• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

小兴安岭南部早侏罗世二长花岗岩形成时代、地球化学特征及地质意义

尹志刚, 庞学昌, 王春生, 郝科, 刘松杰, 宫兆民, 张圣听, 王冠群

尹志刚, 庞学昌, 王春生, 郝科, 刘松杰, 宫兆民, 张圣听, 王冠群. 2020: 小兴安岭南部早侏罗世二长花岗岩形成时代、地球化学特征及地质意义. 地质通报, 39(1): 27-39.
引用本文: 尹志刚, 庞学昌, 王春生, 郝科, 刘松杰, 宫兆民, 张圣听, 王冠群. 2020: 小兴安岭南部早侏罗世二长花岗岩形成时代、地球化学特征及地质意义. 地质通报, 39(1): 27-39.
YIN Zhigang, PANG Xuechang, WANG Chunsheng, HAO Ke, LIU Songjie, GONG Zhaomin, ZHANG Shengting, WANG Guanqun. 2020: Formation age, geochemical characteristics and geological significance of the Early Jurassic monzonitic granites in southern Xiao Hinggan Mountains. Geological Bulletin of China, 39(1): 27-39.
Citation: YIN Zhigang, PANG Xuechang, WANG Chunsheng, HAO Ke, LIU Songjie, GONG Zhaomin, ZHANG Shengting, WANG Guanqun. 2020: Formation age, geochemical characteristics and geological significance of the Early Jurassic monzonitic granites in southern Xiao Hinggan Mountains. Geological Bulletin of China, 39(1): 27-39.

小兴安岭南部早侏罗世二长花岗岩形成时代、地球化学特征及地质意义

基金项目: 

黑龙江省地质勘杏基金项目《黑龙江省1:5万爱林林场幅、六合屯幅、凤山屯幅区域地质矿产调查》 HLJKD2015-18

详细信息
    作者简介:

    尹志刚(1962-),男,博士,教授,从事区域矿产资源研究。E-mail:yzg63@163.com

  • 中图分类号: P597+.3;P534.46

Formation age, geochemical characteristics and geological significance of the Early Jurassic monzonitic granites in southern Xiao Hinggan Mountains

  • 摘要:

    通过对小兴安岭南部二长花岗岩的LA-ICP-MS锆石U-Pb同位素定年和岩石地球化学分析,确定了其形成时代及岩石成因。测得二长花岗岩的同位素年龄为188±2Ma,形成于早侏罗世。地球化学特征显示其富硅、富碱,CaO、Fe203、TiO2、MnO、MgO和P2O5的含量较低,A/CNK=0.95~1.12,A/NK=1.17~1.32,属于准铝-弱过铝质、高钾钙碱性系列岩石;富集大离子亲石元素Rb、K和高场强元素Hf、Zr、Th,相对亏损大离子亲石元素Ba、Sr和高场强元素Nb、Ta、Ti和P;稀土元素总量(∑REE)较高,配分曲线分布型式为轻稀土元素(LREE)相对富集、重稀土元素(HREE)相对亏损的右倾型,表现出轻微的负Eu异常。元素地球化学特征表明,二长花岗岩显示出I型花岗岩特征。结合区域研究资料,小兴安岭南部早侏罗世二长花岗岩的形成应与古大平洋板块向欧亚大陆下的俯冲作用和蒙古-鄂霍茨克洋向额尔古纳地块之下的俯冲作用,即双向俯冲作用的弧后伸展环境相对应,其岩浆起源于下地壳物质的部分熔融。

    Abstract:

