• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

华南南岭地区石英脉型钨矿床蚀变晕形成机制

刘向冲, 邢会林, 张德会

刘向冲, 邢会林, 张德会. 2019: 华南南岭地区石英脉型钨矿床蚀变晕形成机制. 地质通报, 38(9): 1556-1563.
引用本文: 刘向冲, 邢会林, 张德会. 2019: 华南南岭地区石英脉型钨矿床蚀变晕形成机制. 地质通报, 38(9): 1556-1563.
LIU Xiangchong, XING Huilin, ZHANG Dehui. 2019: The mechanisms for the formation of the alteration halos in tungsten deposits of Nanling Mountains, South China. Geological Bulletin of China, 38(9): 1556-1563.
Citation: LIU Xiangchong, XING Huilin, ZHANG Dehui. 2019: The mechanisms for the formation of the alteration halos in tungsten deposits of Nanling Mountains, South China. Geological Bulletin of China, 38(9): 1556-1563.

华南南岭地区石英脉型钨矿床蚀变晕形成机制

基金项目: 

国家自然科学基金项目《石英脉型黑钨矿床热液运移模拟与黑钨矿沉淀机制》 41602088

中央级公益性科研院所基本科研业务费《构造体系与成矿作用的耦合与衍生:以中国东部地区为例》 JYYWF20180602

中国地质调查局项目《右江成矿带锡金多金属矿集区矿田构造调查与找矿预测》 DD20190161

详细信息
    作者简介:

    刘向冲(1987-), 男, 副研究员, 从事成矿动力学和数学地质研究。E-mail:xcliu@cags.ac.cn

  • 中图分类号: P618.67

The mechanisms for the formation of the alteration halos in tungsten deposits of Nanling Mountains, South China

  • 摘要:

    中国地质工作者在20世纪80年代已发现南岭地区许多石英脉型钨矿床的蚀变晕宽度随深度递减,然而这一蚀变特征的形成机制至今仍未得到较好的解释。通过模拟热液运移和硅从裂隙带向邻近围岩的扩散过程,发现流体温度和围岩孔隙度是影响石英脉型钨矿床蚀变特征的重要变量。高温和高孔隙度会加速硅从裂隙向邻近围岩扩散,从而形成较宽的蚀变。在围岩孔隙度均一分布的情况下,由于深部温度高于浅部,深部围岩蚀变宽于浅部蚀变。围岩孔隙度随深度递减会抵消温度对硅扩散速率的影响,使深部围岩形成较窄的蚀变。围岩孔隙度随深度递减可能是形成石英脉型钨矿床蚀变宽度随深度减小的有效机制。前人将钨矿蚀变特征归因于岩浆热液过渡性流体不均一的物理性质,该研究为这一科学问题提供新的解释。

    Abstract:

    Geologists discovered in the 1980s that alteration halos decrease with increasing depth in many tungsten deposits of the Nanling Mountains. However, the mechanism for the formation of the alteration characteristics remains poorly understood. In this paper, the authors investigated hydrothermal flow and silica diffusion from fractures to adjacent wallrock at these tungsten deposits by using finite element based numerical experiments. The authors have found that fluid temperature and wallrock porosity exert a strong influence on silica diffusion from fractures to adjacent wallrock. Both high temperature and high porosity favor silica diffusion from fractures to adjacent wallrock and form wide alteration halos. Constant-porosity wallrock forms wider alteration halos at deeper levels, which is inconsistent with alteration characteristics of the tungsten deposits in the Nanling Mountains. Wallrock porosity that decreases with increasing depth forms alteration halos like those in those the tungsten deposits. The wall rock lithology and fracture distribution those tungsten deposits favor the formation of depth-dependent porosity and permeability. Evaluation of these two factors may help the exploration. Aqueous NaCl solutions were used in the numerical experiments. It is therefore concluded that inhomogeneous magmatic hydrothermal fluids are unnecessary in explaining the alteration characteristics at these tungsten deposits.

  • 蛇绿岩是一种可与现代大洋岩石圈对比的镁铁-超镁铁质岩石组合,在古洋消减、大陆造山带形成过程中,以构造侵位的方式产在造山带中,作为重大地质界线和板块缝合边界受到地学界的广泛关注[1],可以为古板块构造格局恢复、造山带演化、变形作用过程重建、深源成矿作用等研究提供重要信息,被广泛应用于全球板块构造系统研究,是目前人类探测地球深部物质组成的最好窗口[2-6]

    北疆地区东准噶尔造山带位于阿尔泰造山带和天山造山带之间,其古生代以来的大地构造演化是显生宙亚洲大陆增长和古亚洲洋演化的重要阶段,同时也涉及当今有关大陆造山带模型等重要理论问题[7-14]。然而东准噶尔构造带古生代以来的构造演化迄今未形成共识,尤其是对其中的蛇绿岩时代、构造属性、就位环境等存在争议[9-11, 14-18]。东准噶尔造山带大地构造相解剖表明[9-13, 19],自北向南由一系列岛弧杂岩带和增生楔杂岩组成,其大地构造相自北向南大致包括都拉特复合岛弧、阿尔曼太蛇绿岩、野马泉复合岛弧、卡拉麦里蛇绿岩、将军庙增生杂岩,研究区集中于争议较大的阿尔曼太蛇绿岩带(图 1),通过对蛇绿岩中基性岩块的岩石学和地球化学研究,探讨其岩石成因及地质意义。

    图  1  阿尔曼太蛇绿岩分布略图
    Q—第四系;O1—2Q—青河岩群;O3bs—晚奥陶世巴斯他乌组;D1t—早泥盆世托让格库都克组;D1k—早泥盆世康布铁堡组;D2k—中泥盆世库鲁木迪组;D2b—中泥盆世巴尔雷克组;D3kx—晚泥盆世卡希翁组;D3C1j—晚泥盆世-早石炭世江孜尔库都克组;C1j—早石炭世姜巴斯套组;C2b—中石炭世巴塔玛依内山组;Σ—札河坝-阿尔曼太蛇绿岩;γδοD—泥盆纪英云闪长岩;γβC—石炭纪黑云母花岗岩;ξγC—石炭纪正长花岗岩
    Figure  1.  Distribution map of Armantai ophiolite

    前人研究认为,阿尔曼太蛇绿岩为SSZ型蛇绿岩,产于岛弧、弧后盆地等环境,其主要证据在于玄武岩的地球化学特征。分析认为,该区玄武岩Nb相对于Th、La、Ce亏损,稀土元素曲线皆为轻稀土元素(LREE)富集型,且变化范围较宽,说明了幔源的多样性。阿尔曼太蛇绿岩套变质橄榄岩由于强烈蛇纹石化,其主量元素的地球化学意义不大,而堆晶岩成分变化较大,显示了岩浆结晶分离作用的影响,浅成-喷出岩类以辉绿岩、玄武岩和安山玄武岩为主,主体为亚碱性系列[17]

