• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义

蔺新望, 王星, 赵江林, 赵端昌, 周少伟, 袁璋

蔺新望, 王星, 赵江林, 赵端昌, 周少伟, 袁璋. 2019: 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 38(11): 1813-1824.
引用本文: 蔺新望, 王星, 赵江林, 赵端昌, 周少伟, 袁璋. 2019: 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 38(11): 1813-1824.
LIN Xinwang, WANG Xing, ZHAO Jianglin, ZHAO Duanchang, ZHOU Shaowei, YUAN Zhang. 2019: LA-ICP-MS zircon U-Pb age of the Jinge plagiogranite in northern Fuyun of Xinjiang and its geological implications. Geological Bulletin of China, 38(11): 1813-1824.
Citation: LIN Xinwang, WANG Xing, ZHAO Jianglin, ZHAO Duanchang, ZHOU Shaowei, YUAN Zhang. 2019: LA-ICP-MS zircon U-Pb age of the Jinge plagiogranite in northern Fuyun of Xinjiang and its geological implications. Geological Bulletin of China, 38(11): 1813-1824.

新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义

基金项目: 

新疆地勘基金中心项目《新疆富蕴县阿拉一带1:5万L45E003023、L45E003024、L45E004023、L45E004024、L46E004001五幅区域地质调查》 A16-1-LQ01

详细信息
    作者简介:

    蔺新望(1972-), 男, 硕士, 工程师, 从事区域地质调查工作。E-mail:star_cug@126.com

  • 中图分类号: P597+.3;P588.12+1

LA-ICP-MS zircon U-Pb age of the Jinge plagiogranite in northern Fuyun of Xinjiang and its geological implications

  • 摘要:

    对新疆富蕴县北部金格岩体斜长花岗岩进行LA-ICP-MS锆石U-Pb年龄测定,获得了402.7±2.9Ma(MSWD=0.17)的岩浆结晶年龄,表明岩体形成时代为早泥盆世。金格岩体岩性组合为英云闪长岩-奥长花岗岩-花岗闪长岩,具有TTG组合特征,暗示与洋俯冲作用有关。岩石地球化学具有高硅(SiO2=72.55%~77.41%),富钠(Na2O=4.94%~6.63%),贫钾(K2O=0.24%~0.95%)的特征,Al2O3含量为12.11%~15.30%,铝饱和指数在0.94~1.04之间,呈低钾拉斑玄武岩系列、准铝质-弱过铝质、Ⅰ型花岗岩的特征。稀土元素显示轻稀土元素富集、重稀土元素相对亏损,中等-弱负Eu异常的右倾型,微量元素Rb、Th、U等大离子亲石元素富集,呈明显的"峰",Nb、Ta、Ti等高场强元素强烈亏损,呈明显"TNT"负异常,显示了与俯冲作用有关的岩浆岩特征。结合区域地质资料,金格岩体形成于与洋俯冲作用有关的活动大陆边缘的陆弧环境,金格-正格河地区在早泥盆世处于局部拉张环境。

    Abstract:

    LA-ICP-MS zircon U-Pb dating of the Jin'ge plagiogranite in northern Fuyun of Xinjiang shows that it was formed at 402.7±2.9Ma (MSWD=0.17). This age reveals that the rocks of the Jinge Plagiogranite were formed in the Early Devonian. The igneous petrotectonic assemblage of the Jin'ge rocks was probably related to oceanic subduction and belonged to TTG series of tonalite-trondhjemite-granodiorite. The granites show high-SiO2, rich Na2O and poor K2O characteristics, with SiO2 content ranging from 72.55% to 77.41%, Na2O from 4.94% to 6.63%, K2O from 0.24% to 0.95%. Al2O3 from 12.11% to 15.30% and A/CNK from 0.94 to 1.04, suggesting a suite of low-K calc-alkaline series rocks, being quasi-sialuminous-wearly per-aluminous Ⅰ-type granites. The Jin'ge plagiogranite is characterized by enrichment of LREE, depletion of HREE, and strong light and heavy REE fractionation, with weak to moderate Eu negative anomalies. The trace element geochemical characteristics of the pluton show enrichment of Rb, Th, U (LILE) and La, Ce, Sm and depletion of Nb, Zr(HFSE) and Sr, P, Ti, exhibiting features of magmatic rocks related to subduction. In combination with previous studies, the authors hold that the Jin'ge pluton was formed in a continental arc under an active continental margin setting, which was related to the oceanic crust subduction, and this area was locally extensional in the Early Devonian period.

  • 生态系统服务指生态系统所形成和维持的人类赖以生存的自然环境条件与效用,是人类直接或间接从生态系统得到的所有收益[1]。黄河流域是中国重要的生态屏障,拥有多个国家重点生态功能区,生态系统服务功能十分重要。黄河流域在近40年的经济快速发展的同时,面临水资源短缺、环境污染、自然生态系统面积减少、生物多样性降低、生境破碎、生态灾难频发等系列资源环境问题[2]。从“十八大”报告提出的“把生态文明建设放在突出地位”,到2019年习近平总书记提出的实现黄河流域生态保护与高质量发展,都是要求在发展经济的同时加强生态保护,在发展与保护之间找到平衡点,实现“双赢”。对黄河流域生态系统服务价值变化进行评估,可为流域生态地质调查、生态环境保护、国土空间规划、环境经济核算、生态补偿等决策提供重要依据,也是实现流域高质量发展的关键。

