造带古生代以来的构造演化迄今未形成共识,尤其是对其中的蛇绿岩时代、构造属性、就位环境等存在争议[9-11, 14-18]。东准噶尔造山带大地构造相解剖表明[9-13, 19],自北向南由一系列岛弧杂岩带和增生楔杂岩组成,其大地构造相自北向南大致包括都拉特复合岛弧、阿尔曼太蛇绿岩、野马泉复合岛弧、卡拉麦里蛇绿岩、将军庙增生杂岩,研究区集中于争议较大的阿尔曼太蛇绿岩带(图 1),通过对蛇绿岩中基性岩块的岩石学和地球化学研究,探讨其岩石成因及地质意义。

    图  1  阿尔曼太蛇绿岩分布略图
    Q—第四系;O1—2Q—青河岩群;O3bs—晚奥陶世巴斯他乌组;D1t—早泥盆世托让格库都克组;D1k—早泥盆世康布铁堡组;D2k—中泥盆世库鲁木迪组;D2b—中泥盆世巴尔雷克组;D3kx—晚泥盆世卡希翁组;D3C1j—晚泥盆世-早石炭世江孜尔库都克组;C1j—早石炭世姜巴斯套组;C2b—中石炭世巴塔玛依内山组;Σ—札河坝-阿尔曼太蛇绿岩;γδοD—泥盆纪英云闪长岩;γβC—石炭纪黑云母花岗岩;ξγC—石炭纪正长花岗岩
    Figure  1.  Distribution map of Armantai ophiolite

    前人研究认为,阿尔曼太蛇绿岩为SSZ型蛇绿岩,产于岛弧、弧后盆地等环境,其主要证据在于玄武岩的地球化学特征。分析认为,该区玄武岩Nb相对于Th、La、Ce亏损,稀土元素曲线皆为轻稀土元素(LREE)富集型,且变化范围较宽,说明了幔源的多样性。阿尔曼太蛇绿岩套变质橄榄岩由于强烈蛇纹石化,其主量元素的地球化学意义不大,而堆晶岩成分变化较大,显示了岩浆结晶分离作用的影响,浅成-喷出岩类以辉绿岩、玄武岩和安山玄武岩为主,主体为亚碱性系列[17]

    研究区阿尔曼太蛇绿岩带位于准噶尔盆地东北缘,乌伦古河南侧,西起准噶尔盆地东缘的札河坝附近,向东沿阿尔曼太山,断续延伸到中蒙边境,走向北西西,蛇绿岩带长约200km,宽3~5km。阿尔曼太蛇绿岩带不同区段各单元发育情况不同,出露宽度相差悬殊,最宽处在札河坝一带,变窄处在兔子泉以西,出露只有数十米,甚至缺失。在东段中蒙边境地区以变质玄武岩为主,变质橄榄岩仅零星出露;在阿尔曼太山主脊线一带,蛇绿岩套发育较完整,变质橄榄岩、堆晶辉长岩和辉绿岩、玄武岩、玄武安山岩均有发育,但完好剖面不多见,堆晶岩、辉绿岩一般以残块形式出现;在西段札河坝地区蛇绿岩以发育变质橄榄岩为主,堆晶岩和辉绿岩不及阿尔曼太山主脊线处发育,顶部有具枕状构造、变形强烈的玄武岩。

    本次研究对札河坝-二台蛇绿岩测制了Ⅹ、Ⅺ号剖面(图 2图 3)。剖面控制了岩块、基质的规模、产状、接触关系。从图 2可以看出,札河坝地区蛇绿岩组分较齐全,有(白云石)蛇纹岩、辉长岩、斜长岩、辉绿岩、玄武岩、放射虫硅泥质沉积。各个岩石单元呈断块产出,相互叠置,由于受断裂构造的影响,各块体岩石均破碎严重。剖面测制,均从围岩地层开始,绿岩各岩块均小规模出露,且间隔大片第四系,受比例尺影响,剖面均未能连续穿透。但基本岩石组合已经明确,后续多为重复出现。

    图  2  阿尔曼太蛇绿岩剖面(Ⅹ号实测剖面17~59层)
    1—粉砂岩;2—绢云母板岩;3—放射虫火山灰凝灰岩;4—硅质岩;5—辉绿岩;6—玄武岩;7—长岩;8—蛇纹岩;9—辉石橄榄岩;10—闪长岩;11—斜长花岗岩;12—碳酸盐脉;13—逆冲断层;14—透镜体
    Figure  2.  The section of Armantai ophiolite(the X measured section of 17~59 strata)
    图  3  阿尔曼太蛇绿岩剖面(Ⅺ号实测剖面0~21层)
    1—灰岩;2—白云岩;3—角砾岩;4—粉砂岩;5—长石岩屑砂岩;6—安山质角砾凝灰岩;7—滑石菱铁片岩;8—绢云千糜岩;9—硅质岩;10—辉绿岩;11—辉长岩;12—蛇纹岩;13—闪长岩;14—斜长花岗岩;15—透闪石岩;16—安山玄武岩;17—逆冲断层
    Figure  3.  The section of Armantai ophiolite (the XI measured section of 0~21 strata)

    蛇纹岩一般呈暗灰绿色、黑绿色或黄绿色,色泽不均匀,质软、具滑感,叶片、纤维、纤状变晶结构,块状构造,表面局部可见蛇纹石化石棉。镜下为交代网状结构,主要由蛇纹石(60%~65%)、菱镁矿(20%~25%)和磁铁矿(5%~10%)、滑石(2%~3%)、少量铬尖晶石及极少量透闪石组成。以细粒磁铁矿、菱镁矿集合体为网而以蛇纹石为格(结)组成交代网格结构,表明原始矿物是橄榄石,局部交代强烈被蛇纹石纤状结合体替代网格。其中蛇纹石有2种:一种是无序排列的叶蛇纹石鳞片集合体,一种是平行排列的纤蛇纹石。一般叶蛇纹石排列在内核,而纤蛇纹石排列在外环。菱镁矿呈斑点浸染分布,有时聚集成团块。磁铁矿主要呈细粒集合体网脉状结构,少量集合成磁铁矿粒晶(图 4-ab)。

    图  4  蛇纹岩(a、b)和变质玄武岩(c、d)宏观及显微照片
    Pl—斜长石;Cal—方解石;Tlc—滑石;Srp—蛇纹石;Px—辉石;Mgs—菱镁矿
    Figure  4.  Photos and microphotographs of serpentinite(a, b) and basalt(c, d)

