• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

一维到三维密度分布函数及其可视化在大数据分析中的应用——以苦橄质玄武岩等为例

葛粲, 张旗, 李修钰, 孙贺, 顾海欧, 李伟伟, 袁峰

葛粲, 张旗, 李修钰, 孙贺, 顾海欧, 李伟伟, 袁峰. 2019: 一维到三维密度分布函数及其可视化在大数据分析中的应用——以苦橄质玄武岩等为例. 地质通报, 38(12): 2043-2052.
引用本文: 葛粲, 张旗, 李修钰, 孙贺, 顾海欧, 李伟伟, 袁峰. 2019: 一维到三维密度分布函数及其可视化在大数据分析中的应用——以苦橄质玄武岩等为例. 地质通报, 38(12): 2043-2052.
GE Can, ZHANG Qi, LI Xiuyu, SUN He, GU Hai'ou, LI Weiwei, YUAN Feng. 2019: One-dimensional to three-dimensional density distribution functions and their applications in visualized big data analysis: Exemplified by picritic basalt and some other rocks. Geological Bulletin of China, 38(12): 2043-2052.
Citation: GE Can, ZHANG Qi, LI Xiuyu, SUN He, GU Hai'ou, LI Weiwei, YUAN Feng. 2019: One-dimensional to three-dimensional density distribution functions and their applications in visualized big data analysis: Exemplified by picritic basalt and some other rocks. Geological Bulletin of China, 38(12): 2043-2052.

一维到三维密度分布函数及其可视化在大数据分析中的应用——以苦橄质玄武岩等为例

基金项目: 

国家青年科学基金项目《地震和重力数据联合约束下的苏鲁皖地区壳幔结构反演研究》 41504042

《大别山双河超高压变质大理岩及其包裹榴辉岩的Li同位素地球化学研究》 41603005

中国地质调查局项目《资源环境重大问题综合区划与开发保护策略研究》 DD20190463

详细信息
    作者简介:

    葛粲(1986-), 男, 博士, 副教授, 从事地球科学大数据分析和可视化研究。E-mail:gecan2008@gmail.com

  • 中图分类号: P588.14;P628

One-dimensional to three-dimensional density distribution functions and their applications in visualized big data analysis: Exemplified by picritic basalt and some other rocks

  • 摘要:

    提出不同维度的密度分布函数的计算方法和可视化方案,以解决不同数量级和不同测量误差的岩石样本数据分析对比困难的问题。通过SiO2、全碱和MgO指标的三维密度分布函数和t-分布随机邻域嵌入可视化方法对GEOROC和PETDB数据库进行发掘,发现大洋岩(oceanite)和富辉橄玄岩(ankaramite)与苦橄质玄武岩(basalt,picritic)成分相近,而铁质苦橄岩(picrite,ferro)与侵入的橄榄辉长岩和苦橄岩(picrite)成分相似。利用二维密度分布函数和可视化技术,对比分析了不同岩石在TAS图解和硅镁图上的数据分布状态和数据集中核心区域。发现总体分布上,更富镁的苦橄岩的SiO2含量高于苦橄质玄武岩,超基性的苦橄岩(picrate)核心区域主要分布在TAS图解的B区,这与以SiO2=45%划分基性岩和超基性岩界线的观点矛盾。

    Abstract:

    In this paper, the calculation methods and visualization schemes of density distribution functions of different dimensions are proposed to solve the problem of difficulties in analysis and comparison of rock sample data with different orders of magnitude and different measurement errors. Data mining based on the GEOROC and PETDB databases by using the three-dimensional density distribution function of SiO2, total alkali and MgO index as well as the t-distribution random neighborhood embedding visualization method revealed that picritic basalt is similar to oceanite and ankaramite, while picrate is similar to intrusive olivine gabbro and ferropicrate. Comparisons between two-dimensional density distribution function and cumulative density contour visualization were used to analyze the data distribution of different rocks on TAS and Si-Mg maps and the core area of data concentration. It is found that the SiO2 content of magnesium-rich picrite is higher than that of picrite basalt in general distribution. The core area of picrite is mainly located in the B area of TAS diagram, which is contrary to the traditional view that SiO2=45% is used as the boundary between basic and ultramafic rocks.