    In this paper, the formation age and petrogenesis of the monzonitic granites were confirmed through LA-ICP-MS zircon U-Pb dating and geochemical analysis in southern Xiao Hinggan Mountains.It is found that the isotopic age of monzogranite is 188±2Ma, suggesting Early Jurassic. The geochemical characteristics show that Si and ALK are abundant, CaO, Fe2O3, TiO2, MnO, MgO and P2O5 are relatively poor, with A/CNK being 0.95~1.12 and A/NK being 1.17~1.32, implying aluminum-weakly peraluminous high potassium calc-alkaline series granites; They are enriched in large ion lithophile elements Rb, K and high field strength elements Hf, Zr, Th, and depleted in large ion lithophile elements Ba, Sr and high field strength elements Nb, Ta, Ti and P.The total rare earth elements (∑REE) are abundant, the distribution curve shows that the light rare earth elements are more abundant than the heavy rare earth elements and show right-inclined pattern, with weak negative Eu anomalies.The geochemical characteristics of elements indicate that the granites belong to I-type granites.Combined with regional research data, it is suggested that the Early Jurassic monzonitic granites in southern Xiao Hinggan Mountains were formed under an extensional environment similar to back-arc basin which might have been related to double-subductions of the Paleo-Pacific plate beneath the Eurasian continent and the Mongol-Okhotsk oceanic plate beneath the Ergima Massif, and the magmas originated from partial melting of lower crustal materials.

  • 图  1   研究区地质简图

    Figure  1.   Geological sketch map of the study area

    图  2   二长花岗岩锆石阴极发光图像(D5335)

    Figure  2.   Zircon cathodoluminescences images of the monzonitic granites(D5335)

    图  3   二长花岗岩锆石U-Pb年龄谐和图(D5335)

    Figure  3.   Zircon U-Pb concordia diagram for the monzonitic granites(D5335)

    图  4   早侏罗世二长花岗岩岩石类型和岩石系列图解

    Figure  4.   Rock types and series diagrams of the Early Jurassic monzonitic granites

    图  5   二长花岗岩稀土元素球粒陨石标准化分布型式(a)和微量元素原始地幔标准化蛛网图(b)

    Figure  5.   Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spider diagrams(b) for monzonitic granites

    图  6   二长花岗岩SiO2-Al2O3(a)和SiO2-P2O5(b)图解

    Figure  6.   SiO2-Al2O3(a) and SiO2-P2O5(b) discriminant diagrams of monzonitic granites

    图  7   二长花岗岩K2O-Na2O(a)、SiO2-Ce(b)、SiO2-Y(c)和SiO2-Zr(d)图解

    Figure  7.   K2O-Na2O(a), SiO2-Ce(b), SiO2-Y(c)and SiO2-Zr(d) discriminant diagrams of monzonitic granites

    图  8   微量元素构造环境判别图[42-43]

    ORG—大洋脊花岗岩;WPG—板内花岗岩;VAG—火山弧花岗岩; syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩

    Figure  8.   Tectonic environment discriminant diagrams of trace elements

    图  9   二长花岗岩Rb/30-Hf-Ta×3(a)和R1-R2(b)判别图解

    Figure  9.   Rb/3-Hf-Ta×3(a) and R1-R2(b) discriminant diagrams of monzonitic granites

    表  1   早侏罗世二长花岗岩LA-ICP-MS锆石U-Th-Pb定年数据(D5335)

    Table  1   LA-ICP-MS zircon U-Th-Pb dating results for the Early Jurassic monzonitic granite(D5335)