    镁铁质火山岩蚀变相对较弱,岩性为玄武岩,出露面积较大,岩石为灰黑色、青灰色,风化面多为褐色,碎裂结构,块状构造,局部具有残破的枕状构造。镜下为斑状结构,基质具间粒间隐结构。斑晶含量20%~30%,粒径为0.5~3mm,主要由斜长石和辉石组成。斜长石斑晶有2类:一类以绢云母化为主,呈碎屑状或板柱状;一类以钠黝帘石化为主,常呈板柱状,与基质协调。辉石多呈聚晶,多数绿泥石化、方解石化,个别新鲜但内部被交代。基质更复杂,由斜长石、较多蚀变矿物(绿泥石、绿帘石、阳起石和方解石)和极少量石英组成。局部具有典型的间粒间隐结构(图 4-cd)。

    野外样品采自阿尔曼太蛇绿构造岩带,主要对蛇绿岩中具代表性的基性熔岩按路线进行采样,共采集3组样品,其中在阿尔曼太兔子泉地区采集1组样品(AMT06),在阿尔曼太山地区采集2组样品(AMT11、AMT12)。通过镜下岩相学研究,对较新鲜、蚀变弱、无脉体的样品进行了岩石地球化学测试,测试单位为中国地质调查局西安地质调查中心。主量元素的XRF分析在Xios4.0kwX-荧光光谱仪(仪器编号为SX-45)上完成,精度和准确度优于5%;微量和稀土元素采用等离子质谱仪ICP-MS(仪器编号为SX-50)进行分析,分析精度和准确度优于10%,其中样品AMT06、AMT11、AMT12测试结果见表 1

    表  1  阿尔曼太基性岩主量、微量和稀土元素含量
    Table  1.  Major, trace and rare earth elements compositions
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT06-147.110.7715.923.535.190.158.514.853.684.290.25.7999.990.6557.85.2976.140613136.323.417011.80.291.2162
    AMT06-248.120.8517.143.174.850.127.173.934.34.420.215.721000.6361.15.8575.113030.425.328.816410.90.3582.3193
    AMT06-347.90.8817.233.315.10.137.043.963.864.790.225.5799.990.6163.13.0272.213227.525.332.816511.30.6467.8273
    AMT06-447.460.8316.732.985.180.137.584.294.124.490.216.02100.020.6367.63.3873.91815024.229.117211.61.0189.2210
    AMT06-5480.816.573.214.930.147.444.454.343.950.225.96100.010.6371.54.8872.119166.228.926.31469.650.67108175
    AMT06-648.380.816.83.035.190.136.964.744.133.970.25.68100.010.6169.83.6468.425576.429.729.31448.950.5491.2258
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT06-1219264.240.3585.51.8516.90.963.0713.9303.8816.23.640.963.50.513.520.722.020.291.770.2818.981.20.81
    AMT06-223225.74.630.494.12.12180.953.2515.131.74.0416.63.71.053.590.493.710.762.170.3420.3118.885.60.87
    AMT06-324527.44.690.3696.92.0318.20.873.0514.330.94.0117.13.991.083.60.554.070.772.340.322.180.3520.385.60.85
    AMT06-423325.54.640.3589.41.9416.50.9314.230.93.8415.83.881.133.380.533.780.752.230.31.970.3219.3830.93
    AMT06-521224.14.640.494.82.1517.413.415.232.24.0716.83.961.193.660.543.50.762.190.32.020.3319.786.70.94
    AMT06-622426.34.530.3488.11.9417.30.953.2114.330.53.9816.33.741.023.410.533.560.742.160.292.010.2818.682.80.85
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT11-145.241.5512.614.227.930.224.1313.263.930.520.156.1899.940.3993.31.8691.816676.94314.212.21.670.8343139
    AMT11-246.811.7112.673.668.430.214.5311.164.550.230.255.7899.990.4165.20.8698.113776.743.412.26.860.940.421260
    AMT11-348.041.6212.723.398.180.194.8510.824.520.220.235.299.980.4462.81.551011325137.613.15.670.640.8726993.5
    AMT11-445.21.5713.23.389.10.194.6710.94.20.580.196.899.980.4177.41.8410512450.741.11318.62.20.5126693.3
    AMT11-547.451.6512.773.768.080.24.810.984.390.330.245.3499.990.43532.5399.912945.53712.39.30.970.85276113
    AMT11-644.481.6213.14.248.690.214.7611.444.020.580.186.69100.010.41941.810413255.442.213.817.62.180.4823877.8
    AMT11-745.211.5713.83.657.480.18412.544.10.610.26.6499.980.41102.3187.112561.142.813.614.81.960.28353140
    AMT11-845.231.3413.494.135.460.17416.113.30.470.166.1399.990.44891.886195.848.1369.04101.40.24238128
    AMT11-946.421.4410.653.629.450.345.0614.443.220.350.164.8499.990.4262.80.6197.310550.744.812.97.940.920.0917678.2
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-130041.31.660.284.92.0215.80.270.143.4110.21.8310.73.971.254.970.816.021.333.960.543.790.5636.653.30.86
    AMT11-231445.82.060.17942.2914.80.240.113.86112.1312.34.511.515.970.957.121.644.780.694.620.745.161.80.89
    AMT11-330846.81.570.09790.52.1713.60.270.113.249.751.7711.64.091.45.320.856.71.544.530.624.250.6241.756.30.91
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-431944.61.40.1188.32.0615.10.210.13.069.391.7910.63.961.35.180.86.231.464.350.624.070.63953.40.87
    AMT11-529945.51.510.1189.91.9813.70.310.163.710.51.9711.53.91.295.550.886.781.454.640.664.20.6242.357.60.84
    AMT11-631243.31.440.1490.21.9717.80.230.053.089.41.7310.83.881.185.090.826.081.284.10.63.620.5437.252.20.81
    AMT11-728641.62.530.1596.42.1518.60.270.124.39122.0411.33.931.054.80.745.561.243.830.513.250.4833.655.10.74
    AMT11-826436.92.890.2183.41.7119.50.260.183.8910.41.710.23.220.994.160.674.751.033.270.4930.4429.148.20.82
    AMT11-9301422.740.1980.51.7913.80.240.123.269.381.549.293.7214.390.75.341.163.740.53.310.4833.247.80.75
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT12-147.691.6214.042.19.360.168.568.583.490.20.174.0199.980.5887.31.1999.252828556.824.63.90.330.3309102
    AMT12-248.251.6313.512.248.710.168.868.753.440.310.183.961000.6801.458554026952.425.53.580.330.29282191
    AMT12-347.41.4814.081.787.60.147.279.753.880.580.195.851000.5966.11.048143119246.225.76.150.480.22225439
    AMT12-446.051.212.651.616.450.146.1513.373.541.040.147.6599.990.5876.81.2364.935116138.818.98.170.40.5207122
    0
    AMT12-546.671.5213.993.196.80.147.4313.592.470.210.173.7999.970.581011.3673.645223150.720.73.140.340.2375127
    AMT12-644.581.413.11.868.340.168.1211.852.980.60.166.8399.980.5971.91.281.444321449.228.86.490.560.18234554
    AMT12-745.721.4312.961.627.530.157.1212.523.450.510.186.82100.010.5978.20.9670.44112195021.25.290.280.3270418
    AMT12-947.31.3914.912.857.590.147.311.192.690.340.144.1499.980.5648.11.0579.94222004524.93.660.190.33381273
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT12-126833.214.31.011062.1618.70.320.8511.626.63.6416.54.311.44.950.794.7912.690.442.630.3626.181.70.92
    AMT12-226734.313.61.011042.1617.70.320.8710.824.73.5116.23.791.334.680.754.680.972.680.442.450.3425.477.30.96
    AMT12-323530120.8896.11.9714.50.450.6910.523.23.0914.83.471.114.230.744.540.942.510.412.50.3124.772.40.88
    AMT12-419624.79.290.7875.91.5613.10.30.587.83182.4411.32.741.23.590.593.650.82.10.342.120.2820.5571.17
    AMT12-525329.612.40.9897.22.0617.70.420.749.0221.43.1713.93.611.434.40.724.570.922.540.42.470.3324.468.91.09
    AMT12-623329.4120.8790.31.8315.60.560.6910233.1613.73.521.264.280.694.170.842.250.372.340.3122.769.90.99
    AMT12-722627.4120.93921.7215.40.50.689.7321.83.0114.63.341.194.110.654.290.892.290.422.420.3223.869.10.98
    AMT12-921227.812.60.871042.1321.60.391.099.7623.53.1514.33.411.414.20.674.30.872.330.392.570.2922.971.21.13
    注:Mg#=MgO/(MgO+TFeO)(分子数);主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    样品AMT06 SiO2含量为47.11%~48.38%,平均47.83%;TiO2含量为0.77%~0.88%,平均0.82%,与IAT(0.83%)较接近[20];Al2O3含量为15.92%~17.23%,平均16.73%,与岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征相似,后两者分别为16%和17.08%[21],而明显不同于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[22];MgO含量为6.96%~8.51%,平均7.45%,相对较高;Mg#值为0.61~0.65,平均0.63,接近于原始岩浆成分(0.68~0.75),说明原生岩浆的分异演化较弱。Na2O + K2O含量为7.97% ~8.72%,平均为8.39。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围,且样品点非常集中,变化范围小(图 5)。