    生态系统服务评价开始于20世纪50年代。1951年,美国水资源委员会发表的《流域经济分析的实践建议》从经济学的角度对流域进行定量分析,成为生态系统服务经济价值研究的起始点[3]。之后,通过损害成本法、收益转移、条件价值法、享乐价格和交通成本法、当量因子法、能值分析法等多种方法将生态系统服务的经济价值和一部分社会文化价值币值化[4]。国外已经对密西西比河流域[5]、亚马逊流域[6-7]、湄公河流域[8]进行了生态系统服务的评估,为系统了解流域生态环境问题及产品和服务供给能力提供了基础。中国也针对黄河流域的区域生态系统服务价值估算开展了大量理论与技术方法研究,如牛叔文[9]估算了黄河上游玛曲地区的生态系统服务价值,宋伟伟等[10]计算了兰州地表水生态服务价值,张楠等[11]定量计算了陕西省安塞县1999—2010年的退耕林生态系统服务价值,丁辉等[12]估算了黄河上游甘南段生态系统服务价值,杨荣等[13]对黄河包头湿地生态系统服务价值进行了货币化估算等。但大多数研究集中于流域局部区域或个别生态系统类型中,缺乏对黄河流域整体性、包含各生态系统的生态系统服务价值及其变化的研究。

    本次研究结合国内外经验,根据黄河流域实际情况,以黄河流域整体为研究对象,并考虑公众和决策者对生态服务的理解状况,将生态服务划分为供给服务:食物生产、原材料生产、水资源供给,调节服务:气体调节、气候调节、水文调节、净化环境,支持服务:土壤保持、维持养分循环、生物多样性,文化服务:美化景观,四大类11项服务,将生态系统类型划为森林、草地、农田、湿地、水体和荒漠6类。定量分析流域生态系统服务功能的空间变化和价值变化,揭示黄河流域生态系统服务功能的强弱及生态系统的稳定性状况,有助于管理者对黄河流域生态系统所提供服务的类型、大小与相对组合进行权衡管理,可以为流域国土空间结构的优化调整和自然资源综合管理提供决策依据。

    黄河干流河道全长5464 km,流经9省71个市(包括州、盟),本次研究以流经市域范围作为流域范围,流域总面积198.46×104 km2。流域内土地、矿产、水资源等自然资源非常丰富,具有极大的发展潜力,在中国经济社会发展和生态环境安全方面具有十分重要的意义。从黄河流域2015年生态系统服务价值分布图(图 1)可知,黄河流域11种生态系统服务价值总量在2015年达到5.03亿元,占当年流域GDP总量的43%;流域生态系统服务以水文、气候、土壤保持调节服务为主,三者占总生态服务价值比重分别为25.7%、20.0%、18.0%;流域生态系统服务价值空间分布上呈“南高北低、上下游低、中游高”的空间特征,中游地区大于下游地区,下游地区大于上游地区。其中,生态系统总服务价值最高的区域为甘肃省南部、阿坝藏族羌族自治州和陕西省,每公顷超过3万元,部分地区大于8万元。

    图  1  2015年黄河流经市域生态系统服务价值分布图
    Figure  1.  Distribution of ecosystem service value of the city through which the Yellow River was flowing in 2015

    研究数据来自中国科学院资源环境科学数据中心提供的2000年、2005年、2010年、2015年4期中国陆地生态系统服务价值空间分布数据集、基于DEM提取的中国流域、河网数据集等[14-15]。其中,陆地生态系统服务价值空间分布数据是以中国陆地生态系统类型遥感分类结果为基础,根据谢高地等[16-17]的生态服务价值当量因子法,借助全国净初级生产力、土壤保持空间分布数据、降水量,分别对生态系统内各服务价值当量因子价值进行一定的调整,计算得到全国范围内食物生产、水资源供给、水文调节等11种生态服务价值,单种生态服务价值求和得到总服务价值。研究还使用了北京大学城市与环境学院地理数据共享服务平台(http://geodata.pku.edu.cn)提供的2015年中国地市行政边界数据。

    借助ArcGIS空间分析功能,按黄河流经地市边界范围重新提取生成黄河流域边界数据,从4期中国陆地生态系统服务价值数据中提取生成黄河流域生态系统服务价值数据。运用Google Earth Engine平台提供的统计分析函数工具,采用线性回归[18-19]、滑动平均[20-21]和Sen’s斜率估计[22]等趋势分析方法,评估黄河流域四大类共11种生态系统服务价值的变化速率,最终得到1 km×1 km分辨率流域每公顷十一种生态服务价值,以及总生态服务价值年变化速率的空间分布图。

    2000—2015年,流域食物生产价值和原料生产价值均呈递增趋势(图 2),玉树—阿坝一带山区和下游引黄灌区减少明显。其中,食物生产价值由1027亿元上涨到1727亿元,上涨了68%;原料生产价值由990亿元上涨到1554亿元,上涨了57%。

    图  2  2000—2015年原料和食物生产价值变化
    Figure  2.  Changes in the value of raw materials and food production during 2000—2015

    宁夏河套平原、黄河三角洲地区农田面积呈增加趋势,且宁蒙河套平原、汾渭盆地农田生产潜力增长趋势较大,食物生产价值增加。下游引黄灌区的河南和山东两省,农田总面积显著下降,食物生产价值呈减少趋势。其余地区变化速率较低。