    分析序号含量/10-6同位素比值年龄/Ma
    PbU206Pb/238Uerr/%207Pb/235Uerr/%207Pb/206Pberr/%208Pb/232Therr/%232Th/238Uerr/%206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ
    112 337 0.0304 1.2 0.208 2.8 0.0497 2.9 0.0082 2.5 0.903 0.05 193 2 192 5 179 65
    218 569 0.0281 1.2 0.210 3.9 0.0540 3.9 0.0084 2.8 0.828 0.01 179 2 193 8 373 88
    3123610.02931.10.2054.50.05074.60.00802.30.9000.0318621899229106
    46 191 0.0303 1.1 0.216 5.0 0.0518 4.9 0.0074 2.4 0.673 0.05 192 2 199 10 275 113
    5 11 321 0.0299 1.1 0.206 3.1 0.0499 3.0 0.0070 2.1 1.18 0.11 190 2 190 6 191 70
    6 9 256 0.0304 1.2 0.209 8.3 0.0500 8.3 0.0083 2.6 0.935 0.02 193 2 193 16 195 193
    7 7 219 0.0297 1.1 0.210 4.5 0.0513 4.4 0.0068 2.8 0.500 0.15 189 2 194 9 252 101
    8 6 214 0.0287 1.1 0.207 4.0 0.0522 4.0 0.0065 2.9 0.688 0.31 182 2 191 8 295 91
    9 2 71 0.0300 1.3 0.212 10 0.0511 10 0.0077 3.4 0.876 0.01 191 2 195 20 246 233
    10 11 337 0.0304 1.2 0.207 2.8 0.0493 2.8 0.0074 2.5 0.896 0.04 193 2 191 5 162 65
    11 10 330 0.0294 1.1 0.206 2.9 0.0508 2.9 0.0066 2.3 0.707 0.02 187 2 190 6 233 66
    12 8 255 0.0306 1.1 0.208 5.7 0.0494 5.6 0.0066 2.4 0.883 0.03 194 2 192 11 165 131
    13 10 340 0.0298 1.1 0.205 2.9 0.0498 2.8 0.0059 2.2 0.639 0.01 189 2 189 5 185 66
    14 11 340 0.0296 1.1 0.206 2.6 0.0506 2.6 0.0056 2.2 0.816 0.00 188 2 191 5 223 59
    15 12 389 0.0297 1.1 0.202 2.6 0.0493 2.5 0.0055 2.5 0.913 0.03 189 2 187 5 162 59
    16 7 206 0.0299 1.1 0.213 4.2 0.0516 4.1 0.0056 2.5 1.21 0.02 190 2 196 8 266 93
    17 11 353 0.0288 1.1 0.204 2.7 0.0515 2.6 0.0052 2.2 0.833 0.02 183 2 189 5 265 61
    18 12 413 0.0291 1.1 0.214 2.3 0.0533 2.3 0.0059 2.0 0.714 0.04 185 2 197 5 341 52
    19 18 569 0.0282 1.2 0.211 3.9 0.0541 3.9 0.0073 2.4 0.817 0.01 179 2 194 8 377 88
    20 10 320 0.0288 1.1 0.214 2.6 0.0537 2.5 0.0060 2.0 0.761 0.03 183 2 197 5 359 56
    21 10 335 0.0287 1.1 0.213 2.7 0.0538 2.6 0.0061 2.1 0.944 0.08 182 2 196 5 364 58
    22 10 308 0.0294 1.1 0.208 3.6 0.0512 3.5 0.0065 2.3 0.898 0.20 187 2 192 7 249 81
    23 7 237 0.0292 1.1 0.215 3.8 0.0535 3.7 0.0066 2.5 0.636 0.12 185 2 198 7 348 84
    24 7 237 0.0294 1.1 0.238 3.8 0.0587 3.7 0.0072 2.5 0.636 0.12 187 2 217 8 556 81
    注:测试单位为天津地质矿产研究所测试中心
    下载: 导出CSV

    表  2   早侏罗世二长花岗岩主量、微量和稀土元素分析结果

    Table  2   Major,trace elements and REE compositions for the Early Jurassic monzonitic granite