    图  5  Nb/Y-SiO2图解和SiO2-TFeO/MgO图解
    Figure  5.  Nb/Y-SiO2 and SiO2-TFeO/MgO diagrams

    样品AMT11 SiO2含量为44.08%~48.04%,平均46.01%;TiO2含量为1.34%~1.71%,平均1.56%,与MORB的TiO2(1.5%)较接近[20];Al2O3含量为10.65%~13.80%,平均12.78%,含量较低;MgO含量为4.00%~5.06%,平均4.53%;Mg#值为0.39~0.44,平均0.42,说明原生岩浆发生分异演化。Na2O含量为3.22%~4.55%,平均4.03%;K2O含量为0.22%~0.61%,平均0.43%;Na2O+K2O含量为3.57%~4.78%,平均4.46%。主量元素相对富MgO,贫Al2O3、K2O,Na2O含量大于K2O含量,类似于MORB型岩石。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    样品AMT12 SiO2含量为44.58%~48.25%,平均46.71%;TiO2含量为1.20%~1.63%,平均1.46%,介于IAT(0.83%)与MORB(1.5%)之间[20],更接近于MORB。Al2O3含量为12.65% ~14.91%,平均13.66%,近于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[21],明显不同于岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征,后两者分别为16%和17.08%[22];MgO含量为6.15%~8.86%,平均7.60%,较高;Mg#值为0.56~0.60,平均0.58%,低于原始岩浆成分(0.68~0.75),说明原生岩浆发生较弱的分异演化。Na2O含量为2.47%~3.88%,平均3.24%;K2O含量为0.20%~1.04%,平均0.47%;Na2O+K2O含量为2.68%~4.58%,平均3.72%。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    AMT06样品的稀土元素总量(∑REE)较高,为81.19×10-6~86.72×10-6,平均为84.14×10-6,轻、重稀土元素比值(LREE/HREE)在2.07~2.24之间,(La/Yb)N=4.46~5.33,(La/Sm)N=2.24~2.55,(Gd/Yb)N=1.34~1.60,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。在球粒陨石标准化配分模式图(图 6)中,配分曲线右倾,强烈富集轻稀土元素,Eu显示弱的负异常(δEu值为0.81~ 0.94,平均0.87)。原始地幔标准化微量元素蛛网图(图 6)显示,大离子亲石元素Rb和K富集,Sr强烈亏损,而高场强元素相对亏损,具有较强的负Nb异常和较弱的Hf、Ti负异常,Zr、Sm显示为较弱的正异常。

    图  6  稀土元素球粒陨石标准化配分图解[23]和微量元素原始地幔标准化配分图解[23]
    Figure  6.  Chondrite-normalized REE patterns and primitive mantle normalized trace element patterns

    AMT11样品的∑REE较高,为47.81×10-6~61.78×10-6,平均为53.98×10-6,LREE/HREE值在0.48~0.65之间,(La/Yb)N=0.51~0.92,(La/Sm)N=0.48~0.75,(Gd/Yb)N=1.01~1.19,表明轻稀土元素亏损而重稀土元素富集,轻、重稀土元素分馏不明显,轻稀土元素内部的元素分馏程度较重稀土元素分馏弱。从球粒陨石标准化配分模式图(图 6)可以看出,轻稀土元素亏损,而重稀土元素呈平坦型分布,稀土元素配分模式与洋脊拉斑玄武岩稀土元素配分曲线相似,Eu显示弱负异常(δEu值为0.71~0.91,平均0.83)。在原始地幔标准化的微量元素蛛网图(图 6)上,大离子亲石元素Rb、Ba、U和K富集,Sr弱亏损,高场强元素显示Nb、P等的负异常。高场强元素分异不明显,显示岛弧岩浆的特征,说明该玄武岩的形成与板块俯冲有关。