  • 图  1   一维到三维密度分布分析及其可视化流程图

    Figure  1.   1-D to 3-D density distribution analysis and visualization flow chart

    图  2   SiO2-全碱-MgO三维密度分布函数的t-sne可视化

    (圆圈的半径代表数据量的大小,圆圈的距离与密度分布函数的相似程度有关,三维密度函数接近的岩石在二维图中距离越接近)

    Figure  2.   T-sne visualization of three-dimensional density distribution function of SiO2-Na2O+K2O-MgO

    图  3   8类岩石数据的SiO2-全碱投图和二维累积密度分布函数可视化(a~h分别为8类岩石数据的SiO2-全碱投图和二维密度分布函数等高线,紫色-淡红色等不同颜色代表累积密度从10%递增到100%;样本数据点同样按照累积密度等高线的数值进行了涂色;i是8类岩石50%核心区域的等高线,其中红色曲线代表苦橄质玄武岩、大洋岩、富辉橄玄岩;绿色曲线代表苦橄岩、铁质苦橄岩、橄榄辉长岩;蓝色曲线代表玄武岩和拉斑玄武岩)

    Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;R—流纹岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;F—似长石岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩

    Figure  3.   SiO2- (Na2O+K2O)maps and visualization of two-dimensional cumulative density distribution function for 8 rock data

    图  4   8类岩石数据的SiO2-MgO投图和二维累积密度分布函数可视化

    (a~h分别是8类岩石数据的SiO2-MgO投图和二维密度分布函数等高线,其中图例同图 3

    Figure  4.   SiO2-MgO maps and visualization of two-dimensional cumulative density distribution function for 8 rock data

    表  1   各类岩石样本数量和t-sne投影的坐标统计

    Table  1   Statistics of the number of rock samples and the coordinates of t-sne projection