    研究区阿尔曼太蛇绿岩带位于准噶尔盆地东北缘,乌伦古河南侧,西起准噶尔盆地东缘的札河坝附近,向东沿阿尔曼太山,断续延伸到中蒙边境,走向北西西,蛇绿岩带长约200km,宽3~5km。阿尔曼太蛇绿岩带不同区段各单元发育情况不同,出露宽度相差悬殊,最宽处在札河坝一带,变窄处在兔子泉以西,出露只有数十米,甚至缺失。在东段中蒙边境地区以变质玄武岩为主,变质橄榄岩仅零星出露;在阿尔曼太山主脊线一带,蛇绿岩套发育较完整,变质橄榄岩、堆晶辉长岩和辉绿岩、玄武岩、玄武安山岩均有发育,但完好剖面不多见,堆晶岩、辉绿岩一般以残块形式出现;在西段札河坝地区蛇绿岩以发育变质橄榄岩为主,堆晶岩和辉绿岩不及阿尔曼太山主脊线处发育,顶部有具枕状构造、变形强烈的玄武岩。

    本次研究对札河坝-二台蛇绿岩测制了Ⅹ、Ⅺ号剖面(图 2图 3)。剖面控制了岩块、基质的规模、产状、接触关系。从图 2可以看出,札河坝地区蛇绿岩组分较齐全,有(白云石)蛇纹岩、辉长岩、斜长岩、辉绿岩、玄武岩、放射虫硅泥质沉积。各个岩石单元呈断块产出,相互叠置,由于受断裂构造的影响,各块体岩石均破碎严重。剖面测制,均从围岩地层开始,绿岩各岩块均小规模出露,且间隔大片第四系,受比例尺影响,剖面均未能连续穿透。但基本岩石组合已经明确,后续多为重复出现。

    图  2  阿尔曼太蛇绿岩剖面(Ⅹ号实测剖面17~59层)
    1—粉砂岩;2—绢云母板岩;3—放射虫火山灰凝灰岩;4—硅质岩;5—辉绿岩;6—玄武岩;7—长岩;8—蛇纹岩;9—辉石橄榄岩;10—闪长岩;11—斜长花岗岩;12—碳酸盐脉;13—逆冲断层;14—透镜体
    Figure  2.  The section of Armantai ophiolite(the X measured section of 17~59 strata)
    图  3  阿尔曼太蛇绿岩剖面(Ⅺ号实测剖面0~21层)
    1—灰岩;2—白云岩;3—角砾岩;4—粉砂岩;5—长石岩屑砂岩;6—安山质角砾凝灰岩;7—滑石菱铁片岩;8—绢云千糜岩;9—硅质岩;10—辉绿岩;11—辉长岩;12—蛇纹岩;13—闪长岩;14—斜长花岗岩;15—透闪石岩;16—安山玄武岩;17—逆冲断层
    Figure  3.  The section of Armantai ophiolite (the XI measured section of 0~21 strata)

    蛇纹岩一般呈暗灰绿色、黑绿色或黄绿色,色泽不均匀,质软、具滑感,叶片、纤维、纤状变晶结构,块状构造,表面局部可见蛇纹石化石棉。镜下为交代网状结构,主要由蛇纹石(60%~65%)、菱镁矿(20%~25%)和磁铁矿(5%~10%)、滑石(2%~3%)、少量铬尖晶石及极少量透闪石组成。以细粒磁铁矿、菱镁矿集合体为网而以蛇纹石为格(结)组成交代网格结构,表明原始矿物是橄榄石,局部交代强烈被蛇纹石纤状结合体替代网格。其中蛇纹石有2种:一种是无序排列的叶蛇纹石鳞片集合体,一种是平行排列的纤蛇纹石。一般叶蛇纹石排列在内核,而纤蛇纹石排列在外环。菱镁矿呈斑点浸染分布,有时聚集成团块。磁铁矿主要呈细粒集合体网脉状结构,少量集合成磁铁矿粒晶(图 4-ab)。

    图  4  蛇纹岩(a、b)和变质玄武岩(c、d)宏观及显微照片
    Pl—斜长石;Cal—方解石;Tlc—滑石;Srp—蛇纹石;Px—辉石;Mgs—菱镁矿
    Figure  4.  Photos and microphotographs of serpentinite(a, b) and basalt(c, d)

    镁铁质火山岩蚀变相对较弱,岩性为玄武岩,出露面积较大,岩石为灰黑色、青灰色,风化面多为褐色,碎裂结构,块状构造,局部具有残破的枕状构造。镜下为斑状结构,基质具间粒间隐结构。斑晶含量20%~30%,粒径为0.5~3mm,主要由斜长石和辉石组成。斜长石斑晶有2类:一类以绢云母化为主,呈碎屑状或板柱状;一类以钠黝帘石化为主,常呈板柱状,与基质协调。辉石多呈聚晶,多数绿泥石化、方解石化,个别新鲜但内部被交代。基质更复杂,由斜长石、较多蚀变矿物(绿泥石、绿帘石、阳起石和方解石)和极少量石英组成。局部具有典型的间粒间隐结构(图 4-cd)。

    野外样品采自阿尔曼太蛇绿构造岩带,主要对蛇绿岩中具代表性的基性熔岩按路线进行采样,共采集3组样品,其中在阿尔曼太兔子泉地区采集1组样品(AMT06),在阿尔曼太山地区采集2组样品(AMT11、AMT12)。通过镜下岩相学研究,对较新鲜、蚀变弱、无脉体的样品进行了岩石地球化学测试,测试单位为中国地质调查局西安地质调查中心。主量元素的XRF分析在Xios4.0kwX-荧光光谱仪(仪器编号为SX-45)上完成,精度和准确度优于5%;微量和稀土元素采用等离子质谱仪ICP-MS(仪器编号为SX-50)进行分析,分析精度和准确度优于10%,其中样品AMT06、AMT11、AMT12测试结果见表 1