    AMT12样品的∑REE较高,为56.98×10-6~81.70×10-6,平均为70.92×10-6,LREE/HREE值在1.28~1.46之间,(La/Yb)N=2.48~3.00,(La/Sm)N=1.56~1.89,(Gd/Yb)N=1.32~1.55,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素之间分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。球粒陨石标准化配分模式图(图 6)显示,配分曲线右倾,强烈富集轻稀土元素,Eu无明显异常(δEu值为0.88~1.17,平均1.02)。在原始地幔标准化微量元素蛛网图(图 6)上,大离子亲石元素Rb、Th和K亏损,Ba、U具正异常,而高场强元素相对亏损,具有较强的正Ta异常和较弱的负Hf异常,Hf、Sm显示为较弱的正异常。

    在基性熔岩的TiO2- MnO×10-P2O5×10图解(图 7)中,AMT06样品点主要落入钙碱性玄武岩(CAB)和岛弧拉斑玄武岩(IAT)分界线区域,AMT11、AMT12总体落入洋中脊玄武岩(MORB)区域,其中AMT12样品点大部分落入MORB,少数有从IAT到MORB的过渡趋势。在Nb/La-(Th/Nb)N图解(图 8-a)中,除AMT12样品外,其余样品Nb/La值均小于1,且除AMT11和AMT12以外,其余样品(Th/Nb)N值均大于1。以上特征显示,除AMT12样品外,AMT06和AMT11样品均遭受地壳不同程度的混染。在基性熔岩Zr-Zr/Y图解(图 8-b)中,AMT06和AMT12样品点主要投在板内玄武岩(WPB)及与MORB的边界区域,Zr及Zr/Y值(65.70×10-6~119.00×10-6, 3.00~5.36)与大陆玄武岩(Zr>70×10-6, Zr/Y>3)相符。AMT11样品点均落入洋中脊玄武岩区域和岛弧玄武岩区域,并具有过渡的趋势,Zr及Zr/Y值(40.90×10-6~122.00×10-6, 1.84~3.02)与岛弧玄武岩(Zr < 130×10-6, Zr/Y < 4)相符[24]。在此基础上,基性熔岩的Th-Ta-Hf/3(图 9-a)和Nb×2-Zr/4-Y(图 9-b)图解显示,AMT06和AMT11样品点主要投入MORB和IAB区域,反映其与洋中脊和消减带的岛弧环境相关,AMT06样品主要显示岛弧玄武岩特征,而AMT11样品主要显示洋中脊玄武岩特征。AMT12样品点投入板内碱性玄武岩和板内玄武岩区域,表明其与板内拉张有关。

    图  7  TiO2-MnO×10-P2O5×10图解
    CAB—钙碱性玄武岩;IAT—岛弧拉斑玄武岩;MORB—洋中脊玄武岩;OIT—洋岛拉斑玄武岩;OIA—洋岛碱性玄武岩
    Figure  7.  TiO2-MnO×10-P2O5×10 diagram
    图  8  (Th/Nb)N-Nb/La图解(a)和Zr-Zr/Y图解[24](b)
    WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩
    Figure  8.  (Th/Nb)N-Nb/La(a)and Zr-Zr/Y(b)diagrams
    图  9  基性熔岩Hf/3-Th-Ta(a)和Nb×2-Zr/4-Y(b)图解
    a中:A—N型洋中脊玄武岩;B—E型洋中脊玄武岩和大陆拉斑玄武岩的区分;C—大陆碱性玄武岩和大陆玄武岩的区分;D—消减性板块边缘玄武岩区分;图b中:AⅠ、AⅡ—板内碱性玄武岩;B—P型洋脊玄武岩;AⅡ+C—板内拉斑玄武岩;D—N型洋脊玄武岩;C+D—弧火山岩
    Figure  9.  Hf/3-Th-Ta (a) and Nb×2-Zr/4-Y (b) diagrams of basic lava

    据研究,Ba、Th、Nb、La四个分配系数相近的极不相容元素在海水蚀变或变质过程中较稳定,尤其是它们的比值在部分熔融和分离结晶过程中均保持不变,可最有效地指示源区特征。在基性熔岩La-La/Nb(图 10-a)和Nb-Th/Nb(图 10-b)图解中,AMT06样品点投入IAB区域,AMT11样品点主要投入MORB区域,AMT12样品点位于洋岛玄武岩(OIB)区域或其边界附近,且兼具二者特征或从MORB向IAB过渡的特点。

    图  10  基性熔岩La-La/Nb(a)和Nb -Th/Nb(b)图解
    IAB—岛弧玄武岩;MORB—洋中脊玄武岩;OIB—洋岛玄武岩
    Figure  10.  La-La/Nb (a) and Nb-Th/Nb (b) diagrams of basic lava

    研究区基性熔岩AMT06样品的Nb/La值(平均0.31)与典型的岛弧岩浆岩的Nb/La值(约为0.3)接近或一致,说明AMT06样品具有岛弧玄武岩特征;AMT11样品中,Th/Ta=0.63~1.45,平均值为0.83,La/Ta=17.05~33.64,平均值为24.62,与MORB中Th/Ta =0.75~2,La/Ta=10~20[25]一致,说明AMT11样品的Th/Ta、La/Ta值,更接近SSZ环境对应的比值(Th/Ta=3~5, La/Ta=30~40);AMT12样品Nb/La的平均值为1.24,与洋岛玄武岩Nb/La值(约1.3)接近,说明AMT12样品具有板内洋岛玄武岩特征。

    由此可见,阿尔曼太蛇绿岩中的基性熔岩包括3种类型,即岛弧型玄武岩(AMT06)、洋中脊玄武岩(AMT11)和洋岛玄武岩(AMT12)。其中,OIB是在洋壳俯冲时被刮削下来与其组分一起卷入蛇绿岩带就位形成的,并非蛇绿岩组分;MORB和IAT属于蛇绿岩组成部分,其球粒陨石标准化配分曲线具有轻稀土元素略亏损型的MORB特征和轻稀土元素略富集的IAT特征,原始地幔标准化配分曲线表现为IAT和MORB的双重特点,主量、微量元素判别图解显示,IAT和MORB兼具并呈现过渡的特点,相关微量元素比值特征也显示相似的特征,该特点与阿曼蛇绿岩相似[20]。结合对南智利中这种过渡型蛇绿岩的研究:从洋脊到海沟,蛇绿岩地球化学特征有从MORB向SSZ方向过渡演化的趋势,并且越向海沟,SSZ的特点就越明显[26]。针对这一特性,笔者认为,阿尔曼太蛇绿岩的形成可能介于洋脊到海沟之间的偏海沟区域。