    岩石名称 样本数量 x y
    BASALT 64352 15.58721 -10.9474
    ANDESITE 17916 21.4111 -10.6686
    RHYOLITE 14007 27.85793 -6.25479
    THOLEIITE 10955 16.06146 -11.0261
    ANDESITE, BASALTIC 10280 18.69086 -10.4295
    DACITE 9632 23.64114 -8.29206
    BASALT, ALKALINE 6740 14.7485 -7.35955
    BASANITE 4503 14.01691 -4.57348
    TRACHYTE 4281 26.31998 -5.30974
    DOLERITE 4150 15.61033 -11.0084
    GABBRO 3911 15.36645 -12.8639
    BASALT, THOLEIITIC 3086 16.08896 -10.9825
    KOMATIITE 2775 20.62374 -1.04221
    TRACHYBASALT 2616 16.46776 -6.83638
    DIABASE 2577 16.00959 -11.5096
    PHONOLITE 2360 27.12145 -4.78326
    HAWAIITE 2284 16.52253 -6.8893
    KIMBERLITE 2183 22.28322 -2.60571
    TRACHYANDESITE 2159 20.31939 -6.99264
    PICRITE 2041 12.17082 -10.4823
    GRANITE 1950 26.97359 -6.63372
    PERIDOTITE 1692 21.06825 -3.27859
    BASALT, OLIVINE 1628 14.923 -10.3652
    RHYODACITE 1420 24.47356 -7.45667
    TRACHYANDESITE, BASALTIC 1371 18.51673 -7.00667
    THOLEIITE, OLIVINE 1062 14.85753 -10.7395
    GRANODIORITE 1052 23.58413 -8.47572
    BASALT, ALKALINE, OLIVINE 1043 14.93627 -7.37283
    BASALT, TRANSITIONAL 1028 15.26546 -9.62936
    AMPHIBOLITE 994 15.54768 -12.2647
    SHOSHONITE 964 18.75574 -7.2569
    MUGEARITE 929 18.29329 -6.94383
    LAMPROPHYRE 860 13.60072 -6.21256
    ADAKITE 851 23.28493 -9.10343
    NEPHELINITE 828 13.22807 -2.34986
    TEPHRA 793 19.43718 -9.34711
    TEPHRITE 782 14.38127 -5.19469
    GRANULITE 779 15.48294 -13.2801
    DIORITE 771 21.66719 -11.5719
    LHERZOLITE, SPINEL, XENOLITH 770 19.70123 -3.84926
    LATITE 676 20.40854 -6.92619
    BONINITE 651 17.89986 -13.172
    SERPENTINITE 308 20.96866 -2.27882
    SYENITE, NEPHELINE 304 26.82648 -4.19666
    NEPHELINITE, OLIVINE 300 13.65233 -2.65991
    ANDESITE, THOLEIITIC 291 18.6852 -10.1085
    DIORITE, QUARTZ 282 21.47555 -10.9256
    DUNITE 278 25.30984 -4.2026
    SANDSTONE 275 28.60756 -7.08053
    ANDESITE, HORNBLENDE 274 21.53134 -10.2483
    TRACHYTE, ALKALINE 274 26.14345 -5.14133
    FOIDITE 260 12.75653 -2.12454
    BASALT, PICRITIC 258 12.25989 -8.42502
    KOMATIITE, PERIDOTITIC 253 20.65545 -1.33371
    BRECCIA 250 17.77428 -12.6955
    HARZBURGITE, SPINEL, XENOLITH 233 20.42683 -4.38752
    ANDESITE, HYPERSTHENE-AUGITE 224 20.10768 -10.4155
    GRANOPHYRE 212 26.01027 -7.47253
    GRANITE, BIOTITE 211 27.42636 -6.28287
    LHERZOLITE, GARNET, XENOLITH 208 20.37776 -3.82075
    GABBRO, OLIVINE 203 12.6403 -11.0718
    MINETTE 189 18.14181 -5.84798
    DUNITE, XENOLITH 187 22.27814 -4.36065
    ANDESITE, 2-PYROXENE 186 20.50536 -10.2287
    LEUCITITE 179 16.38811 -4.22292
    BASALT, SHOSHONITIC 171 17.19932 -7.11009
    SCHIST 170 16.81794 -14.5571
    RHYOLITE, PERALKALINE 168 29.3796 -5.73169
    ANDESITE, CALC-ALKALINE 167 21.03326 -10.2375
    GREYWACKE 163 23.37688 -10.1065
    GABBRO, HORNBLENDE 161 15.04572 -12.0369
    PICRITE, FERRO 154 12.55557 -11.0981
    KAMAFUGITE 149 13.79827 -2.67388
    META-BASALT 141 13.97634 -10.6699
    BASALT, OLIVINE-AUGITE 140 16.18754 -9.64572
    LATITE, QUARTZ 140 23.46039 -7.10849
    CARBONATITE, NATRO 139 29.91534 -5.4673
    GRANODIORITE, HORNBLENDE- BIOTITE 138 23.33243 -8.18094
    IJOLITE 137 18.40342 -3.13221
    BASALT, PLAGIOCLASE 134 15.63237 -9.35873
    GRANODIORITE, BIOTITE 133 24.2588 -7.49518
    SYENITE, QUARTZ 133 27.05632 -5.49837
    WEHRLITE 132 20.79014 -1.90888
    OCEANITE 130 12.24017 -7.43482
    CARBONATITE 630 24.04427 -5.02497
    BASALT, KOMATIITIC 625 12.99641 -12.8862
    PYROXENITE 576 10.73488 -10.634
    PERIDOTITE, XENOLITH 567 22.3647 -4.38247
    LHERZOLITE, XENOLITH 561 19.89378 -3.86592
    SYENITE 529 26.50009 -5.27382
    LHERZOLITE 512 20.09564 -3.43263
    GNEISS 502 25.04601 -9.08702
    ANDESITE, AUGITE- HYPERSTHENE 492 20.32324 -10.5224
    BENMOREITE 475 20.48017 -6.71672
    PHONOTEPHRITE 473 16.8542 -4.36147
    PHONOLITE, TEPHRI 469 17.4231 -4.07109
    HARZBURGITE, XENOLITH 454 20.6322 -4.34245
    BASALT, CALC-ALKALINE 447 17.44508 -11.11
    TONALITE 430 23.25654 -9.35807
    THOLEIITE, QUARTZ 427 16.85698 -10.7168
    LAMPROITE 425 18.13194 -5.69225
    BASALTIC ANDESITE 414 18.62987 -10.4017
    BASALT, SUBALKALINE 406 15.58202 -10.2094
    ANKARAMITE 404 12.39872 -8.09435
    PANTELLERITE 401 28.84587 -6.0132
    ALKALI BASALT 376 14.92808 -7.45134
    GREENSTONE 375 14.26073 -7.98944
    ANDESITE, PYROXENE 364 20.74207 -10.4955
    TRACHYDACITE 358 23.74495 -6.6863
    COMENDITE 335 28.86098 -6.02774
    BASALT, ANDESITIC 324 18.24308 -10.1489
    HARZBURGITE 317 21.28159 -4.13447
    PERIDOTITE, SPINEL, XENOLITH 314 20.04048 -3.85302
    ANDESITE, OLIVINE 129 19.14709 -11.091
    GABBRONORITE 129 14.12052 -11.8272
    CARBONATITE, CALCITE 125 24.21048 -5.31015
    PYROXENITE, XENOLITH 125 18.24421 -0.99496
    MONZONITE 124 19.71715 -7.20648
    CLINOPYROXENITE 123 18.19991 -1.06767
    NEPHELINITE, MELILITE 123 14.32507 -1.5421
    ANDESITE, BASALTIC, CALC-ALKALINE 122 18.2815 -9.66621
    ECLOGITE 122 14.00808 -9.68333
    ASH 121 28.73349 -5.64124
    BASALT, AUGITE-OLIVINE 121 16.23734 -10.202
    BASANITE, LEUCITE 121 15.00156 -4.76666
    MELILITITE, OLIVINE 119 15.84212 -1.30137
    TEPHRITE, LEUCITE 119 16.90621 -4.32697
    KOMATIITE, BASALTIC 115 12.97848 -12.8844
    LAMPROPHYRE, SHOSHONITIC 114 20.37735 -13.1823
    ABSAROKITE 113 15.99625 -7.46797
    MELILITITE 111 14.73207 -1.42496
    ANDESITE, OLIVINE- AUGITE- HYPERSTHENE 109 19.51345 -10.4657
    TRACHYPHONOLITE 109 25.84436 -5.11671
    TRONDHJEMITE 109 25.15069 -7.20645
    CAMPTONITE 107 13.91801 -5.10844
    BASANITE, NEPHELINE 103 13.86844 -4.0752
    RHYOLITE, ALKALINE 103 28.50523 -6.15424
    TURBIDITE 102 20.15457 -11.9278
    PELITE 101 22.64466 -11.4284
    LIMBURGITE 100 13.73771 -3.64633
    MONZONITE, QUARTZ 100 23.11145 -7.15484
    TRACHYTE, COMENDITIC 100 27.70746 -5.52258
    下载: 导出CSV
  • 吴永亮, 陈建平, 贾志杰, 等.地质数据本体构建及其在数据检索中的应用[J].地质通报, 2018, 37(5):945-953. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180517&flag=1
    葛粲, 顾海欧, 汪方跃, 等.基于数据密度确定分布区域的方法:以TAS图解分析为例[J].地质科学, 2018, 53(4):1240-1253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201804006