    黄河流域的不同生态系统通过其系统内部水分的蒸发、蒸腾、光合作用等一定的调温和减弱温室效应功能,其中森林和湿地是气体和气候调节功能的主要承担者。2000—2015年,黄河流域气体调节价值总体上呈递增的趋势(图 3),由2974亿元上涨到4690亿元,增长幅度为58%,其中在2005—2010年间增速放缓。2000年黄河流域气候调节价值为7223亿元,到2015年为止为10889亿元,增长近51%。气候调节价值变化和气体调节变化趋势大致相同,增长速率高的地区主要为黄土丘陵沟壑区、榆林地区、陇中黄土高原区、汾河盆地等地区,主要是由于该地区植被(森林和草地)逐渐恢复。

    图  3  2000—2015年气体和气候调节价值变化
    Figure  3.  Change in the value of gas and climate regulation during 2000—2015

    上游西部玉树地区作为全球气候变化的敏感区,受温室气体排放加剧影响比流域其他地区更显著,增温幅度最大,调节价值变小。上游非保护区域过度放牧、中游地区工农业用水激增,导致河流下泄量日趋减少,使下游河床、湖泊干涸,地下水位下降,湿地、草地生态系统退化明显,导致气体和气候价值减少。

    提供淡水是流域生态系统的服务功能之一。流域资源型缺水禀赋条件长期存在,不考虑冰川融水的生态系统服务流的变化,受整体气候暖干化影响,流域水资源供给价值整体减少(图 4)。在2000—2005的5年间由818亿元上升22.9%,达到1005亿元,但是在2005年后持续下降,下降20.6%,降至798亿元。

    图  4  2000—2015年水资源供给和水文调节价值变化
    Figure  4.  Change of water resources supply and hydrological regulation value from 2000 to 2015

    黄河上游青铜峡以上流域受气候暖干化影响,径流量和水资源供给价值呈减少趋势,主要是汛期降水减少,非汛期降水增加,非汛期产流系数低于汛期;大范围长历时有利于产流的降水过程减少,降水日数减少;降水强度有所增加,局地暴雨增多,以及增温影响。局部海西地区因为气候暖湿化影响,降水量增多,径流量增加。中部宁夏平原、河套平原、黄土高原区、泾河流域、渭河流域,以及下游黄河三角洲等地,由于植被恢复,水土流失得到有效控制,降雨量增加,径流量呈增加趋势,水资源供给价值呈增加趋势。

    生态水文调节可以理解为生态系统通过水库、湖泊、沼泽等对降水截留、过滤、吸收作用等改变降雨径流的时空分配,在一定程度上起到削峰补枯、缓和地表径流、增加地下径流等的作用。黄河流域水文调节价值在2000—2015年间呈先增后减的趋势(图 4),2005年为转折点。其中,在2000—2005年间,黄河流域水文调节价值由1.07万亿增长到1.29万亿元,增长了20%。但是2005年后,水文调节价值不断降低,降到1.06万亿元,下滑18%。

    黄河流域水少沙多,水沙关系不协调。除中游鄂尔多斯高原、汾渭盆地,上游海西、海北及阿拉善盟西部暖湿化地区,下游黄河三角洲地区增加外,大部分地区减少。流域水文调节价值的减少除与大尺度的气候变暖有关外,区域尺度的植被覆盖变化和人类用水量(如农业灌溉)的增加也是不可忽视的原因。在黄河上游,气候变化的影响占主导地位;在中下游,人类活动的影响甚至与气候变化作用旗鼓相当。

    生物多样性对于保持水土、调节气候、维持生态平衡、稳定环境具有关键性作用。黄河流域生物多样性调节价值在2000—2015年呈递增趋势(图 5),由2000年的3012亿元上涨到4775亿元,增幅59%,其中在2005—2010年间变化较平缓。

    图  5  2000—2015年生物多样性调节和净化环境价值变化
    Figure  5.  Changes in the environmental value of biodiversity regulation and purification from 2000 to 2015

    宁蒙河套平原、黄土高原、西北暖湿化地区等大部分地区生物多样性价值呈增长趋势。而上游生态环境脆弱区、下游城市化扩张严重地区,存在河流空间过度管控、生态空间被挤占、水资源过度开发等问题,导致一些重要生态空间与干支流重要廊道的生态功能遭到破坏。

    净化服务是生态系统重要的生态服务之一,通过生态系统的生态过程,在一系列物理、化学和生物作用下,将废弃物降解和净化。2000—2015年黄河流域的净化环境价值呈递增趋势(图 5),由2396亿元增加到4099亿元,增加了1703亿元,占2000年价值总量的71%。

    山区生态脆弱区、关中-天水经济区、下游中段等地区存在农业面源污染、河流底泥污染问题,部分河段纳污超载问题严重,净化环境价值呈减少态势。流域大部分地区净化环境价值呈增加趋势,流域内生态环境正在得到积极有效的恢复。

    2000—2015年呈现“增-减-增”的变化趋势(图 6),2000年初总价值为6810亿元,到2005年为止增加到8916亿元;之后到2010年减少到8088亿元。2010年后,土壤保持价值缓慢上升到8498亿元,整体上呈增加的趋势,增长了19%。土壤保持价值减少地区主要位于晋陕峡谷段和汾河地堑地区。黄河晋陕峡谷段黄土侵蚀严重,是主要的产沙段,尤其是西部黄土高原,黄土高原沟谷发育与黄河阶地相对应[23],下游阶地级数多,黄土侵蚀破碎严重,沟谷长[24];上游阶地级数少,黄土较为完整,沟谷较短。汾河地堑地区第四纪早中期发育的河流也对盆地边缘的黄土造成强烈侵蚀,黄土多支离破碎,很少残留塬面,沟谷多为老年U型沟谷[25-28]。流域整体上土壤保持价值呈增加趋势,和流域内荒漠的减少、植被覆盖的增加有密不可分的关系[27]。从2000年开始流域荒漠化扩展得到遏制,流域中游黄土高原蓄水保土能力显著增强,实现了“人进沙退”的治沙奇迹[28]