    在基性岩Zr/Nb-Nb/Th图解(图 11-a)中,AMT06样品点主要投在岛弧玄武岩区域(ARC),AMT11样品点主要投入N-MORB的亏损地幔区域,AMT12样品点投在洋底玄武岩(OPB)边界附近。在基性岩Nb/Y-Zr/Y图解(图 11-b)中,样品点均主要落在△Nb线两侧,大多投入介于洋底玄武岩(OPB)的原始地幔(PM)与N-MORB的亏损地幔(DM)之间,指示这些样品可能为相同岩浆体系下演化的产物,且AMT12样品表现出该基性岩形成过程中,分别受到批次熔融(F)和俯冲流体作用的影响。样品在Zr/Nb-Nb/Th图解(图 11-a)中,主要集中在大陆岩石圈(EN)和大陆上地壳(UC)区域,表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    图  11  基性岩Zr/Nb-Nb/Th(a)和Nb/Y-Zr/Y(b)图解[27]
    DEP—高度亏损地幔;EN—富集单元,包括上地壳和大陆岩石圈,后者可能具有消减带化学特征;REC—循环单元,包括Em1、Em2和HIMU;HIMU—高(U/Pb)地幔源区;Em1、Em2—富集地幔源区;UC—大陆上地壳;ARC—岛弧产生的玄武岩;N-MORB—洋脊玄武岩;OIB—洋岛玄武岩;OPB—洋底玄武岩;PM—原始地幔;DM—浅部亏损地幔单元。单箭头指示批次熔融(F)和俯冲流体(SUB)作用,△Nb线为地幔柱源区和非地幔柱源区的分界线
    Figure  11.  Zr/Nb-Nb/Th (a) and Nb/Y-Zr/Y (b) diagrams of basic lava

    对阿尔曼太基性熔岩的微量元素比值与不同地幔端元进行对比(表 2),基性熔岩的相关微量元素比值特征显示,其明显介于亏损地幔与大陆地壳之间,反映其来源于亏损地幔,并受到后期地壳物质的混染作用或来自消减残板片析出流体的交代作用,即与板块的俯冲相关。

    表  2  阿尔曼太基性熔岩微量元素比值与不同地幔端元的对比
    Table  2.  Comparative studies of the trace element ratio in lava and different mantle elements
    样品Zr/NbLa/NbBa/NbBa/ThRb/NbTh/NbTh/LaBa/LaTh/U
    原始地幔14.80.949.0770.910.1170.1259.64.1
    亏损地幔30.01.074.3600.360.0700.0704.0
    大陆地壳16.22.2054.01244.700.4400.20025.03.8
    HIMU2.7~5.50.66~0.774.9~6.539~850.30~0.430.078~0.1010.107~0.1336.8~8.73.5~3.8
    Em15.3~11.50.86~1.1911.4~17.8103~1540.88~1.170.105~0.1220.107~0.12813.2~16.94.50~4.86
    Em212.0~15.350.89~1.097.3~11.067~840.59~0.850.111~0.1570.122~0.1638.3~11.3
    阿尔曼太基性熔岩对应不同地幔端元微量元素比值平均值
    阿尔曼太
    基性熔岩
    AMT0620.053.1846.3467.2535.170.690.2214.653.37
    AMT1148.451.8955.12901.456.460.060.0328.920.47
    AMT127.820.8137.75614.860.430.060.0845.562.00
    注:HIMU为高(U/Pb)值地幔端元;Em1、Em2为富集地幔端元1和2;元素含量为平均值;地幔端元数据据贾大成等[28]
    下载: 导出CSV 
    | 显示表格

    (1)阿尔曼太蛇绿岩为以泥盆纪地层为基质,各构造岩块为其组成部分的蛇绿岩带。蛇绿岩中变质橄榄岩、堆晶岩、基性火山岩较发育,代表扩张机制的岩墙群规模很小,札河坝地区硅质岩较发育,并识别出斜长岩和斜长花岗岩岩块。层序组合虽受构造破坏,但从总体看仍是一套组合较完整的蛇绿岩。

    (2)对阿尔曼太蛇绿岩中基性熔岩岩石地球化学特征研究表明,基性熔岩可分为3种类型,即洋岛玄武岩(OIB)、洋中脊玄武岩(MORB)和岛弧玄武岩(IAT)。其中洋岛玄武岩不属于蛇绿岩成分,与地幔柱或热点作用有关,是后期卷入蛇绿岩带随其他组分一同构造就位而成的;基性熔岩主量和微量元素特征揭示,岩浆源于亏损的地幔源区,并且存在消减组分加入的交代作用,表明其成因与俯冲作用有关。

    (3)结合阿尔曼太蛇绿岩构造环境判别图解,基性熔岩显示出IAT和MORB兼具并呈现过渡的特点,推断该蛇绿岩的形成与岛弧相关,其形成可能介于洋脊到海沟之间的偏海沟区域。通过分析基性熔岩的物质来源,指示其可能为相同岩浆体系下演化的产物,并表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    致谢: 感谢审稿专家给出的建设性修改意见。
  • 图  1   内蒙古翁牛特旗勃隆克地区区域地质简图(据参考文献修改)

    Figure  1.   Simplified geological map of Bolongke area in Onguid Banner, Inner Mongolia

    图  2   翁牛特勃隆克花岗岩显微结构照片(正交偏光)

    Qtz—石英;Pl—斜长石;Kfs—钾长石;Ser—绢云母

    Figure  2.   Photomicrograph showing textural relationships of granite from Bolongke, Inner Mongolia

    图  3   内蒙古翁牛特勃隆克花岗岩代表性锆石阴极发光(CL)图像及U-Pb年龄谐和图

    Figure  3.   Cathodoluminescence images and concordia diagrams of U-Pb zircon dating results of granite in Bolongke, Inner Mongolia

    图  4   花岗岩类TAS图解[39]

    Figure  4.   Total alkali versus silica diagram of granite

    图  5   勃隆克花岗岩A/CNK-A/NK图解(a)和SiO2-K2O图解(b)[40]

    Figure  5.   Diagrams of A/CNK-A/NK(a)and SiO2-K2O(b)for granite

    图  6   花岗岩稀土元素球粒陨石标准化图解(a)[41]和微量元素原始地幔标准化图解(b)[42]

    Figure  6.   Chondrite-normalized REE patterns(a)and primitive mantle-normalized multi-element plots(b)for granite