    Le Maitre R W. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram[J]. Australian Journal of Earth Sciences, 1984, 31(2):243-255. doi: 10.1080/08120098408729295

    Le Maitre R W. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the InternationalUnion of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Blackwell. 1989: 1-193.

    Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms:Recommendations of the InternationalUnion of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Cambridge University Press, 2002:1-236.

    张招崇, 郝艳丽, 王福生.大火成岩省中苦橄岩的研究意义[J].地学前缘, 2003, (3):105-114. doi: 10.3321/j.issn:1005-2321.2003.03.010
    张招崇, 王福生, 郝艳丽.峨眉山大火成岩省中的苦橄岩:地幔柱活动证据[J].矿物岩石地球化学通报, 2005, 24(1):17-22. doi: 10.3969/j.issn.1007-2802.2005.01.003
    邓晋福, 赵海玲, 赖绍聪, 等.中国北方大陆下的地幔热柱与岩石圈运动[J].现代地质, 1992, 6(3):267-274. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ199203003.htm
    赖绍聪, 秦江锋, 赵少伟, 等.青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义[J].岩石学报, 2013, 30(2):361-370. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402005

    Lehnert K, Su Y, Langmuir C, et al. A global geochemical database structure for rocks[J]. Geochem. Geophys. Geosyst., 2000, 1(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/1999GC000026

    Der Maaten L V, Hinton G E. Visualizing Data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605. http://cn.bing.com/academic/profile?id=a4446e722f6a15ad5e9a86dce982e4a5&encoded=0&v=paper_preview&mkt=zh-cn

    Green D H, Schmidt M W, Hibberson W O. Island-arc Ankaramites:Primitive Melts from Fluxed Refractory Lherzolitic Mantle[J]. Journal of Petrology, 2004, 45(2):391-403. doi: 10.1093/petrology/egg101

    Green D H. Conditions of melting of basanite magma from garnet peridotite[J]. Earth & Planetary Science Letters, 1973, 17(2):456-465. doi: 10.1016-0012-821X(73)90214-8/

    陈毓川, 刘德权, 王登红, 等.新疆北准噶尔苦橄岩的发现及其地质意义[J].地质通报, 2004, 23(11):1059-1065. doi: 10.3969/j.issn.1671-2552.2004.11.002

    Johannsen A. A Descriptive Petrography of the Igneous Rocks[J]. Nature, 1938, 142(3594):495-496. doi: 10.1038/142495a0

    Frolova T I, Petrova M A. The classification diagram of effusive rocks[C]//IUGS Subcommission, 18th Circular, Contrib., 1974, 39: 25-30.

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745

    Streckeisen A. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks[C]//IUGS Subcommission on the Systematics of Igneous Rocks, GeolRundsch, 1980, 69(1): 194-207.

图(4)  /  表(1)
计量
  • 文章访问数:  2982
  • HTML全文浏览量:  567
  • PDF下载量:  2773
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-07-15
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-12-14

目录

    /

    返回文章
    返回