    图  6  2000—2015年土壤保持和维持养分价值变化
    Figure  6.  Changes in the value of soil conservation and maintenance nutrients from 2000 to 2015

    养分元素的循环利用是黄河流域内生态系统主要的功能之一。2000—2015年,流域内维持养分循环价值呈递增趋势(图 6),2000年价值总量为324亿元,15年内上涨了57%,达到509亿元。下游沿黄农业生产基地、关中—天水经济区、玉树—果洛—阿坝一带山区等地维持养分循环价值呈减少趋势。宁夏平原、内蒙河套平原、汾渭盆地、甘肃南部,以及延安黄土丘陵沟壑区等地区维持养分循环价值显著增加[29]

    景观美学是景观服务的重要组成部分。2000—2015年,黄河流域景观美学价值总体上呈递增趋势(图 7),由1353亿元跃为2206亿元,增长幅度达63%。中上游和西北部地区随着植被恢复、荒漠化遏制、水多沙少等情况的改善,景观美学价值不断增加。但玉树—阿坝—商洛一带林木分布转向由单一树种或生态特性相似的树种组成的单纯林为主趋势,景观美学价值降低。近30年流域内湖泊湿地、沼泽湿地、河口滩涂湿地等重要自然湿地分别减少25%、21%和40%,而景观单一的人工湿地面积增加60%以上。黄河下游滩区居住有190万居民,开发建设活动密集,存在三角洲侵蚀衰退、河流廊道破碎化严重现象[30-32]

    图  7  2000—2015年美学景观价值变化
    Figure  7.  The change of aesthetic landscape value from 2000 to 2015

    (1) 总生态系统服务价值除水文调节和水资源供给服务呈下降趋势外,总体呈上升趋势。流域总服务价值呈上升趋势。除水文调节和水资源供给服务先增后减,呈下降趋势外,其他9项服务均呈增加趋势。通过对流域食物生产、原材料生产、水资源供给等11项生态服务价值进行求和,得到流域总生态服务价值。2000年流域总生态服务价值为3.77万亿元,2005年上涨22%,为4.59万亿元,2010年下降到4.48万亿元,到2015年又上涨至5.03亿元,相比2000年增长了33.4%。

    (2) 总生态系统服务价值呈现上游南部山区明显减少、中游黄土高原区显著增加、下游轻微降低的空间格局特点(图 8)。

    图  8  2000—2015年总生态服务价值变化速率空间分布
    Figure  8.  Spatial distribution of the change rate of total ecological service value from 2000 to 2015

    ① 上游属于青藏高原和西北部干旱风沙区,物质变化和能量转换缓慢,抗干扰水平和自我平衡水平较差,一旦遭到破坏将很难逆转,生态环境脆弱性高,受全球气候变化影响,玉树—果洛—阿坝一带山区以及青海湖服务价值呈明显下降趋势;②中游黄土高原区生态服务价值增加尤为明显,增幅达48%,其南部改善面积较大而北部地区改善速度缓慢,价值增加主要是因为近年生态保护与修复取得积极有效的成果,森林植被覆盖率大幅度提高,荒漠化趋势得到遏制,生物多样性逐步提高,以国家公园为主题的自然保护地体系逐步完善;③中游太行山区和下游引黄灌区地区等城镇化率高的地区资源开发、工程建设等人类活动易于破坏原有的自然环境,导致其生态功能受损,服务价值降低。

    (3) 价值总量增长了33.4%,但增速低于GDP增速,生态环境与经济发展处于低度协调状态。流域生态系统服务价值增速低于经济发展增速。2000年、2005年、2010年、2015年GDP分别为14555亿元、52249亿元、66089亿元、116236亿元,生态服务价值占GDP比例由315%、85%、76%,下降至43%,生态系统服务价值和GDP变化率比值为0.048,生态环境与经济发展处于低度协调状态。

    (4) 服务供给与下游人口聚居的服务需求之间存在空间不匹配问题。服务供给与需求之间存在空间不匹配问题。如黄河流域生态系统服务分布呈南高北低、上下游低、中游高的空间特征,而上下游由于生态退化其生态系统服务价值在持续下降。下游河南、山东人口密度高、数量大,生态系统服务供给与人口聚居的服务需求之间存在空间不匹配(图 8)。

    为恢复、维持进而提高黄河流域生态系统服务功能,针对黄河流域生态系统服务价值变化,从生态地质工作角度出发,提出如下建议。

    (1) 动态评估流域生态系统承载力。根据生态系统服务价值变化格局,动态评估黄河流域生态系统承载力,分析生态系统服务在区域之间的流动,积极调整和改善国土空间利用类型结构、地质调查工作部署,实施生态恢复措施,为保护生态系统服务和增强流域可持续性提供有用的信息。