    图  7   Zr(a)、Nb(b)与10000×Ga/Al判别图、(K2O+Na2O)/CaO与(Zr+Nb+Y+Ce)判别图(c)[12]和Nb-Y-Ce图解(d)[2]

    Figure  7.   Zr(a), Nb(b)versus 10000×Ga/Al and(K2O+Na2O)/CaO(c) versus(Zr+Nb+Y+Ce)discrimination diagrams and Nb-Y-Ce(d)diagram

    图  8   R1-R2构造环境判别图解[70]

    Figure  8.   Plot of R1-R2 discrimination diagram

    表  1   翁牛特勃隆克花岗岩LA-ICP-MS锆石U-Th-Pb年龄测定结果

    Table  1   LA-ICP-MS zircon U-Th-Pb data for Bolongke granite

    点号 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma
    207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
    Sample-1(119°02′40.5″E、43°07′31.2″N)
    1 113 242 0.5 0.1158 0.0016 0.5394 0.1042 0.3465 0.0040 1918 19
    2 130 114 1.1 0.0491 0.0020 0.1425 0.0062 0.0209 0.0003 133 2
    3 218 141 1.6 0.0491 0.0025 0.1419 0.0075 0.0209 0.0003 134 2
    4 156 127 1.2 0.0488 0.0045 0.1420 0.0136 0.0212 0.0004 135 3
    5 170 169 1 0.0567 0.0042 0.1591 0.0116 0.0204 0.0003 130 2
    6 263 118 2.2 0.0483 0.0027 0.1453 0.0085 0.0218 0.0004 139 2
    7 42 96 0.4 0.1627 0.0024 0.1015 0.2172 0.4466 0.0052 2380 23
    8 277 465 0.6 0.1660 0.0024 0.9904 0.1916 0.4483 0.0052 2388 23
    9 269 227 1.2 0.0808 0.0025 0.2430 0.0083 0.0214 0.0003 136 2
    10 77 203 0.4 0.1693 0.0025 0.1051 0.2178 0.4475 0.0052 2384 23
    11 1251 1155 1.1 0.0552 0.0011 0.1522 0.0037 0.0210 0.0003 134 2
    12 552 375 1.5 0.0615 0.0015 0.1769 0.0048 0.0213 0.0003 136 2
    13 102 97 1.1 0.0489 0.0028 0.1479 0.0088 0.0213 0.0003 136 2
    14 193 182 1.1 0.0534 0.0035 0.1545 0.0099 0.0210 0.0003 134 2
    15 356 256 1.4 0.0839 0.0092 0.2346 0.0252 0.0203 0.0005 129 3
    16 76 168 0.5 0.1818 0.0047 0.1157 0.2681 0.4615 0.0055 2446 24
    17 269 222 1.2 0.0537 0.0035 0.1548 0.0098 0.0209 0.0003 133 2
    18 230 141 1.6 0.0660 0.0030 0.1961 0.0095 0.0214 0.0003 136 2
    19 178 143 1.3 0.0574 0.0074 0.1575 0.0200 0.0199 0.0004 127 3
    20 1017 385 2.6 0.1639 0.0034 0.4727 0.0119 0.0219 0.0003 140 2
    Sample-5(119°01′49.01″E、43°07′30.2″N)
    1 67 47 1.4 0.0486 0.0064 0.1504 0.0206 0.0217 0.0006 138 5
    2 119 143 0.8 0.0492 0.0031 0.1429 0.0088 0.0211 0.0003 134 4
    3 244 457 0.5 0.0741 0.0036 0.2086 0.0109 0.0214 0.0004 137 2
    4 260 197 1.3 0.0667 0.0212 0.2371 0.0752 0.0258 0.0006 164 4
    5 129 145 0.9 0.0491 0.0053 0.1414 0.0157 0.0210 0.0005 134 4
    6 537 285 1.9 0.0495 0.0014 0.1380 0.0043 0.0207 0.0003 132 2
    7 477 259 1.8 0.1676 0.0051 0.4671 0.0163 0.0211 0.0003 135 2
    8 220 146 1.5 0.0709 0.0092 0.1802 0.0231 0.0184 0.0004 118 2
    9 246 194 1.3 0.0711 0.0021 0.2116 0.0068 0.0213 0.0003 136 2
    10 331 412 0.8 0.0614 0.0011 0.3313 0.0076 0.0402 0.0005 254 3
    11 350 219 1.6 0.1072 0.0076 0.2806 0.0193 0.0190 0.0003 121 2
    12 227 165 1.4 0.0813 0.0072 0.2326 0.0219 0.0215 0.0006 137 4
    13 188 167 1.1 0.0486 0.0020 0.1453 0.0064 0.0210 0.0003 134 2
    14 436 254 1.7 0.1283 0.0071 0.3530 0.0187 0.0199 0.0003 127 2
    15 527 341 1.5 0.1237 0.0086 0.3108 0.0211 0.0182 0.0003 116 2
    16 371 241 1.5 0.0492 0.0029 0.1541 0.0095 0.0224 0.0004 143 3
    17 616 294 2.1 0.0794 0.0047 0.2285 0.0145 0.0211 0.0004 134 3
    18 361 213 1.7 0.1280 0.0034 0.4084 0.0128 0.0228 0.0003 145 2
    下载: 导出CSV

    表  2   勃隆克花岗岩主量、微量和稀土元素分析结果

    Table  2   Whole-rock major, trace and rare earth elements compositions of the Bolongke, InnerMongolia