    表  1  阿尔曼太基性岩主量、微量和稀土元素含量
    Table  1.  Major, trace and rare earth elements compositions
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT06-147.110.7715.923.535.190.158.514.853.684.290.25.7999.990.6557.85.2976.140613136.323.417011.80.291.2162
    AMT06-248.120.8517.143.174.850.127.173.934.34.420.215.721000.6361.15.8575.113030.425.328.816410.90.3582.3193
    AMT06-347.90.8817.233.315.10.137.043.963.864.790.225.5799.990.6163.13.0272.213227.525.332.816511.30.6467.8273
    AMT06-447.460.8316.732.985.180.137.584.294.124.490.216.02100.020.6367.63.3873.91815024.229.117211.61.0189.2210
    AMT06-5480.816.573.214.930.147.444.454.343.950.225.96100.010.6371.54.8872.119166.228.926.31469.650.67108175
    AMT06-648.380.816.83.035.190.136.964.744.133.970.25.68100.010.6169.83.6468.425576.429.729.31448.950.5491.2258
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT06-1219264.240.3585.51.8516.90.963.0713.9303.8816.23.640.963.50.513.520.722.020.291.770.2818.981.20.81
    AMT06-223225.74.630.494.12.12180.953.2515.131.74.0416.63.71.053.590.493.710.762.170.3420.3118.885.60.87
    AMT06-324527.44.690.3696.92.0318.20.873.0514.330.94.0117.13.991.083.60.554.070.772.340.322.180.3520.385.60.85
    AMT06-423325.54.640.3589.41.9416.50.9314.230.93.8415.83.881.133.380.533.780.752.230.31.970.3219.3830.93
    AMT06-521224.14.640.494.82.1517.413.415.232.24.0716.83.961.193.660.543.50.762.190.32.020.3319.786.70.94
    AMT06-622426.34.530.3488.11.9417.30.953.2114.330.53.9816.33.741.023.410.533.560.742.160.292.010.2818.682.80.85
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT11-145.241.5512.614.227.930.224.1313.263.930.520.156.1899.940.3993.31.8691.816676.94314.212.21.670.8343139
    AMT11-246.811.7112.673.668.430.214.5311.164.550.230.255.7899.990.4165.20.8698.113776.743.412.26.860.940.421260
    AMT11-348.041.6212.723.398.180.194.8510.824.520.220.235.299.980.4462.81.551011325137.613.15.670.640.8726993.5
    AMT11-445.21.5713.23.389.10.194.6710.94.20.580.196.899.980.4177.41.8410512450.741.11318.62.20.5126693.3
    AMT11-547.451.6512.773.768.080.24.810.984.390.330.245.3499.990.43532.5399.912945.53712.39.30.970.85276113
    AMT11-644.481.6213.14.248.690.214.7611.444.020.580.186.69100.010.41941.810413255.442.213.817.62.180.4823877.8
    AMT11-745.211.5713.83.657.480.18412.544.10.610.26.6499.980.41102.3187.112561.142.813.614.81.960.28353140
    AMT11-845.231.3413.494.135.460.17416.113.30.470.166.1399.990.44891.886195.848.1369.04101.40.24238128
    AMT11-946.421.4410.653.629.450.345.0614.443.220.350.164.8499.990.4262.80.6197.310550.744.812.97.940.920.0917678.2
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-130041.31.660.284.92.0215.80.270.143.4110.21.8310.73.971.254.970.816.021.333.960.543.790.5636.653.30.86
    AMT11-231445.82.060.17942.2914.80.240.113.86112.1312.34.511.515.970.957.121.644.780.694.620.745.161.80.89
    AMT11-330846.81.570.09790.52.1713.60.270.113.249.751.7711.64.091.45.320.856.71.544.530.624.250.6241.756.30.91
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT11-431944.61.40.1188.32.0615.10.210.13.069.391.7910.63.961.35.180.86.231.464.350.624.070.63953.40.87
    AMT11-529945.51.510.1189.91.9813.70.310.163.710.51.9711.53.91.295.550.886.781.454.640.664.20.6242.357.60.84
    AMT11-631243.31.440.1490.21.9717.80.230.053.089.41.7310.83.881.185.090.826.081.284.10.63.620.5437.252.20.81
    AMT11-728641.62.530.1596.42.1518.60.270.124.39122.0411.33.931.054.80.745.561.243.830.513.250.4833.655.10.74
    AMT11-826436.92.890.2183.41.7119.50.260.183.8910.41.710.23.220.994.160.674.751.033.270.4930.4429.148.20.82
    AMT11-9301422.740.1980.51.7913.80.240.123.269.381.549.293.7214.390.75.341.163.740.53.310.4833.247.80.75
    样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5烧失量总计Mg#CuPbZnCrNiCoLiRbCsMoSrBa
    AMT12-147.691.6214.042.19.360.168.568.583.490.20.174.0199.980.5887.31.1999.252828556.824.63.90.330.3309102
    AMT12-248.251.6313.512.248.710.168.868.753.440.310.183.961000.6801.458554026952.425.53.580.330.29282191
    AMT12-347.41.4814.081.787.60.147.279.753.880.580.195.851000.5966.11.048143119246.225.76.150.480.22225439
    AMT12-446.051.212.651.616.450.146.1513.373.541.040.147.6599.990.5876.81.2364.935116138.818.98.170.40.5207122
    0
    AMT12-546.671.5213.993.196.80.147.4313.592.470.210.173.7999.970.581011.3673.645223150.720.73.140.340.2375127
    AMT12-644.581.413.11.868.340.168.1211.852.980.60.166.8399.980.5971.91.281.444321449.228.86.490.560.18234554
    AMT12-745.721.4312.961.627.530.157.1212.523.450.510.186.82100.010.5978.20.9670.44112195021.25.290.280.3270418
    AMT12-947.31.3914.912.857.590.147.311.192.690.340.144.1499.980.5648.11.0579.94222004524.93.660.190.33381273
    样品VScNbTaZrHfGaUThLaCePrNdSmEuGdTbDyHoErTmYbLuYΣREEδEu
    AMT12-126833.214.31.011062.1618.70.320.8511.626.63.6416.54.311.44.950.794.7912.690.442.630.3626.181.70.92
    AMT12-226734.313.61.011042.1617.70.320.8710.824.73.5116.23.791.334.680.754.680.972.680.442.450.3425.477.30.96
    AMT12-323530120.8896.11.9714.50.450.6910.523.23.0914.83.471.114.230.744.540.942.510.412.50.3124.772.40.88
    AMT12-419624.79.290.7875.91.5613.10.30.587.83182.4411.32.741.23.590.593.650.82.10.342.120.2820.5571.17
    AMT12-525329.612.40.9897.22.0617.70.420.749.0221.43.1713.93.611.434.40.724.570.922.540.42.470.3324.468.91.09
    AMT12-623329.4120.8790.31.8315.60.560.6910233.1613.73.521.264.280.694.170.842.250.372.340.3122.769.90.99
    AMT12-722627.4120.93921.7215.40.50.689.7321.83.0114.63.341.194.110.654.290.892.290.422.420.3223.869.10.98
    AMT12-921227.812.60.871042.1321.60.391.099.7623.53.1514.33.411.414.20.674.30.872.330.392.570.2922.971.21.13
    注:Mg#=MgO/(MgO+TFeO)(分子数);主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    样品AMT06 SiO2含量为47.11%~48.38%,平均47.83%;TiO2含量为0.77%~0.88%,平均0.82%,与IAT(0.83%)较接近[20];Al2O3含量为15.92%~17.23%,平均16.73%,与岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征相似,后两者分别为16%和17.08%[21],而明显不同于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[22];MgO含量为6.96%~8.51%,平均7.45%,相对较高;Mg#值为0.61~0.65,平均0.63,接近于原始岩浆成分(0.68~0.75),说明原生岩浆的分异演化较弱。Na2O + K2O含量为7.97% ~8.72%,平均为8.39。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围,且样品点非常集中,变化范围小(图 5)。