    (2) 聚焦关键过程、关键区域、关键要素,开展生态地质调查工作,提升生态系统服务价值,优化流域国土空间结构。其中,在食物生产和原材料生产价值减少明显区,开展土地资源及其利用问题调查研究,开展清洁能源和关键矿产绿色勘查开发;在水资源供给价值减少区,开展“气候-水-人类活动”相互作用机理研究,开展水资源系统行星边界研究,优化配置流域水资源;在气体和气候调节价值下降区,开展气候变化应对研究,分区实施植被恢复措施;在水文调节价值下降区,开展气候变化对水源涵养功能退化影响机制研究,开展重大水利工程环境效应调查研究;在生物多样性调节价值减少明显区,在典型地区建立生态修复示范,开展湿地生态系统修复;在净化环境价值呈减少态势区,开展水体富营养化、土壤污染问题和矿山地质环境问题调查研究;在土壤保持价值明显减少区,开展黄土斜坡水文-应力响应机制研究,查明淤地坝溃决风险;在维持养分循环价值减少区,开展流域生态系统承载力研究;在景观美学价值下降明显区,开展生态林业建设,开展地质遗迹调查、旅游廊道和国家公园建设。

    (1) 黄河流域生态系统服务价值以水文调节、气候调节、土壤保持调节服务为主,空间分布上呈“南高北低、上下游低、中游高”的空间特征。

    (2) 2000—2015年黄河流域生态系统11种类型服务中,水文调节和水资源供给服务以2005年为转折点,呈先增后减整体小幅下降的趋势,分别减少1%、2.3%;其他9项服务呈波动或递增上升趋势,除土壤保持价值小幅增长19%外,其他均大幅上涨50%以上,净化环境价值涨幅高达71%。

    (3) 相比2000年,2015年黄河流域生态系统总服务价值增长了33.4%,呈现“上游玉树—阿坝一带山区明显减少、中游黄土高原区显著增加、下游轻微降低”的空间格局特点;服务价值增速远低于GDP增速,生态环境与经济发展处于低度协调状态;下游生态系统服务与需求之间存在空间不匹配问题。

    (4) 从生态地质调查工作角度出发,建议动态评估黄河流域生态系统承载能力,聚焦关键过程、关键区域、关键要素,开展黄河流域生态地质调查工作,提升生态系统服务价值,优化国土空间结构。

    致谢: 岩体成因与陕西省矿产地质调查中心张亚峰高级工程师进行了有益的探讨,审稿专家对文稿提出了宝贵的修改意见及建议,在此一致表示衷心的感谢。
  • 图  1   阿尔泰造山带构造位置图[35] (a)和构造分区图[7] (b)

    Figure  1.   Tectonic position (a) and division (b) of Altay orogenic belt

    图  2   金格岩体地质简图(据参考文献1修改)

    1—岩体界线及代号;2—脉动/断层界线;3—采样位置;4—三叠纪岩体;5—石炭纪岩体;6—泥盆纪岩体;7—红山嘴组;8—苏普特岩群;9—泥盆纪斜长花岗岩/英云闪长岩;10—泥盆纪花岗闪长岩;11—泥盆纪石英闪长斑岩

    Figure  2.   Simplified geological map of the Jin'ge plagiogranite

    图  3   金格斜长花岗岩野外照片(a、b)和显微岩相照片(c、d)

    Pl—斜长石;Q—石英;Hb—角闪石;Bi—黑云母

    Figure  3.   Outcrop photographs (a, b) and microscopic photographs (c, d)of the Jin'ge plagiogranite

    图  4   金格斜长花岗岩锆石阴极发光(CL)图像及年龄值

    Figure  4.   CL images for zircons and U-Pb ages of the Jin'ge plagiogranite

    图  5   金格斜长花岗岩锆石U-Pb谐和图(a)和206Pb/238U年龄加权平均值图(b)

    Figure  5.   LA-ICP-MS zircon U-Pb concordia diagram and 206Pb/238U ages of the Jin'ge plagiogranite

    图  6   SiO2-K2O(a)[42]和A/CNK-A/NK(b)图解[43]

    Figure  6.   SiO2-K2O (a) and A/CNK-A/NK (b) diagrams

    图  7   球粒陨石标准稀土元素配分图(标准化值据参考文献[44])

    Figure  7.   Chondrite-normalized REE patterns

    图  8   原始地幔微量元素标准化蛛网图

    (标准化值据据参考文献[45])

    Figure  8.   Primitive mantle-normalized trace element spidergrams

    图  9   (Y+Nb)-Rb图解(a)和Y-Nb图解(b)(底图据参考文献[71])

    ORG—洋中脊花岗岩;Syn-COLG—同碰撞花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩

    Figure  9.   Diagrams of (Y+Nb)-Rb (a) and Y-Nb (b)

    表  1   金格岩体斜长花岗岩(D1703/1RZ) LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table  1   Isotopic analyses of LA-ICP-MS zircon U-Th-Pb ages of the Jinge plagiogranite(D1703/1RZ)