    Samples Sample-1 Sample-2 Sample-3 Sample-4 Sample-5
    SiO2 75.6 74.1 74.4 74.8 74.7
    Al2O3 12.3 12.7 12.9 12.8 12.9
    Fe2O3 1.06 1.1 1.08 1 1.03
    FeO 0.15 0.15 0.2 0.15 0.15
    MgO 0.34 0.34 0.37 0.4 0.52
    CaO 0.33 0.3 0.41 0.39 0.52
    Na2O 3.73 3.69 3.75 3.88 3.84
    K2O 5.27 5.29 5.28 5.32 5.36
    MnO 0.02 0.08 0.08 0.03 0.03
    TiO2 0.18 0.2 0.21 0.2 0.2
    P2O5 0.07 0.03 0.03 0.03 0.03
    烧失量 1.02 2.04 1.35 0.99 0.72
    总计 99.87 99.86 99.84 99.86 99.86
    TFeO 1.10 1.14 1.17 1.05 1.08
    A/CNK 0.99 1.03 1.02 1.00 0.99
    K2O/Na2O 1.41 1.43 1.41 1.37 1.4
    Ga 18 18.1 18.7 18.3 19.2
    Rb 222 210 220 217 225
    Sr 38.6 17.1 12.4 11.5 12
    Y 19.1 21.2 23 23.6 24.1
    Nb 22.3 23.2 24.4 25.6 26.8
    Mo 1.33 1.31 2.05 1.09 1.15
    Cs 4.35 5.13 6.93 4.97 5.08
    Ba 78.2 95 68 46.9 48.2
    La 47.6 31.7 49.1 33.4 35.1
    Ce 78.9 101 96.9 77.3 79.1
    Pr 7.69 5.62 8.59 6.27 6.65
    Nd 23.4 18.7 26.5 19.4 21.5
    Sm 3.3 2.7 4 2.9 3.2
    Eu 0.3 0.3 0.3 0.2 0.3
    Gd 2.89 2.61 3.35 2.57 2.76
    Tb 0.5 0.5 0.6 0.5 0.6
    Dy 2.85 3.17 3.71 3.54 3.46
    Ho 0.62 0.71 0.74 0.72 0.78
    Er 2.22 2.64 2.61 2.64 2.78
    Tm 0.41 0.49 0.48 0.5 0.53
    Yb 2.99 3.66 3.39 3.79 3.87
    Lu 0.52 0.56 0.58 0.64 0.64
    Ta 1.51 1.68 1.74 1.89 1.88
    Pb 32 30.4 44.6 32.4 33.3
    Th 27.1 26.2 27.1 27.9 28.5
    U 2.99 2.46 4.9 2.55 2.68
    Zr 209 251 239 266 267
    Hf 8.31 9.64 9.51 9.84 9.74
    ∑REE 173.77 174.6 201.42 154.01 161.76
    δEu 0.3 0.3 0.3 0.3 0.3
    (La/Yb)N 10.7 5.84 9.76 5.94 6.11
    TZr/℃ 809 829 823 830 829
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • Loiselle M C, Wones D R.Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11:468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9108a701005035f04fb9accc13dc243b

    Eby G N.Chemical subdivision of the A-type granitoids:Petrogenesis and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Pitcher W S.The nature and origin of granite[M]. Blackie:Academic and Professional, 1993:1-316.

    King P L, White A J R, Chappell B W, et al.Characterization and origin of aluminous A-type granites form the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    King P L, Chappell B W, Allen C M, et al.Are A-type granites the high-temperature felsic granites?Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 2001, 48(4):501-514. doi: 10.1046/j.1440-0952.2001.00881.x

    Feio G R L, Dall'Agnol R, Dantas E L, et al.Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton:A-type or hydrated charnockitic granites?[J]. Lithos, 2012, 151(151):57-73. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228765229/

    Breiter K, Lamarão C N, Borges R M K, et al.Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, 2014, 192-195:208-225. doi: 10.1016/j.lithos.2014.02.004

    Moreno J A, Molina J F, Montero P, et al.Unraveling sources of A-type magmas in juvenile continental crust:Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt[J]. Lithos, 2014, 192/195:56-85. doi: 10.1016/j.lithos.2014.01.010

    Bonin B.A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97:1-29. doi: 10.1016/j.lithos.2006.12.007

    吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    Chappell B W, White A J R.I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):1-26.

    Whalen J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    Clemens J D.Granites and granitic magmas:strange phenomena and new perspectives on some old problems[J]. Proceedings of the Geologists' Association, 2005, 116:9-16.

    Douce P, Alberto E.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    邓晋福.中国大陆根-柱构造:大陆动力学的钥匙[M].北京:地质出版社, 1996.
    翟明国, 樊祺诚.华北克拉通中生代下地壳置换:非造山过程的壳幔交换[J].岩石学报, 2002, 18(1):1-18. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200201001
    刘俊来, 关会梅, 纪沫, 等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展, 2006, 16(1):21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004
    翟明国, 朱日祥, 刘建明, 等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑), 2003, 33(10):913-920. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200310001
    翟明国.华北克拉通构造演化[J].地质力学学报, 2019, 25(5):722-745. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199901001
    嵇少丞, 王茜, 许志琴.华北克拉通破坏与岩石圈减薄[J].地质学报, 2008, 82(2):174-193. doi: 10.3321/j.issn:0001-5717.2008.02.005
    刘红涛, 翟明国, 刘建明, 等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报, 2002, 18(4):433-448.
    刘伟, 潘小菲, 谢烈文, 等.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式[J].岩石学报, 2007, 23(2):441-460.
    韩振哲, 王洪杰, 李中会, 等.内蒙古东北部阿龙山地区早白垩世A型花岗岩特征及其意义[J].华南地质与矿产, 2009, (4):1-9. doi: 10.3969/j.issn.1007-3701.2009.04.001
    孙金凤, 杨进辉.华北东部早白垩世A型花岗岩与克拉通破坏[J].地球科学(中国地质大学学报), 2009, 34(1):137-147. http://d.old.wanfangdata.com.cn/Periodical/dqkx200901013
    周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报, 2010, 26(12):3521-3537. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012006
    解洪晶, 武广, 朱明田, 等.内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义[J].岩石学报, 2012, 28(2):483-494. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202011

    Wu F, Sun D, Li H, et al.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143-173.

    Khain E V, Bibikova E V, Kröner A, et al.The most ancient ophiolite of the Central Asian fold belt:U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199(3/4):311-325.

    Xiao W, Zhang L, Qin K, et al.Paleozoic accretionary and collisional tectonics of the eastern Tianshan(China):implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304:370-395. doi: 10.2475/ajs.304.4.370

    Windley B F, Alexeiev D, Xiao W, et al.Tectonic models for accretion of the Central Asian Orogenic[J]. Journal of the Geological Society, 2007(164):31-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=407c8a0b623113b1dd6b69ee8fde6a21

    Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069.

    李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004
    李益龙, 周汉文, 钟增球, 等.华北与西伯利亚板块的对接过程:来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据[J].地球科学(中国地质大学学报), 2009, 32(6):931-938.
    张琪琪, 张拴宏.华北地块北缘泥盆纪岩浆活动及其构造背景[J].地质力学学报, 2019, 25(1):125-138. http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201901013
    高立明.西拉木伦河断裂带基本特征及其动力学意义[D].中国地质科学院硕士学位论文, 2004.
    崔盛芹, 马寅生, 吴珍汉, 等.燕山地区中新生代陆内造山作用[M].北京:地质出版社, 2006.
    邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200102013
    徐备, 刘树文, 王长秋, 等.内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J].地质论评, 2000, 46(1):86-90. doi: 10.3321/j.issn:0371-5736.2000.01.012

    Maitre R W L.A Classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Blackwell, 1989.