    图  5  Nb/Y-SiO2图解和SiO2-TFeO/MgO图解
    Figure  5.  Nb/Y-SiO2 and SiO2-TFeO/MgO diagrams

    样品AMT11 SiO2含量为44.08%~48.04%,平均46.01%;TiO2含量为1.34%~1.71%,平均1.56%,与MORB的TiO2(1.5%)较接近[20];Al2O3含量为10.65%~13.80%,平均12.78%,含量较低;MgO含量为4.00%~5.06%,平均4.53%;Mg#值为0.39~0.44,平均0.42,说明原生岩浆发生分异演化。Na2O含量为3.22%~4.55%,平均4.03%;K2O含量为0.22%~0.61%,平均0.43%;Na2O+K2O含量为3.57%~4.78%,平均4.46%。主量元素相对富MgO,贫Al2O3、K2O,Na2O含量大于K2O含量,类似于MORB型岩石。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    样品AMT12 SiO2含量为44.58%~48.25%,平均46.71%;TiO2含量为1.20%~1.63%,平均1.46%,介于IAT(0.83%)与MORB(1.5%)之间[20],更接近于MORB。Al2O3含量为12.65% ~14.91%,平均13.66%,近于大西洋、太平洋和印度洋中脊拉斑玄武岩的Al2O3含量(分别为15.6%、14.86%、15.15%)[21],明显不同于岛弧拉斑玄武岩和板内溢流拉斑玄武岩高Al2O3含量特征,后两者分别为16%和17.08%[22];MgO含量为6.15%~8.86%,平均7.60%,较高;Mg#值为0.56~0.60,平均0.58%,低于原始岩浆成分(0.68~0.75),说明原生岩浆发生较弱的分异演化。Na2O含量为2.47%~3.88%,平均3.24%;K2O含量为0.20%~1.04%,平均0.47%;Na2O+K2O含量为2.68%~4.58%,平均3.72%。在SiO2-Nb/Y图解上,所有样品的Nb/Y值均小于0.7,位于亚碱性系列区;从SiO2-TFeO/MgO图解可以看出,所有样品点位于拉斑系列范围(图 5)。

    AMT06样品的稀土元素总量(∑REE)较高,为81.19×10-6~86.72×10-6,平均为84.14×10-6,轻、重稀土元素比值(LREE/HREE)在2.07~2.24之间,(La/Yb)N=4.46~5.33,(La/Sm)N=2.24~2.55,(Gd/Yb)N=1.34~1.60,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。在球粒陨石标准化配分模式图(图 6)中,配分曲线右倾,强烈富集轻稀土元素,Eu显示弱的负异常(δEu值为0.81~ 0.94,平均0.87)。原始地幔标准化微量元素蛛网图(图 6)显示,大离子亲石元素Rb和K富集,Sr强烈亏损,而高场强元素相对亏损,具有较强的负Nb异常和较弱的Hf、Ti负异常,Zr、Sm显示为较弱的正异常。

    图  6  稀土元素球粒陨石标准化配分图解[23]和微量元素原始地幔标准化配分图解[23]
    Figure  6.  Chondrite-normalized REE patterns and primitive mantle normalized trace element patterns

    AMT11样品的∑REE较高,为47.81×10-6~61.78×10-6,平均为53.98×10-6,LREE/HREE值在0.48~0.65之间,(La/Yb)N=0.51~0.92,(La/Sm)N=0.48~0.75,(Gd/Yb)N=1.01~1.19,表明轻稀土元素亏损而重稀土元素富集,轻、重稀土元素分馏不明显,轻稀土元素内部的元素分馏程度较重稀土元素分馏弱。从球粒陨石标准化配分模式图(图 6)可以看出,轻稀土元素亏损,而重稀土元素呈平坦型分布,稀土元素配分模式与洋脊拉斑玄武岩稀土元素配分曲线相似,Eu显示弱负异常(δEu值为0.71~0.91,平均0.83)。在原始地幔标准化的微量元素蛛网图(图 6)上,大离子亲石元素Rb、Ba、U和K富集,Sr弱亏损,高场强元素显示Nb、P等的负异常。高场强元素分异不明显,显示岛弧岩浆的特征,说明该玄武岩的形成与板块俯冲有关。

    AMT12样品的∑REE较高,为56.98×10-6~81.70×10-6,平均为70.92×10-6,LREE/HREE值在1.28~1.46之间,(La/Yb)N=2.48~3.00,(La/Sm)N=1.56~1.89,(Gd/Yb)N=1.32~1.55,表明轻稀土元素富集而重稀土元素亏损,轻、重稀土元素之间分馏明显,轻稀土元素组内部的元素分馏程度较重稀土元素分馏强。球粒陨石标准化配分模式图(图 6)显示,配分曲线右倾,强烈富集轻稀土元素,Eu无明显异常(δEu值为0.88~1.17,平均1.02)。在原始地幔标准化微量元素蛛网图(图 6)上,大离子亲石元素Rb、Th和K亏损,Ba、U具正异常,而高场强元素相对亏损,具有较强的正Ta异常和较弱的负Hf异常,Hf、Sm显示为较弱的正异常。

    在基性熔岩的TiO2- MnO×10-P2O5×10图解(图 7)中,AMT06样品点主要落入钙碱性玄武岩(CAB)和岛弧拉斑玄武岩(IAT)分界线区域,AMT11、AMT12总体落入洋中脊玄武岩(MORB)区域,其中AMT12样品点大部分落入MORB,少数有从IAT到MORB的过渡趋势。在Nb/La-(Th/Nb)N图解(图 8-a)中,除AMT12样品外,其余样品Nb/La值均小于1,且除AMT11和AMT12以外,其余样品(Th/Nb)N值均大于1。以上特征显示,除AMT12样品外,AMT06和AMT11样品均遭受地壳不同程度的混染。在基性熔岩Zr-Zr/Y图解(图 8-b)中,AMT06和AMT12样品点主要投在板内玄武岩(WPB)及与MORB的边界区域,Zr及Zr/Y值(65.70×10-6~119.00×10-6, 3.00~5.36)与大陆玄武岩(Zr>70×10-6, Zr/Y>3)相符。AMT11样品点均落入洋中脊玄武岩区域和岛弧玄武岩区域,并具有过渡的趋势,Zr及Zr/Y值(40.90×10-6~122.00×10-6, 1.84~3.02)与岛弧玄武岩(Zr < 130×10-6, Zr/Y < 4)相符[24]。在此基础上,基性熔岩的Th-Ta-Hf/3(图 9-a)和Nb×2-Zr/4-Y(图 9-b)图解显示,AMT06和AMT11样品点主要投入MORB和IAB区域,反映其与洋中脊和消减带的岛弧环境相关,AMT06样品主要显示岛弧玄武岩特征,而AMT11样品主要显示洋中脊玄武岩特征。AMT12样品点投入板内碱性玄武岩和板内玄武岩区域,表明其与板内拉张有关。