    样品号P1TC67P1TC75P3TC12P3TC23P7TC24533553485352
    SiO2 74.46 72.50 72.08 70.92 70.92 70.78 71.52 70.46
    TiO2 0.27 0.31 0.29 0.37 0.43 0.42 0.37 0.49
    Al2O3 13.11 13.76 13.94 14.28 13.85 14.17 14.20 13.72
    Fe2O3 0.91 1.20 1.12 1.20 0.84 1.47 1.59 1.86
    FeO 0.73 0.70 0.91 1.04 1.83 1.55 0.94 1.36
    MnO 0.06 0.09 0.06 0.07 0.15 0.08 0.08 0.09
    MgO 0.39 0.53 0.66 0.77 0.79 0.59 0.60 1.15
    CaO 1.23 1.25 1.74 1.98 1.66 1.77 1.62 1.00
    Na2O 3.58 4.31 4.13 4.54 3.82 4.10 4.13 3.75
    K2O 4.15 4.28 3.83 3.66 4.07 3.74 4.11 3.92
    P2O5 0.05 0.07 0.08 0.09 0.11 0.11 0.06 0.13
    烧失量 0.36 0.28 0.36 0.46 0.76 0.38 0.64 1.34
    总计 99.30 99.28 99.20 99.38 99.23 99.16 99.86 99.27
    σ 1.90 2.50 2.18 2.41 2.23 2.21 2.38 2.14
    SI 4.00 4.82 6.21 6.88 6.96 5.16 5.30 9.59
    ALK 7.73 8.59 7.96 8.20 7.89 7.84 8.24 7.67
    A/CNK 1.04 0.98 0.99 0.95 1.01 1.01 1.00 1.12
    K/Na 1.16 0.99 0.93 0.81 1.07 0.91 1.00 1.05
    A/MF 4.12 3.56 3.17 2.88 2.44 2.54 2.91 1.90
    AR 3.34 3.68 3.06 3.03 3.07 2.94 3.17 3.18
    La 34.20 35.70 30.60 28.10 33.70 43.40 39.10 38.60
    Ce 70.00 69.10 55.60 53.00 61.80 93.80 79.90 77.30
    Pr 7.84 7.91 5.83 6.05 6.55 9.26 9.10 7.86
    Nd 27.80 27.60 19.20 21.20 22.50 31.90 32.00 27.30
    Sm 4.89 4.85 3.14 3.54 3.69 5.42 5.79 4.52
    Eu 0.97 1.07 0.77 0.89 0.93 1.00 1.13 1.06
    Gd 4.30 4.18 2.81 3.07 3.23 4.89 5.10 3.95
    Tb 0.69 0.66 0.42 0.46 0.48 0.74 0.83 0.58
    Dy 4.10 3.85 2.31 2.55 2.60 4.28 4.94 3.13
    Ho 0.82 0.79 0.49 0.52 0.53 0.89 1.05 0.64
    Er 2.56 2.37 1.53 1.62 1.62 2.74 3.26 1.92
    Tm 0.40 0.39 0.26 0.26 0.26 0.46 0.55 0.32
    Yb 2.75 2.64 1.81 1.88 1.83 3.33 3.99 2.28
    Lu 0.42 0.41 0.31 0.29 0.29 0.50 0.64 0.42
    Y 22.50 21.70 14.40 14.50 15.10 26.10 29.60 17.30
    ∑REE 161.74 161.52 125.08 123.43 140.01 202.61 187.38 169.88
    LREE/HREE 9.08 9.56 11.58 10.59 11.92 10.36 8.20 11.83
    (La/Yb)N 8.38 9.12 11.40 10.08 12.42 8.79 6.61 11.41
    (La/Sm)N 6.99 7.36 9.75 7.94 9.13 8.01 6.75 8.54
    δCe 0.99 0.95 0.94 0.94 0.94 1.08 0.99 1.01
    δEu 0.63 0.71 0.78 0.81 0.81 0.58 0.62 0.75
    Sr 214 187 262 318 330 291 236 230
    Rb 123 132 119 114 125 125 126 127
    Ba 500 735 711 817 664 573 668 553
    Th 11.6 11.1 10.5 8.21 9.99 21.3 16 18.6
    Nb 13.3 14.2 11.9 11.7 13.2 18.7 22.7 18.5
    Zr 82 131 106 114 138 201 113 132
    Ta 1.33 1.03 1.08 1.00 0.98 2.00 2.08 1.52
    Hf 3.20 5.10 3.40 5.10 4.30 5.70 4.40 4.10
    Sc 2.11 3.24 3.01 3.02 3.06 4.01 4.18 6.99
    Ti 1719 1812 1928 2397 2631 2718 2377 3160
    Zr/Hf 25.63 25.69 31.18 22.35 32.09 35.26 25.68 32.20
    Rb/Sr 0.57 0.71 0.45 0.36 0.38 0.43 0.53 0.55
    注:测定单位为自然资源部哈尔滨矿产资源监督检测中心。主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • 唐杰,许文良,王枫,等.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代—古近纪岩浆记录[J].中国科学:地球科学,2018,48(5):549-583. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606014.htm
    唐杰,许文良,王枫,等.东北亚早中生代火成岩组合的时空变异:对古太平洋板块俯冲开始时间的制约[J].矿物岩石地球化学通报,2016,35(6):1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009

    Sengör A M C,Natal' in B A.Paleotectonics of Asia:Fragments of a synthesis[C]//Yin A,Harrison T M.The Tectonic Evolution of Asia.Cambridge:Cambridge University Press,1996:486-641.