    Peccerillo A, Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.

    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Boynton W V.Geochemistry of the rare earth elements:Meteorite studies[M]. Amsterdam:Elservier, 1989:63-144.

    Miller C F, McDowell S M, Mapes R W.Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-315. doi: 10.3969/j.issn.1000-6524.2000.04.002

    Turner S P, Foden J D, Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151-179.

    Mushkin A, Navon O, Halicz L, et al.The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5):815-832. doi: 10.1093/petrology/44.5.815

    Harris C, Marsh J S, Milner S C.Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia:Evidence for the Progressively Decreasing Effect of Crustal Contamination[J]. Journal of Petrology, 1999, 40(9):1377-1397. doi: 10.1093/petroj/40.9.1377

    Mingram B, Trumbull R B, Littman S, et al.A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:evidence for mixing of crust and mantle-derived components[J]. Lithos, 2000, 54(1/2):1-22. doi: 10.1016-S0024-4937(00)00033-5/

    Clemens J D, Holloway J R, White A J R.Origin of an A-type granite; experimental constraints[J]. American Mineralogist, 1986, 71(3):317-324.

    Skjerlie K P, Johnston A D.Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss:Implications for the generation of A-type granites[J]. Geology, 1992, 20(3):263-266. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    Creaser R A, Price R C, Wormald R J.A-type granites revisited:Assessment of a residual-source model[J]. Geology, 1991, 19(2):163-166.

    Rapp R P, Watson E B.Dehydration Melting of Metabasalt at 8~32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    Sylvester P J.Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302

    Bonin B.From orogenic to anorogenic settings:Evolution of granitoid suites after a major orogenesis[J]. Geological Journal, 1990, 25(3/4):261-270. doi: 10.1002-gj.3350250309/

    Hong D, Wang S, Han B, et al.Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(1):13-27. doi: 10.1016/0743-9547(96)00002-5

    Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55.

    Davis G A, Darby B J, Zheng Y, et al.Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 2002, 30(11):1003-1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2

    王新社, 郑亚东, 张进江, 等.呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J].地质通报, 2002, 21(4/5):238-245. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20020466&flag=1
    王新社, 郑亚东.楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束[J].地质论评, 2005, 51(5):576-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200505012
    李益龙, 周汉文, 钟增球, 等.华北-西伯利亚板块对接带早白垩纪的裂解:来自西拉木伦断裂带中性岩墙群的锆石U-Pb年龄及地球化学证据[J].地球科学, 2010, 35(6):921-932. http://d.old.wanfangdata.com.cn/Periodical/dqkx201006004
    刘燊, 胡瑞忠, 冯光英, 等.华北克拉通中生代以来基性岩墙群的分布及研究意义[J].地质通报, 2010, 29(2/3):259-267. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2010020310&flag=1

    Xue F, Santosh M, Tsunogae T, et al.Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton[J]. Lithos, 2019, 326/327:174-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=541a8925aa93f67060eecf4ca20d59d7

    Guo P, Niu Y, Sun P, et al.The Early Cretaceous bimodal volcanic suite from the Yinshan Block, western North China Craton:Origin, process and geological significance[J]. Journal of Asian Earth Sciences, 2018, 160:348-364. doi: 10.1016/j.jseaes.2017.10.023

    Li S, Zhao G, Dai L, et al.Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47:64-79. doi: 10.1016/j.jseaes.2011.06.008

    Wang T, Zheng Y, Li T, et al.Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):715-729. doi: 10.1016/S1367-9120(03)00133-0

    李毅, 吴泰然, 罗红玲, 等.内蒙古四子王旗早白垩世钾玄岩的地球化学特征及其形成构造环境[J].岩石学报, 2006, 22(11):2791-2800. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200611017

    Xu Y, Huang X, Ma J, et al.Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy & Petrology, 2004, 147(6):750-767.

    Zheng J, Griffin W L, O Reilly S Y, et al.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica Et Cosmochimica Acta, 2007, 71(21):5203-5225. doi: 10.1016/j.gca.2007.07.028

    Zhang H.Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton[J]. Earth and Planetary Science Letters, 2005, 237(3):768-780.

    Zhang H, Nakamura E, Sun M, et al.Transformation of Subcontinental Lithospheric Mantle through Peridotite-Melt Reaction:Evidence from a Highly Fertile Mantle Xenolith from the North China Craton[J]. International Geology Review, 2007, 49(7):658-679. doi: 10.2747/0020-6814.49.7.658

    Wu F, Lin J, Wilde S A, et al.Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, (233):103-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6b3600a84a03c13d0b9d2e363e47ff6

    邓晋福, 苏尚国, 刘翠, 等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉, 还是热侵蚀和化学交代?[J].地学前缘, 2006, 13(2):105-119. doi: 10.3321/j.issn:1005-2321.2006.02.009

    Liu J, Cai R, Pearson D G, et al.Thinning and destruction of the lithospheric mantle root beneath the North China Craton:A review[J]. Earth-Science Reviews, 2019, 196:102873. doi: 10.1016/j.earscirev.2019.05.017

    邓晋福, 苏尚国, 赵海玲, 等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘, 2003, 3:42-51. http://d.old.wanfangdata.com.cn/Periodical/dxqy200303003
    内蒙古自治区有色地质勘查局.赤峰地区1: 50000区域矿产资源图.2009.
  • 期刊类型引用(4)

    1. 黄睿,张颖,史骁,孙跃武. 新疆准噶尔盆地东缘中—晚二叠世植物群及其地质意义. 吉林大学学报(地球科学版). 2023(02): 403-417 . 百度学术
    2. 刘晓,孙景耀,张荣霞,李芝荣,吴凤萍,隋天静. 新疆塔里木南缘埃连卡特岩群物质来源及构造环境——锆石U-Pb年代学和地球化学约束. 山东国土资源. 2023(04): 1-11 . 百度学术
    3. 王星,蔺新望,张亚峰,赵端昌,赵江林,仵桐,刘坤. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄及其对阿尔泰造山带构造演化的启示. 地质通报. 2022(09): 1574-1588 . 本站查看
    4. 王国灿,张孟,张雄华,康磊,廖群安,郭瑞禄,王玮. 天山东段“北天山洋”构造涵义及演化模式再认识. 地质学报. 2022(10): 3494-3513 . 百度学术

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  2585
  • HTML全文浏览量:  321
  • PDF下载量:  2004
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-10-08
  • 修回日期:  2018-04-05
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2020-01-14

目录

/

返回文章
返回