    下载: 导出CSV

    表  2   金格斜长花岗岩主量、微量和稀土元素分析结果

    Table  2   Major, trace elements and REE analyses of the Jin'ge plagiogranite

    样品 D1703/1 D1703/2 D1703/3 PM16/15 PM16/16
    SiO2 72.55 74.15 74.21 77.41 77.20
    TiO2 0.37 0.10 0.33 0.17 0.17
    Al2O3 15.03 15.30 13.98 12.46 12.11
    Fe2O3 0.48 0.04 0.60 0.79 1.72
    FeO 1.67 0.86 1.67 0.70 0.40
    MnO 0.02 0.01 0.03 0.01 0.02
    MgO 0.83 0.18 0.62 0.38 0.49
    CaO 4.09 2.64 3.33 0.31 0.36
    Na2O 5.01 6.11 4.94 6.63 6.04
    K2O 0.32 0.43 0.24 0.52 0.95
    P2O5 0.08 0.13 0.08 0.03 0.03
    烧失量 0.12 0.19 0.32 0.06 0.10
    总计 100.57 100.14 100.35 99.47 99.59
    σ 0.96 1.37 0.86 1.49 1.43
    AR 1.77 2.15 1.85 3.54 3.55
    A/CNK 0.94 1.00 0.97 1.04 1.04
    A/NK 1.75 1.45 1.67 1.09 1.10
    Mg# 47.22 27.36 40.06 49.42 68.80
    SI 9.98 2.36 7.68 4.21 5.10
    Y 39.20 17.90 44.30 64.60 62.80
    La 88.60 13.90 78.80 34.20 32.00
    Ce 157.00 25.20 142.40 78.90 70.60
    Pr 19.20 3.20 18.00 9.41 8.62
    Nd 69.40 12.10 64.40 37.90 34.70
    Sm 12.50 2.81 13.40 8.71 8.09
    Eu 2.16 0.47 3.85 1.23 1.12
    Gd 10.70 2.55 12.20 8.83 8.39
    Tb 1.45 0.46 2.02 1.64 1.52
    Dy 6.78 2.52 9.35 10.10 9.76
    Ho 1.43 0.58 1.77 2.05 2.07
    Er 3.58 1.64 4.11 6.48 6.43
    Tm 0.49 0.24 0.60 0.98 0.97
    Yb 2.99 1.52 3.48 6.42 6.55
    Lu 0.45 0.23 0.51 0.98 0.98
    δEu 0.56 0.53 0.90 0.42 0.41
    ∑REE 376.73 67.42 354.89 207.83 191.80
    (La/Yb)N 20.02 6.18 15.30 3.60 3.30
    (La/Sm)N 4.46 3.11 3.70 2.47 2.49
    (Gd/Yb)N 2.90 1.36 2.84 1.11 1.04
    P 440 729.9 535.3 131 134
    Ti 1396 547.8 1101.4 1020 1020
    Cr 13.7 11 11.6 4.41 3.37
    Zn 16.7 10.3 14.1 11.3 12.6
    Ga 16 12.5 17.4 17.9 18
    Sr 396 398.5 490.8 67.9 55.1
    Zr 212 59.5 194.9 220 207
    Ba 163 149.7 107.1 88.1 137
    Rb 47.2 57.6 29.1 12.5 15.8
    Th 15.9 8.7 11.7 10.9 12.2
    U 1.51 1.37 2.36 1.1 1.26
    Co 1.87 0.98 1.54 0.85 1.69
    Ni 6.68 8.39 6.43 0.78 0.64
    Nb 17.4 16.4 16.6 11.8 12.7
    Ta 1.21 2.35 0.87 0.99 1.06
    注:σ=(Na2O+K2O)2/(SiO2-43);AR=(MgO+CaO+Na2O+K2O)/ (MgO + CaO- Na2O-K2O);A/CNK=摩尔Al2O3/(CaO + Na2O+ K2O),A/NK=摩尔Al2O3/(Na2O + K2O);Mg# =100 ×Mg2+/(Mg2++ TFe2+),SI=100×MgO/(MgO+FeO+ Fe2O3+Na2O+K2O)。主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • Sengör A M C, Natal' in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(22):299-307. doi: 10.1038/364299a0

    Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161:339-342. doi: 10.1144/0016-764903-165

    Handy M R, Schmid S, Bousquet R, et al. Reconciling platetectonic reconstructions of Alpine Tethys with the geologicalgeophysical record mantle[J]. Geology, 2010, 39:155-158. doi: 10.1016/j.earscirev.2010.06.002

    Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chem. Geol., 2012, 328:5-48. doi: 10.1016/j.chemgeo.2012.02.005

    Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/sunduction, to orogen collapse, and orogrn recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth-Sci. Rev., 2014, 129:59-84. doi: 10.1016/j.earscirev.2013.11.010

    宋述光, 王梦珏, 王潮, 等.大陆造山带碰撞-俯冲-折返-垮塌过程中岩浆作用及大陆地壳净生长[J].中国科学:地球科学, 2015, 45(7):916-940. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201507003.htm

    Windley B F, Krner A, Guo J H, et al. Neoproterozoic to paleozoic geology of the Altai orogen, NW China:new zircon age data and tectonic evolution[J]. The Journal of Geology, 2002, 110:719-737. doi: 10.1086/342866

    曾乔松, 陈广浩, 王核, 等.阿尔泰冲乎尔盆地花岗质岩体的锆石SHRIMP U-Pb定年及其构造意[J].岩石学报, 2007, 23(8):1921-1932. doi: 10.3969/j.issn.1000-0569.2007.08.013
    王涛, 童英, 李舢, 等.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J].岩石矿物学杂志, 2010, 29(6):595-618. doi: 10.3969/j.issn.1000-6524.2010.06.002
    邓晋福, 冯艳芳, 狄永军, 等.古亚洲洋构造域侵入岩时-空演化框架[J].地质评论, 2015, 61(6):1211-1224. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201506003.htm
    章享云, 王根厚, 赵军, 等.阿尔泰乌希里克地区满克依顶萨依岩体地球化学特征、形成时代及其构造环境[J].地质通报, 2016, 35(8):1376-1387. doi: 10.3969/j.issn.1671-2552.2016.08.017
    付超, 李俊建, 唐文龙, 等.蒙古戈壁阿尔泰巴音陶勒盖地区二长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报2016, 35(4):565-571. doi: 10.3969/j.issn.1671-2552.2016.04.011
    王中刚, 赵振华, 邹天人.阿尔泰花岗岩类地球化学[M].北京:科学出版社, 1998:1-152.