    图  7  TiO2-MnO×10-P2O5×10图解
    CAB—钙碱性玄武岩;IAT—岛弧拉斑玄武岩;MORB—洋中脊玄武岩;OIT—洋岛拉斑玄武岩;OIA—洋岛碱性玄武岩
    Figure  7.  TiO2-MnO×10-P2O5×10 diagram
    图  8  (Th/Nb)N-Nb/La图解(a)和Zr-Zr/Y图解[24](b)
    WPB—板内玄武岩;MORB—洋中脊玄武岩;IAB—岛弧玄武岩
    Figure  8.  (Th/Nb)N-Nb/La(a)and Zr-Zr/Y(b)diagrams
    图  9  基性熔岩Hf/3-Th-Ta(a)和Nb×2-Zr/4-Y(b)图解
    a中:A—N型洋中脊玄武岩;B—E型洋中脊玄武岩和大陆拉斑玄武岩的区分;C—大陆碱性玄武岩和大陆玄武岩的区分;D—消减性板块边缘玄武岩区分;图b中:AⅠ、AⅡ—板内碱性玄武岩;B—P型洋脊玄武岩;AⅡ+C—板内拉斑玄武岩;D—N型洋脊玄武岩;C+D—弧火山岩
    Figure  9.  Hf/3-Th-Ta (a) and Nb×2-Zr/4-Y (b) diagrams of basic lava

    据研究,Ba、Th、Nb、La四个分配系数相近的极不相容元素在海水蚀变或变质过程中较稳定,尤其是它们的比值在部分熔融和分离结晶过程中均保持不变,可最有效地指示源区特征。在基性熔岩La-La/Nb(图 10-a)和Nb-Th/Nb(图 10-b)图解中,AMT06样品点投入IAB区域,AMT11样品点主要投入MORB区域,AMT12样品点位于洋岛玄武岩(OIB)区域或其边界附近,且兼具二者特征或从MORB向IAB过渡的特点。

    图  10  基性熔岩La-La/Nb(a)和Nb -Th/Nb(b)图解
    IAB—岛弧玄武岩;MORB—洋中脊玄武岩;OIB—洋岛玄武岩
    Figure  10.  La-La/Nb (a) and Nb-Th/Nb (b) diagrams of basic lava

    研究区基性熔岩AMT06样品的Nb/La值(平均0.31)与典型的岛弧岩浆岩的Nb/La值(约为0.3)接近或一致,说明AMT06样品具有岛弧玄武岩特征;AMT11样品中,Th/Ta=0.63~1.45,平均值为0.83,La/Ta=17.05~33.64,平均值为24.62,与MORB中Th/Ta =0.75~2,La/Ta=10~20[25]一致,说明AMT11样品的Th/Ta、La/Ta值,更接近SSZ环境对应的比值(Th/Ta=3~5, La/Ta=30~40);AMT12样品Nb/La的平均值为1.24,与洋岛玄武岩Nb/La值(约1.3)接近,说明AMT12样品具有板内洋岛玄武岩特征。

    由此可见,阿尔曼太蛇绿岩中的基性熔岩包括3种类型,即岛弧型玄武岩(AMT06)、洋中脊玄武岩(AMT11)和洋岛玄武岩(AMT12)。其中,OIB是在洋壳俯冲时被刮削下来与其组分一起卷入蛇绿岩带就位形成的,并非蛇绿岩组分;MORB和IAT属于蛇绿岩组成部分,其球粒陨石标准化配分曲线具有轻稀土元素略亏损型的MORB特征和轻稀土元素略富集的IAT特征,原始地幔标准化配分曲线表现为IAT和MORB的双重特点,主量、微量元素判别图解显示,IAT和MORB兼具并呈现过渡的特点,相关微量元素比值特征也显示相似的特征,该特点与阿曼蛇绿岩相似[20]。结合对南智利中这种过渡型蛇绿岩的研究:从洋脊到海沟,蛇绿岩地球化学特征有从MORB向SSZ方向过渡演化的趋势,并且越向海沟,SSZ的特点就越明显[26]。针对这一特性,笔者认为,阿尔曼太蛇绿岩的形成可能介于洋脊到海沟之间的偏海沟区域。

    在基性岩Zr/Nb-Nb/Th图解(图 11-a)中,AMT06样品点主要投在岛弧玄武岩区域(ARC),AMT11样品点主要投入N-MORB的亏损地幔区域,AMT12样品点投在洋底玄武岩(OPB)边界附近。在基性岩Nb/Y-Zr/Y图解(图 11-b)中,样品点均主要落在△Nb线两侧,大多投入介于洋底玄武岩(OPB)的原始地幔(PM)与N-MORB的亏损地幔(DM)之间,指示这些样品可能为相同岩浆体系下演化的产物,且AMT12样品表现出该基性岩形成过程中,分别受到批次熔融(F)和俯冲流体作用的影响。样品在Zr/Nb-Nb/Th图解(图 11-a)中,主要集中在大陆岩石圈(EN)和大陆上地壳(UC)区域,表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    图  11  基性岩Zr/Nb-Nb/Th(a)和Nb/Y-Zr/Y(b)图解[27]
    DEP—高度亏损地幔;EN—富集单元,包括上地壳和大陆岩石圈,后者可能具有消减带化学特征;REC—循环单元,包括Em1、Em2和HIMU;HIMU—高(U/Pb)地幔源区;Em1、Em2—富集地幔源区;UC—大陆上地壳;ARC—岛弧产生的玄武岩;N-MORB—洋脊玄武岩;OIB—洋岛玄武岩;OPB—洋底玄武岩;PM—原始地幔;DM—浅部亏损地幔单元。单箭头指示批次熔融(F)和俯冲流体(SUB)作用,△Nb线为地幔柱源区和非地幔柱源区的分界线
    Figure  11.  Zr/Nb-Nb/Th (a) and Nb/Y-Zr/Y (b) diagrams of basic lava