    Li J Y.Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,2005,26(3/4):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn

    Tang J,Xu W L,Wang F,et al.Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif,NE China:Petrogenesis and implications for the breakup of the Rodinia supercontinent[J].Precambrian Research,2013,224:597-611. doi: 10.1016/j.precamres.2012.10.019

    许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001

    Xu W L,Ji W Q,Pei F P,et al.Triassic Volcanism in Eastern Heilongjiang and Jilin Province,NE China:Chronology,Geochemistry,and Tectonic Implications[J].Journal of Asian Earth Sciences,2009,34:392-402. doi: 10.1016/j.jseaes.2008.07.001

    Wu F Y,Sun D Y,Ge W Z,et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1-30. doi: 10.1016-j.jseaes.2010.11.014/

    孟恩,许文良,裴福萍,等.黑龙江省东部中泥盆世火山作用及其构造意义——来自岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素的制约[J].岩石矿物学杂志,2011,30(5):883-900. doi: 10.3969/j.issn.1000-6524.2011.05.012
    吴福元,SWILDE,孙德有,等.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,(3):443-452. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200103013
    吴福元,杨进辉,柳小明,等.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报,2005,(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003

    Wu F Y,Sun D Y,Li H M,et al.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187(1):143-173. https://www.sciencedirect.com/science/article/pii/S0009254102000189

    张艳斌,吴福元,李惠民,等.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄[J].岩石学报,2002,(4):475-481. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200204005
    林强,葛文春,吴福元,等.大兴安岭中生代花岗岩类的地球化学[J].岩石学报,2004,(3):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403004
    孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,(2):263-275. doi: 10.3321/j.issn:1005-2321.2005.02.028
    孙德有,铃木和博,吴福元,等.吉林省南部荒沟山地区中生代花岗岩CHIME定年[J].地球化学,2005,(4):305-314. doi: 10.3321/j.issn:0379-1726.2005.04.001
    徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报,2013,29(2):354-368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302002
    袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    Ludwig K R.User's Manual for ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel[J].Berkeley:Berkeley Geochronology Centre,Special Publication,2003,4:1-74. doi: 10.1016-j.immuni.2011.10.010/

    Chen F K,Hegner E,Todt W,et al.Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest,Germany:Evidence for a Cambrian magmatic arc[J].International Journal of Earth Sciences,2000,88(4):791-802. doi: 10.1007/s005310050306

    Chen F K,Siebel W,Satir M,et al.Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J].International Journal of Earth Sciences,2002,91(3):469-481. doi: 10.1007/s00531-001-0239-6

    王广婷,孙德有,孙如江,等.张广才岭南部横道河子岩体地球化学特征及其成因[J].世界地质,2015,34(2):321-329. doi: 10.3969/j.issn.1004-5589.2015.02.007
    高秉璋,洪大卫,郑基俭,等.花岗岩类区1:5万区域地质填图方法指南[M].北京:中国地质大学出版社,1991. http://xueshu.baidu.com/usercenter/paper/show?paperid=c90c374f7eb031d21477d3283db4c6f4&site=xueshu_se&hitarticle=1

    London D,Wolf M B,Morgan,et al.Experimental silicate-phosphate equilibria in peraluminous granitic magmas,with a case study of the alburquerque batholith at Tres Arroyos,Badajoz,Spain[J].J.Petrol.,1999,40:215-240. doi: 10.1093/petroj/40.1.215

    Broska I,Williams C T,Uher P,et al.The geochemistry of phosphorus in different granite suites of the western Carpathians,Slovakia:The role of apatite and P-bearing feldspar[J].Chem.Geol.,2004,205:1-15. doi: 10.1016/j.chemgeo.2003.09.004

    邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004. http://xueshu.baidu.com/usercenter/paper/show?paperid=c90c374f7eb031d21477d3283db4c6f4&site=xueshu_se&hitarticle=1
    贾小辉,王强.A型花岗岩的研究进展及意义[J].大地构造与成矿学,2009,33(3):465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017
    吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科学:地球科学,2017,47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001

    Whalen J B,Currie K L,Chappell B W,et al.A-Type granites:geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95(4):407-419. doi: 10.1007/BF00402202

    邓晋福,刘翠,冯艳芳,等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评,2015,61(4):717-734. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504002
    胡培远,李才,解超明,等.藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩——古特提斯洋壳消减的证据[J].岩石学报,2013,29(12):4404-4414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201312024
    贾晓亮,郭瑞清,柴凤梅,等.新疆库鲁克塔格西段泥盆纪二长花岗岩年龄、地球化学特征及其构造意义[J].地质通报,2013,32(213):239-250. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201302003

    Pitcher W S,Atherton M D,Cobbing E J,et al.Magmatism at a plate edge:The Peruvian Andes[M].Blaekie,Glasgow.1985. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques2/38460.pdf

    吴福元,孙德有,林强,等.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,(2):22-30. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902003
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    杨学明,杨小勇.岩石地球化学[M].北京:中国科学技术大学出版社,2000.
    孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004,(2):174-181. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200402003
    李佐臣,裴先治,李瑞保,等.西秦岭糜署岭花岗岩体年代学、地球学特征及其构造意义[J].岩石学报,2013,29(8):2617-2634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201308001
    李蓉,孙德有,苟军,等.张广才岭北部苇河花岗岩基的地球化学特征与岩石成因[J].世界地质,2012,31(3):462-470. doi: 10.3969/j.issn.1004-5589.2012.03.003
    孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,(2):263-275. doi: 10.3321/j.issn:1005-2321.2005.02.028
    郑博.黑龙江省铁力市东南部地区中生代晚三叠世—早侏罗世侵入岩的时代、地球化学特征及地质意义[D].吉林大学博士学位论文,2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089614.htm

    Pearce J A,Harris,et al.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25:956-983. doi: 10.1093/petrology/25.4.956

    Pearce A.Sources and Settings of Granitic Rocks[J].Episodes,1996,19:120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    Briqueu L,Bougault H,Joron J L,et al.Quantification of Nb,Ta,Ti and V anomalies in Magmas associated with subduction zones:Petrogenetic implications[J].Earth and Planetary Science Letters,1984,68(2):297-308. doi: 10.1016/0012-821X(84)90161-4

    Ma C Q,Li Z C,Ehlers C,et al.A post-collisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone,east-central China[J].Lithos,1998,45(1/4):431-456. doi: 10.1016-S0024-4937(98)00043-7/

    Yu J J,Wang F,Xu W L,et al.Early Jurassic mafic magmatism in the Lesser Xing'an-Zhangguangcai Range,NE China,and its tectonic implications:Constraints from zircon U-Pb chronology and geochemistry[J].Lithos,2012,142/143:256-266. doi: 10.1016/j.lithos.2012.03.016

    陈静,孙丰月,潘彤,等.黑龙江霍吉河钼矿成矿地质特征及花岗闪长岩年代学、地球化学特征[J].吉林大学学报(地球科学版),2012,42(增刊):207-215. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ2012S1025.htm
    杨言辰,韩世炯,孙德有,等.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究[J].岩石学报,2012,28(2):379-390. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202003
    秦克章,李惠民,李伟实,等.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,1999,45(2):180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011
    陈志广,张连昌,吴华英,等.内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J].岩石学报,2008,24(4):879-889. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804026
    王伟,许文良,王枫,等.满洲里—额尔古纳地区中生代花岗岩的锆石U-Pb年代学与岩石组合:对区域构造演化的制约[J].高校地质学报,2012,18(1):88-105. doi: 10.3969/j.issn.1006-7493.2012.01.008
图(9)  /  表(2)
计量
  • 文章访问数:  2458
  • HTML全文浏览量:  323
  • PDF下载量:  1904
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2018-11-25
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回