    Wang T, Hong D W, Jahn B M, et al. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic intrusions from the Altai Mountains, Northwest China:implications for the tectonic evolution of an accretionary Orogen[J]. Journal of Geology, 2006, 114:735-751. doi: 10.1086/507617

    陈汉林, 杨树锋, 厉子龙, 等.阿尔泰晚古生代早期长英质火山岩的地球化学特征及构造背景[J].地质学报, 2006, 80(1):38-42. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601005
    童英.阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义[D].中国地质科学院博士学位论文, 2006: 12-101.
    童英, 王涛, 洪大卫, 等.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J].岩石学报, 2007, 23(8):1933-1944. doi: 10.3969/j.issn.1000-0569.2007.08.014
    李会军, 何国琦, 吴泰然, 等.阿尔泰-蒙古微大陆的确定及其意义[J].岩石学报, 2006, 22(5):1369-1379. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605025
    李会军, 何国琦, 吴泰然, 等.中国阿尔泰早古生代后碰撞花岗岩的发现及其地质意义[J].岩石学报, 2010, 26(8):2445-2451. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008017
    杨富全, 毛景文, 闫升好, 等.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J].地质学报, 2008, 82(4):485-499. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200804006.htm
    孙桂华, 李锦轶, 杨天南, 等.阿尔泰山脉南部线性花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].中国地质, 2009, 36(5):976-987. doi: 10.3969/j.issn.1000-3657.2009.05.003
    柴凤梅, 毛景文, 董连慧, 等.阿尔泰南缘克朗盆地康布铁堡组变质火山岩年龄及岩石成因[J].岩石学报, 2009, 25(6):1403-1415. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906011
    柴凤梅, 董连慧, 杨富全, 等.阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因[J].岩石学报, 2010, 26(2):2946-2958. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002002
    刘国仁, 董连慧, 高福平, 等.新疆阿尔泰克兰河中游泥盆纪花岗岩锆石LA-ICP-MS U-Pb年龄及地球化学特征[J].地球学报, 2010, 31(4):519-531. http://d.old.wanfangdata.com.cn/Periodical/dqxb201004004
    张志欣, 杨福全, 柴凤梅, 等.阿尔泰南缘乌吐布拉克铁矿区花岗质岩石年代学及成因[J].地质论评, 2011, 57(3):350-365. http://d.old.wanfangdata.com.cn/Periodical/dzlp201103005
    张亚峰, 蔺新望, 郭岐明, 等.阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J].地质学报, 2015, 89(2):339-354. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502010
    王春龙, 秦克章, 唐冬梅, 等.阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学锆石Hf同位素研究及其地质意义[J].岩石学报, 2015, 31(8):2337-2352. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201508015.htm
    宋鹏, 童英, 王涛, 等.阿尔泰东南缘泥盆纪花岗质岩石的锆石U-Pb年龄、成因演化及构造意义:钙碱性-高钾钙碱性-碱性岩浆演化新证据[J].地质学报, 2017, 91(1):55-79. doi: 10.3969/j.issn.0001-5717.2017.01.004

    Condie K G. Plate Tectonics and Crustal Evolution[M]. Pergamon: 1982, 1-310.

    Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids[J]. Geol. Soc. Am. Bull., 1989, 1:635-643.

    Barbarin B. A review of the relationships between granitiod types, their origins and their geodynamic environments[J]. Lithos, 1999, 46:605-625. doi: 10.1016/S0024-4937(98)00085-1

    邓晋福, 罗照华, 孙尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004:1-381.
    邓晋福, 肖庆辉, 孙尚国, 等.火成岩组合与构造环境:讨论[J].高校地质学报, 2007, 13(3):392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009
    冯艳芳, 邓晋福, 肖庆辉, 等. TTG岩类的识别:讨论与建议[J].高校地质学报, 2011, 17(3):406-414. doi: 10.3969/j.issn.1006-7493.2011.03.005
    何国琦, 韩宝福, 岳永君, 等.中国阿尔泰造山带的构造分区和地壳演化[C]//新疆地质科学(第2辑).北京: 地质出版社, 1990: 14-25.

    Li J Y, Xiao W J, Wang K Z, et al. Neoproterozoec-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjian, N W China[C]//Mao J W, Goldfarb S, Wang X, et al. Tectonic Evolution and Metallogeny of the Chinese Altay and Tinanshan. IACOD Cuidebook Series, 2003, 10: 31-74.

    Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(12):59-79. doi: 10.1016/S0009-2541(02)00195-X

    Ludwig K R. Isoplot/Ex, Version 2. 49. A Geochronological Tool kit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center Special Publication, 1999: 1: 47.