    对阿尔曼太基性熔岩的微量元素比值与不同地幔端元进行对比(表 2),基性熔岩的相关微量元素比值特征显示,其明显介于亏损地幔与大陆地壳之间,反映其来源于亏损地幔,并受到后期地壳物质的混染作用或来自消减残板片析出流体的交代作用,即与板块的俯冲相关。

    表  2  阿尔曼太基性熔岩微量元素比值与不同地幔端元的对比
    Table  2.  Comparative studies of the trace element ratio in lava and different mantle elements
    样品Zr/NbLa/NbBa/NbBa/ThRb/NbTh/NbTh/LaBa/LaTh/U
    原始地幔14.80.949.0770.910.1170.1259.64.1
    亏损地幔30.01.074.3600.360.0700.0704.0
    大陆地壳16.22.2054.01244.700.4400.20025.03.8
    HIMU2.7~5.50.66~0.774.9~6.539~850.30~0.430.078~0.1010.107~0.1336.8~8.73.5~3.8
    Em15.3~11.50.86~1.1911.4~17.8103~1540.88~1.170.105~0.1220.107~0.12813.2~16.94.50~4.86
    Em212.0~15.350.89~1.097.3~11.067~840.59~0.850.111~0.1570.122~0.1638.3~11.3
    阿尔曼太基性熔岩对应不同地幔端元微量元素比值平均值
    阿尔曼太
    基性熔岩
    AMT0620.053.1846.3467.2535.170.690.2214.653.37
    AMT1148.451.8955.12901.456.460.060.0328.920.47
    AMT127.820.8137.75614.860.430.060.0845.562.00
    注:HIMU为高(U/Pb)值地幔端元;Em1、Em2为富集地幔端元1和2;元素含量为平均值;地幔端元数据据贾大成等[28]
    下载: 导出CSV 
    | 显示表格

    (1)阿尔曼太蛇绿岩为以泥盆纪地层为基质,各构造岩块为其组成部分的蛇绿岩带。蛇绿岩中变质橄榄岩、堆晶岩、基性火山岩较发育,代表扩张机制的岩墙群规模很小,札河坝地区硅质岩较发育,并识别出斜长岩和斜长花岗岩岩块。层序组合虽受构造破坏,但从总体看仍是一套组合较完整的蛇绿岩。

    (2)对阿尔曼太蛇绿岩中基性熔岩岩石地球化学特征研究表明,基性熔岩可分为3种类型,即洋岛玄武岩(OIB)、洋中脊玄武岩(MORB)和岛弧玄武岩(IAT)。其中洋岛玄武岩不属于蛇绿岩成分,与地幔柱或热点作用有关,是后期卷入蛇绿岩带随其他组分一同构造就位而成的;基性熔岩主量和微量元素特征揭示,岩浆源于亏损的地幔源区,并且存在消减组分加入的交代作用,表明其成因与俯冲作用有关。

    (3)结合阿尔曼太蛇绿岩构造环境判别图解,基性熔岩显示出IAT和MORB兼具并呈现过渡的特点,推断该蛇绿岩的形成与岛弧相关,其形成可能介于洋脊到海沟之间的偏海沟区域。通过分析基性熔岩的物质来源,指示其可能为相同岩浆体系下演化的产物,并表明其形成与岛弧或陆壳物质的带入密切相关,与岛弧带关系密切。

    致谢: 本文数值实验在澳大利亚昆士兰大学超级计算机Savanna上完成,审稿专家提出了详细的修改意见,在此一并致谢。
  • 图  1   南岭成矿带钨矿分布示意图[29]

    Figure  1.   Distribution of tungsten deposits in the Nanling Mountains, South China

    图  2   南岭地区石英脉型钨矿典型矿脉

    a—江西大吉山钨矿深部脉体,标高417m,脉体走向为近东西向,陡倾,向上拍摄;b—江西漂塘钨矿深部大脉,标高268m,脉体走向为近东西向,陡倾,向上拍摄。Qtz—石英;Wol—黑钨矿

    Figure  2.   Typical veins at deeper levels of tungsten deposits in the Nanling Mountains

    图  3   石英脉型钨矿床热液运移数值模型

    Figure  3.   Numerical model of hydrothermal flow at the tungsten deposits in the Nangling Mountains

    图  4   数值实验1温度(a)和Péclet数(b)的分布

    Figure  4.   The temperature (a) and Péclet number (b) in the first numerical experiment

    图  5   数值实验1热液运移1a后(a)和2a后(b)硅有效扩散系数在裂隙带附近的分布

    Figure  5.   The effective diffusion coefficients of silica in the wallrock adjacent to fracture zones after one year (a) and two years (b) in the first numerical experiment

    图  6   数值实验2温度(a)和Péclet数(b)的分布

    Figure  6.   The temperature (a) and Péclet number (b) in the second numerical experiment

    图  7   数值实验2中热液运移1a后(a)和2a后(b)硅有效扩散系数在裂隙带邻近围岩的分布

    Figure  7.   The effective diffusion coefficients of silica in the wallrock adjacent to fracture zones after one year (a) and two years (b) in the second numerical experiment

  • 陈毓川, 裴荣富, 张宏良, 等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社, 1989:507.
    朱焱龄, 李崇佑, 林运淮.赣南钨矿地质[M].南昌:江西人民出版社, 1981:440.
    祝新友, 王京彬, 王艳丽, 等.南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J].中国地质, 2012, 39(2):359-381. doi: 10.3969/j.issn.1000-3657.2012.02.009
    阙梅登, 夏卫华.江西大吉山脉钨矿床矿化富集特征及其机理初探[J].地球科学——中国地质大学学报, 1988, 13(2):177-185. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198802011.htm
    林新多, 张德会, 章传玲.湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨[J].地球科学, 1986, 11(2):153-160. http://www.cnki.com.cn/Article/CJFD1986-DQKX198602006.htm
    张德会.石英脉型黑钨矿床成矿流体性质的进一步探讨[J].地球科学, 1987, 12(2):185-192. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198702012.htm
    祝新友, 王京彬, 王艳丽, 等.论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例[J].地质学报, 2014, 88(5):825-835. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405002

    Audétat A, Keppler H. Viscosity of fluids in subduction zones[J]. Science, 2004, 303(56/57):513-516. http://petrology.oxfordjournals.org/external-ref?access_num=10.1126/science.1092282&link_type=DOI

    常海亮, 黄惠兰.西华山黑钨矿石英脉绿柱石中熔融包裹体的发现及其意义[J].华南地质与矿产, 2001, 2:21-27. doi: 10.3969/j.issn.1007-3701.2001.02.004

    Ni P, Wang X D, Wang G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65(4):1062-1077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2bb56209e6f77391eecd3ab68bbe24c

    Wei W F, Hu R I, Bi X W. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China[J]. Mineralium Deposita, 2012, 47(6):589-605. doi: 10.1007/s00126-011-0377-0

    曹晓峰, 吕新彪, 何谋春, 等.共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例[J].矿床地质, 2009, 28(5):611-620. doi: 10.3969/j.issn.0258-7106.2009.05.007
    董少花, 毕献武, 胡瑞忠, 等.湖南瑶岗仙石英脉型黑钨矿床成矿流体特征[J].矿物岩石, 2011, 31(2):54-60. doi: 10.3969/j.issn.1001-6872.2011.02.008
    宋生琼, 胡瑞忠, 毕献武, 等.赣南淘锡坑钨矿床流体包裹体地球化学研究[J].地球化学, 2011, 40(3):237-248. http://d.old.wanfangdata.com.cn/Periodical/dqhx201103003
    宋生琼, 胡瑞忠, 毕献武, 等.赣南崇义淘锡坑钨矿床氢、氧、硫同位素地球化学研究[J].矿床地质, 2011, 30(1):1-10. doi: 10.3969/j.issn.0258-7106.2011.01.001
    王巧云, 胡瑞忠, 彭建堂, 等.湖南瑶岗仙钨矿床流体包裹体特征及其意义[J].岩石学报, 2007, 9:2263-2273. doi: 10.3969/j.issn.1000-0569.2007.09.024
    王旭东, 倪培, 蒋少涌, 等.赣南漂塘钨矿流体包裹体研究[J].岩石学报, 2008, 24(9):2163-2170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200809025
    王旭东, 倪培, 张伯声, 等.江西盘古山石英脉型钨矿床流体包裹体研究[J].岩石矿物学杂志, 2012, 29(5):539-550. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201005009
    王旭东, 倪培, 袁顺达, 等.江西黄沙石英脉型钨矿床流体包裹体研究[J].岩石学报, 2012, 28(1):122-132. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201010
    王旭东, 倪培, 袁顺达, 等.赣南漂塘钨矿锡石及共生石英中流体包裹体研究[J].地质学报, 2013, 87(6):850-859. doi: 10.3969/j.issn.0001-5717.2013.06.009
    席斌斌, 张德会, 周利敏, 等.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报, 2008, 82(7):956-966. doi: 10.3321/j.issn:0001-5717.2008.07.014
    赵波.江西漂塘石英脉型黑钨矿床成矿深度估算[D].中国地质大学(北京)硕士学位论文: 2013. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013265943.htm

    Hayba D O, Ingebritsen S E. Multiphase groundwater flow near cooling plutons[J]. Journal of Geophysical Research, 1997, 102(B6):12235-12252. doi: 10.1029/97JB00552

    Zhao C B, Reid L B, Regenauer-Lieb K. Some fundamental issues in computational hydrodynamics of mineralization:A review[J]. Journal of Geochemical Exploration, 2012, 112:21-34. doi: 10.1016/j.gexplo.2011.10.005

    Ingebritsen S E, Appold M S. The physical hydrogeology of ore deposits[J]. Economic Geology, 2012, 107:559-584. doi: 10.2113/econgeo.107.4.559

    池国祥, 薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘, 2011, 18(5):1-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105002
    邓军, 王庆飞, 黄定华.成矿流体输运物理机制研究的关键难题与方法体系[J].地球科学进展, 2004, 19(3):393-398. doi: 10.3321/j.issn:1001-8166.2004.03.008
    周利敏, 张德会, 席斌斌.岩石中的渗透率、流体流动及热液成矿作用[J].地学前缘, 2008, 15(3):299-310. doi: 10.3321/j.issn:1005-2321.2008.03.027
    毛景文, 谢桂青, 郭春丽, 等.南岭地区大规模钨锡多金属成矿作用-成矿时限及地球动力学背景[J].岩石学报, 2007, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002
    王碟, 卢焕章, 毕献武.与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较[J].地学前缘, 2011, 18(5):121-131. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105012
    黄惠兰, 常海亮, 付建明, 等.西华山脉钨矿床的形成压力及有关花岗岩的侵位深度[J].矿床地质, 2006, 25(5):562-571. doi: 10.3969/j.issn.0258-7106.2006.05.003
    穆治国, 黄福生, 陈成业, 等.漂塘-西华山石英脉型钨矿床碳、氢和氧稳定同位素研究[C]//余鸿彰.钨矿地质讨论会论文集.北京: 地质出版社, 1984: 153-169.
    张国新, 谢越宁, 虞福基, 等.江西大吉山钨矿床不同成矿阶段稳定同位素地球化学[J].地球学报, 1997, 18(增刊):197-199. http://d.old.wanfangdata.com.cn/Conference/310114
    张理刚, 庄龙池, 钱雅倩.江西西华山-漂塘地区花岗岩及其钨锡矿床的稳定同位素地球化学[C]//余鸿彰.钨矿地质讨论会论文集.北京: 地质出版社, 1984: 325-338.
    庄龙池, 林伟圣, 谢廷焕.大吉山钨矿的稳定同位素地球化学[C]//中国地质科学院宜昌地质矿产研究所文集, 1991: 16. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199101001010.htm
    古菊云.华南隐伏-半隐伏脉钨矿床的地表标志带[J].矿床地质, 1984, 3(1):67-76. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ198401010.htm

    Cathles, L M, Shannon R. How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water[J]. Earth and Planetary Science Letters, 2007, 262(1/2):92-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c19020c9c4c93abdc98e8fada5fe2bdf

    Geiger S, Haggerty R, Dilles J H, et al. New insights from reactive transport modelling:the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, Montana[J]. Geofluids, 2002, 2(3):185-201. doi: 10.1046/j.1468-8123.2002.00037.x

    Steefel C I, Lichtner P C. Multicomponent reactive transport in discrete fractures: Ⅰ. Controls on reaction front geometry[J]. Journal of Hydrology, 1998, 209(1/4):186-199. doi: 10.1016-S0022-1694(98)00146-2/

    Li Q, Xing H. Numerical analysis of the material parameter effects on the initiation of hydraulic fracture in a near wellbore region[J]. Journal of Natural Gas Science and Engineering, 2015, 2(3):1597-1608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23d81587cbaab41491fca034a40fe00c

    Liu X, Xing H, Zhang D. Fluid focusing and its link to vertical morphological zonation at the Dajishan vein-type tungsten deposit, South China[J]. Ore Geology Reviews, 2014, 62(1):245-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c06fb749eab45a9db8a0dbe909d8e75

    Liu X, Xing H, Zhang D, The mechanisms of the infill textures and its implications for the five-floor zonation at the Dajishan vein-type tungsten deposit, China[J]. Ore Geology Reviews, 2015, 65, Part 1(0): 365-374. https://www.sciencedirect.com/science/article/pii/S0169136814002625

    Liu X, Xing H, Zhang D. Influences of fluid properties on the hydrothermal fluid flow and alteration halos at the Dajishan tungsten deposit, China[J]. Journal of Geochemical Exploration, 2016, 163:53-69. doi: 10.1016/j.gexplo.2016.01.014

    Xing H. Finite element simulation of transient geothermal flow in extremely heterogeneous fractured porous media[J]. Journal of Geochemical Exploration, 2014, 144:168-178. doi: 10.1016/j.gexplo.2014.03.002

    Xing H, Yu W, Zhang J. 3D Mesh Generation in Geocomputing, Advances in Geocomputing[M]. Lecture Notes in Earth Sciences. Springer Berlin Heidelberg, 2009: 27-64.