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Rubatto D. Zircon trace element geochemistry:Paritioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemcal Geology, 2002, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):589-1604. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002

    Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline rolcanic rocks from the kastamonu area, nortnern Turkey[J]. CMP, 1976, 58:63-81. doi: 10.1007/BF00384745

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides for major and minor element[J]. Lithos, 1989, 22:246-263. doi: 10.1016/0024-4937(89)90028-5

    Taylor S R, Mclenann S M. The continental crust:Its composition and evolution[M]. Blackwell:Oxford Press, 1985:1-312.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. London:Geological Society Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    牛贺才, 于学元, 许继峰, 等.中国新疆阿尔泰晚古生代火山作用及成矿[M].北京:地质出版社, 2006.
    肖序常, 汤耀庆, 冯益民, 等.新疆北部及其邻区大地构造[M].北京:地质出版社, 1992:1-171.
    袁峰, 周涛发, 岳书仓.阿尔泰诺尔特地区花岗岩形成时代及成因类型[J].新疆地质, 2001, 19(4):292-296. doi: 10.3969/j.issn.1000-8845.2001.04.013
    张亚峰, 蔺新望, 郭岐明, 等.阿尔泰南缘可可托海地区二厂房岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J].岩石矿物学杂志, 2014, 33(1):13-28. doi: 10.3969/j.issn.1000-6524.2014.01.002
    张亚峰, 蔺新望, 王星, 等.阿尔泰造山带南缘昆格依特岩体锆LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J].现代地质, 2014, 28(1):16-28. doi: 10.3969/j.issn.1000-8527.2014.01.002
    童英, 王涛, 洪大卫, 等.阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意义[J].地球学报, 2005, 26(增刊):74-77. http://d.old.wanfangdata.com.cn/Periodical/dqxb2005z1026
    张海洋, 牛贺才, Hiroaki S, 等.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据[J].高校地质学报, 2004, 10(1):106-113. doi: 10.3969/j.issn.1006-7493.2004.01.010
    刘伟, 刘丽娟, 刘秀金, 等.阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J].岩石学报, 2010, 26(2):387-400. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002003
    耿新霞, 杨福全, 柴凤梅, 等.新疆阿尔泰南缘大东沟铅锌矿区火山岩LA-ICP-MS锆石U-Pb定年及地质意义[J].矿床地质, 2012, 31(5):1119-1131. doi: 10.3969/j.issn.0258-7106.2012.05.014
    王星, 蔺新望, 张亚峰, 等.阿尔泰诺尔泰地区泥盆纪正格河火山岩的厘定及其地质意义[J].中国地质, 2015, 42(1):180-191. doi: 10.3969/j.issn.1000-3657.2015.01.014
    张海祥, 牛贺才, Kentaro T, 等.新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的SHRIMP年代学研究[J].科学通报, 2003, 48(12):1350-1354. doi: 10.3321/j.issn:0023-074X.2003.12.023
    肖庆辉, 邓晋福, 邱瑞照, 等.花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例[J].中国地质, 2009, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008
    韩宝福, 何国琦.阿尔泰山南缘泥盆纪火山岩带的大地构造性质[J].新疆地质科学, 1991, 3:89-100.
    陈毓川, 叶庆同, 冯京.阿舍勒铜锌成矿带成矿条件和成矿预测[M].北京:地质出版社, 1996:1-85.
    王京彬, 秦克章, 吴志亮, 等.阿尔泰山南缘火山喷流沉积型铅锌矿床[J].北京:地质出版社, 1998:18-60.
    牛贺才, 许继峰, 于学元, 等.新疆阿尔泰富镁火山岩系的发现及其地质意义[M].科学通报, 1999, 44(9): 1002-1004.
    万博, 张连昌.新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景[J].岩石学报, 2006, 22(1):145-152. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601015
    单强, 曾乔松, 罗勇, 等.新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及其同位素年代学研[J].岩石学报, 2011, 27(12):3653-3665. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201112013.htm
    单强, 曾乔松, 李宁波, 等.新疆阿尔泰南缘康布铁堡组钾-钠质流纹岩锆石U-Pb年龄和地球化[J].岩石学报, 2012, 28(7):2132-2144. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207015
    许继峰, 梅厚钧, 于学元, 等.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物[J].科学通报, 2001, 46(8):684-687. doi: 10.3321/j.issn:0023-074X.2001.08.016

    Yuan C, Sun M, Xiao W J, et al. Accretionary orogenesis of the Chinese Altai:Insights from Paleozoic granitoids[J]. Chemical Geology, 2007, 242:22-39. doi: 10.1016/j.chemgeo.2007.02.013

    丛峰, 唐红峰, 苏玉平, 等.阿尔泰南缘泥盆纪流纹岩的地球化学和大地构造背景[J].大地构造与成矿学, 2007, 31(3):359-364. doi: 10.3969/j.issn.1001-1552.2007.03.014
    龙晓平, 袁超, 孙敏, 等.北疆阿尔泰南缘泥盆系浅变质碎屑沉积岩地球化学特征及其形成环境[J].岩石学报, 2008, 24(4):718-732. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804011

    O'Connor J T. A Classification for quartz-rich igneous rocks based on feldspar ratios[J]. U. S. Geol. Survey Professional Paper, 1965, 525B:B79-B84.

    赵振华.关于岩石微量元素构造环境判别图解使用的相关问题[J].大地构造与成矿学, 2007, 31(1):92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011

    Pearce J A, Harris N B L, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of the granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    蔺新望, 王星, 赵端昌, 等. 新疆富蕴县阿拉一带1:5万L45E003023、L45E003024、L45E004023、L45E004024、L46E004001五幅区域地质调查报告. 2019.
图(9)  /  表(2)
计量
  • 文章访问数:  2784
  • HTML全文浏览量:  292
  • PDF下载量:  2243
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-08-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-11-14

目录

/

返回文章
返回