    Xing H L, Ding R W, Yuen D A. Tsunami Hazards along the Eastern Australian Coast from Potential Earthquakes:Results from Numerical Simulations[J]. Pure and Applied Geophysics, 2014:1-29. doi: 10.1007/s00024-014-0904-x

    Xing H L, Makinouchi A. Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(37/38):4193-4214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a959131123b33e7256b622c20c2b2fc6

    Xing H L, Makinouchi A, Mora P. Finite element modeling of interacting fault systems[J]. Physics of the Earth and Planetary Interiors, 2007, 163(1/4):106-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f880511e3c2ec01187b1ed11d87fb5f0

    Xing H L, Zhang J, Gao J F, et al. PANDAS and its New Applications in Geothermal Modelling[C]//Australian Geothermal Energy Conference, Melbourne. 2011. https://espace.library.uq.edu.au/view/UQ: 301264

    Batzle M L, Wang Z. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11):1396-1408. doi: 10.1190/1.1443207

    Van Loon L R, Mibus J. A modified version of Archie's law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies[J]. Applied Geochemistry, 2015, 59:85-94. doi: 10.1016/j.apgeochem.2015.04.002

    Li Y, Gregory S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochimica et cosmochimica acta, 1974, 38(5):703-714. doi: 10.1016/0016-7037(74)90145-8

    Rimstidt D. Geochemical Rate Models[M]. Cambridge University Press, New York, 2014:232.

    Huysmans M, Dassargues A. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments[J]. Hydrogeology Journal, 2005, 13(5):895-904. doi: 10.1007/s10040-004-0387-4

    Lester D R, Ord A, Hobbs B E. The mechanics of hydrothermal systems:Ⅱ. Fluid mixing and chemical reactions[J]. Ore Geology Reviews, 2012, 49(0):45-71. http://www.sciencedirect.com/science/article/pii/S0169136812001734

    陈尊达, 胡立檖.黄沙脉钨矿床地质特征及原生分带[C]//余鸿彰.钨矿地质讨论会论文集.北京: 地质出版社, 1984: 25-34.
    刘向冲.江西大吉山石英脉型黑钨矿床"五层楼"垂直形态分带动力学机制[D].中国地质大学(北京)博士学位论文, 2015: 114. http://cdmd.cnki.com.cn/article/cdmd-11415-1015518056.htm
    周利敏.江西省全南县大吉山钨矿构造应力场数值模拟与成矿预测[D].中国地质大学(北京)硕士学位论文, 2009: 67. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075726.htm

    Genter A, Evans K, Cuenot N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7/8):502-516. http://www.sciencedirect.com/science/article/pii/S1631071310000179

    Rebreanu L, Vanderborght J P, Chou L. The diffusion coefficient of dissolved silica revisited[J]. Marine Chemistry, 2008, 112(3):230-233. http://www.sciencedirect.com/science/article/pii/S0304420308001400

    Ingebritsen S E, Manning C E. Permeability of the continental crust:dynamic variations inferred from seismicity and metamorphism[J]. Geofluids, 2010, 10:193-205. doi: 10.1111/j.1468-8123.2010.00278.x/full

    Stein H J, Cathles L M. A special issue on the timing and duration of hydrothermal events-preface[J]. Economic Geology, 1997, 92(7/8):763-765.

    Cathles L M, Erendi A H J, Barrie T. How long can a hydrothermal system be sustained by a single intrusive event[J]?Economic Geology, 1997, 92(7/8):766-771.

    Cox S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology One Hundredth Anniversary Volume. Society of Economic Geologists, Litteton, Colorado, 2005: 39-76.

    Henley R W, Berger B R. Self-ordering and complexity in epizonal mineral deposits[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:669-719. doi: 10.1146/annurev.earth.28.1.669

    Ingebritsen S E, Appold M S. The physical hydrogeology of ore deposits[J]. Economic Geology, 2012, 107:559-584. doi: 10.2113/econgeo.107.4.559

    Ingebritsen S E, Manning C. E. Permeability of the continental crust:dynamic variations inferred from seismicity and metamorphism[J]. Geofluids, 2010, 10:193-205. doi: 10.1111/j.1468-8123.2010.00278.x/full

    David C, Wong T F, Zhu W, et al. Laboratory measurement of compaction-induced permeability change in porous rocks:implications for the generation and maintenance of pore pressure excess in the crust[J]. Pure and Applied Geophysics, 1994, 143(1/3):425-456. doi: 10.1007/BF00874337

    Heiland J. Laboratory testing of coupled hydro-mechanical processes during rock deformation[J]. Hydrogeology Journal, 2003, 11(1):122-141. doi: 10.1007/s10040-002-0236-2

  • 期刊类型引用(4)

    1. 黄睿,张颖,史骁,孙跃武. 新疆准噶尔盆地东缘中—晚二叠世植物群及其地质意义. 吉林大学学报(地球科学版). 2023(02): 403-417 . 百度学术
    2. 刘晓,孙景耀,张荣霞,李芝荣,吴凤萍,隋天静. 新疆塔里木南缘埃连卡特岩群物质来源及构造环境——锆石U-Pb年代学和地球化学约束. 山东国土资源. 2023(04): 1-11 . 百度学术
    3. 王星,蔺新望,张亚峰,赵端昌,赵江林,仵桐,刘坤. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄及其对阿尔泰造山带构造演化的启示. 地质通报. 2022(09): 1574-1588 . 本站查看
    4. 王国灿,张孟,张雄华,康磊,廖群安,郭瑞禄,王玮. 天山东段“北天山洋”构造涵义及演化模式再认识. 地质学报. 2022(10): 3494-3513 . 百度学术

    其他类型引用(1)

图(7)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-01-07
  • 修回日期:  2018-02-27
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-09-14

目录

/

返回文章
返回